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Abstract. _

. This paper develops a macroscopic theory that includes Ostwald ripen-
ing, a process occurring in solid-liquid phase mixtures whereby the size
scale of the solid phase tends to grow so as to decrease interfacial energy.
The dynamic mixture theory presented is also capable of dealing with
transport phenomena and phase redistribution effects that arise from
relative flow between the phases. The presence of the interfacial energy
means that the pressures of the liquid and solid in the phase mixture
are not equal and the ripening process is directly related to the relax-
ation of the system to a state of local thermodynamic equilibrium with
a common pressure for the phases.



1. Introduction.

It is often found that a first-order phase transition results in a region
of mixed phase with a structure that generally can be of one of two
types. When the solid phase is in the form of fine particles suspended
in the liquid phase, the region is usually termed a slurry. Then, belying
its name, the solid phase has a fluid-like character with the granular
“rain” being free to ascend or sediment according to buoyancy. In the
other type of structure, a mush or mushy zone, the solid has a higher
degree of rigidity and forms a matrix of crystals or dendrites through
which the liquid phase percolates. Interest in modelling these regions
has significantly increased during the past few years, fuelled in part by
an associated experimental activity but prompted also by a myriad of
industrial applications. While mixed phase regions are commonplace in
alloy solidification, they occur more rarely for pure substances and their
formation usually requires a special experimental configuration as in,
for example, volumetric heating. Despite their comparative paucity, in
this paper we shall nevertheless concentrate on a phase mixture of pure
substance since this is undoubtedly the clearest theoretical environment
in which to discuss features that are common to both pure material and
the considerably more complex systems of alloys. ‘

To model a two-phase region of a pure material Hills & Roberts [1]
~ proposed a mixture theory that was formulated in terms of a concentra-
tion ¢(x,t) for the liquid phase at time ¢ at a point x within the region.
This field can take values in {0, 1] and, since it defines the extent of the
deviation of the system from the pure solid state (¢ = 0), we may fegard
it as being a possible order parameter of the system. It is clearly a mean
field variable since, according to the usual view, it results from some
averaging process over a small physical element of volume centred at x
and containing many solid particles. Within any volume there will be
a spectrum of particle sizes and shapes but the details of their evolu-
tion is beyond the sensitivity of the measure ¢. In the same spirit, in
[1] and [2] it was assumed that local thermodynamic equilibrium pre-
vailed. This requires that at any point x at time ¢ the temperatures
and pressures of the two phases adjust to equality very rapidly on the
time scale of the evolution of the system as a whole so that thé ther-
modynamic state can be reflected by a common temperature, T, and
pressure p, both of which are functions of x and t (see Roberts and
Loper [3]). The mixture theory then followed along conventional lines:
at every point it is supposed there are two interpenetrating continua
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each with smoothly varying fields of density pt, p%, velocity ul, u® ete.

The governing equations result from conservation principles associated
with mass, momentum and energy and the constitutive theory 1s made
consistent with an entropy growth postulate. In [1] the liquid phase was
assumed linearly viscous while the solid granular phase was viscoelastic
being essentially elastic to high frequency disturbances but fluid-like at
low frequencies so that the theory could apply equally well to a slurry
or a mushy zone. :

One of the more unusual aspects of the theory [1] was the way in which
the melting/freezing process was modelled. From thermostatics we know
that, when microstructure and surface energy effects are ignored, the
phase coexistence curve in pT'—space is obtained by solving the condition
L (p,T) = ®%(p,T) where > denotes the specific Gibbs energy of the
phase a. The total Gibbs energy is given by the lever rule

& =cdL 4+ (1 -¢)®° ‘ (1.1)

and the theory must predict that the concentration c(x,t) is an arbitrary
(possibly discontinuous in x) function restricted only by 0 < ¢ < 1.
There should be no physical process that-will even out ¢(x,t) for a
system on the phase line (see [4]). If the system is artificially moved off
that line, however, the melting/freezing process will immediately ensue
and only cease when the system has either relaxed back to the phase
line or else become a single phase of either liquid or solid. This suggests
that the rate of production of liquid from solid per unit volume, m?”
should be proportional to the difference in Gibbs functions, vzz.

b

ml = —A(8L - 3%), A>0. (1.2)

(The actual postulate adopted in [1] is slightly more general due to the
presence of viscoelastic stresses in the solid which we shall ignore in this
discussion.) Then, for example, if dL > &7, the system is on the solid
side of the phase curve and the liquid will freeze (m* < 0). On the
coexistence curve itself m% properly vanishes.

It is perhaps not surprising that the mean-field approach such as [1],
that attempts to model the complex morphology of the solid phase by
a single field c(x,t), thereby disregards microscopic processes of signifi-
cance. Particularly disturbing is the omission of the interfacial tension
hetween solid grains and the fluid that surrounds them. This is espe-
cially crucial when the grains are small. Ounly when the mixed phase is
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‘mature’, that is, when its microscale structure is on such a large length
scale that the surface energy is small compared with the volumetric en-
ergy, can one expect a theory that is thermodynamically based on p, T
and c alone to perform satisfactorily, and for the phase-coexistence curve
derived from ®% = ®° to define mixed phase regions. In other cases a
more complete description of the morphology of the mixed phase region
is required. At one extreme, one might follow Lifshitz and Slezov [5] and
later workers by introducing a distribution function specifying the prob-
able number of grains whose mean radius lies between R and R + dR,
and to derive a Boltzmann-like equation incorporating the processes of
growth and decay of each particle size. The complexities of solving any
but the simplest model situations are then very great. At the other
extreme lies the theory developed here, in which we incorporate only a
single moment of Lifshitz and Slezov’s distribution function, namely the
mean radius of the grains. In this way we develop a model that hopefully
both incorporates the essential physics while being simple enough to be
broadly applicable.

Before attempting to develop such a theory it may be useful to review
the role of interfacial tension. It is well known that a pure liquid phase
«can exist below the melting temperature for long periods of time; this
is known as ‘supercooling’. It arises because interfacial tension creates
an energy barrier that solid phase must cross if it is to persist. For the
given p and T ‘below’ the phase line, there exists a critical grain radius,
R, given by

®°(p+20/R.,T) = "(p,T), (1.5)

where o 1s the coeflicient of interfacial tension. This defines the ‘top’
of the barrier. Equation (1.5) represents phase equilibrium between the
liquid in state (p,7") and a solid at the same temperature, but at the
greater pressure

p° =p+20/R., (1.6)

that exists within the grain. This state at the top of the barrier is
unstable in the sense that particles of radius greater than R, will grow
~ even larger as new material freezes onto their surfaces, while particles
of radius less than R, will dissolve back into the liquid. A supercooled
system continually attempts through thermal fluctuations to create solid
particles of all sizes, but (when the system is only slightly below the
phase line) thermal fluctuations energetic enough to create particles of
mean radius larger than R, are rare, and so the liquid remains in its
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supercooled state for a considerable time. The greater the degree of
supercooling, the lower the energy barrier, and nucleation of solid phase
once initiated then often proceeds so rapidly as to he experimentally
impossible to monitor; see for example Chalmers [6].

In-an isolated system, the latent heat released in this sudden nu-
cleation raises the ambient temperature closer to that of the (bulk)
melting curve (R = o0), but the solid phase that has been so rapidly
created tends to be of small scale crystals. A slower process of morpho-
logical change ensues in which the mean grain size increases secularly,
with a concomitant rise in temperature towards the bulk melting curve.
This process, known as ‘Ostwald ripening’ or ‘phase coarsening’, is often
viewed as a long-time relaxation process. The distribution of grain sizes
broadens as the slurry becomes more mature. The latent heat released
from the surfaces of the larger grains as they freeze tends to impede
the freezing of smaller grains which, in their turn, inhibit the growth
of still smaller grains. It is these processes that Lifshitz and Slezov {5]
incorporate in their Boltzmann-like equation governing the distribution
function of sizes. In the limit of very large times, in which the system
approaches the bulk melting curve, they predict that the distribution
of sizes approaches a universal self*smular form with the mean partzcle
radius increasing as /3.

Much careful experimental work has been performed that cenfirms
both the temporal law and a long-time self-similar behaviour although
not precisely of the form predicted by Lifshitz and Slezov; see for ex-
ample [7]. For practical reasons, the actual conditions envisaged by
Lifshitz and Slezov are not attempted: their solution supposes that ¢
is held constant, so that the ripening process is exhibited in its clearest
form, unobscured by additional freezing effects. In the experiments of {8]
however, it is the ambient temperature that is held fixed, so that ripen-
ing is accompanied by additional freezing. One further point should be
made. Although our discussion is expressed in terms of a slurry of solid
grains, it is also applicable to the mush of dendritic structures gener-
ally seen experimentally [9]. Of course, the interpretation is different.
The increasing R of the slurry grains corresponds to enlargement and
coarsening of the crystal structure in the mush.

A recent theory of phase mixtures that employs continuum concepts
is the so-called phase fluid model (see [10]-[11]). Essentially this theory
relates to static systems and has two fundamental variables: a non-
dimensional temperature and an order parameter ¢ that takes values
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-1 and 1 for pure solid and liquid respectively. The free energy of the
system contains a contribution that, although non-convex in ¢, never-
theless seeks to drive the system to a state where either ¢ = —1 or
¢ = 1. There is also a contribution proportional to (V¢)? that is in?
tended to reflect surface energies and whose réle is to smooth out inho-
mogeneities and send the system to one of uniform ¢. By this approach
the advent of a phase mixture is inextricably related to the non-convex
part of the free energy in the manner of spinodal decomposition in alloys
(see Cahn [12}).

There is clearly the need for a dynamic macroscopic theory that is
capable of dealing with the transport phenomena and phase redistribu-
tion effects that arise from the relative flow between the phases. There
is also the need for a theory capable of reflecting ripening phenomena
in the transient or short-time regime, since for many systems it may
not he possible to reach the long-time regime in any experimentally
realistic time. The successes of the Lifshitz—Slezov theory and of the
subsequent experiments set obvious objectives for our simpler model of
ripening phenomenon. Although our approach is evidently incapable of
determining the distribution function of grain sizes, it should he capable
of reproducing the long-time ¢t!/3 power law of mean grain size. This
evidently should be a prime objective of our work. We shall however
not formulate our theory in terms of the field, R(x,t), representing the
mean grain size at the point x at time ¢t. Instead we shall find it more
convenient to work with two pressures, that of the liquid, p(x,t), and
that of the solid, p®(x,#). From the difference between them we can,
if we wish, at any time reinterpret our results in terms of the average
grain curvature (i.e. the mean of R™'), by invoking Laplace’s formula

p® =p+20/R. (1.7)

The decrease in R~! will be regarded as a process of stress relaxation in
which p° comes into equality with p.

The governing equations and constitutive model for a two phase mix-
ture theory with unequal thermodynamic pressures is set down in Sec-
tion 2. For simplicity, we assume that the time scale for the equilibrium
of the phase temperatures is so short that we may assume a common
temperature field T'. (A two-temperature phase mixture theory was ad-
umbrated in [3] but with equal pressures.) We shall principally have in
mind slurries where the ‘solid’ phase is in the form of small particles that
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have fluid-like behaviour and this is reflected in the constitutive theory
of Section 2. The resulting general theory contains an abundance of
physical effects and, in Section 3, we obtain a reduced theory by re-
taining only the interesting dominant ones. To demonstrate some of
the implications of the present theory we investigate the coarsening of a
static homogeneous system in the cases when (i) the liquid pressure and
(ii) the ambient temperature remain constant. We show that in both
cases, as the system moves towards local thermodynamic equilibrium,
the liquid concentration decreases.



. 2. Basic theory and constitutive model.
The two phase system is modelled by a binary reactive mixture theory
with partial densities p¥, p° for liquid and solid that move with velocities

u®, u®. The governing equations are (see [1])

p+pV-u=0, (2.1)
DLyl
pL'—'D—t'L + %TnfL'wi = pLFiL + Ug,;’k + gs, (22)
Dsuf '
Ps—"‘ﬁ%— + %mei = p Ff + O'Ei,k = Gis (2.3)
pr — pU — Gii — giw; + a{}d;% + afjdf;- = (. (2.4)

Here p is the total mass density, U is the internal energy per unit mass

of the mixture as a whole and r is the heat supply to the mixture per

unit mass per unit time. The vectors q, g, and F* are respectively the

heat flux vector, a diffusive force between the phases and the applied

body force to the a—phase (o = L or §). The relative velocity, w, and
- barycentric velocity u are defined by '

w=ul - u”, pu = pFul + p7u®. _ (2.5)

The stress tensors o7; are individually assumed symmetric and dg; denote
the rate of deformation tensors. The motional derivatives D*/Dt are
calculated using the velocity u®. A superposed dot denotes the motional
derivative following the barycentric velocity as does D/Dt = DS /Dt +
(pL/p)w -V, etc.

I -

The liquid phase conversion rate, m*™, is
m® = 0,p" + V- (pPut) (2)

where 0; denotes time differentiation holding the spatial variable fixed,
and this equation can be recast as

pi+V-[pe(1 — cyw] = m”, (2.7)

where ¢ = pl/p is the fluid mass concentration. Equation (2.7) is a
tautological consequence of the definition (2.6) but the usual approach
of phase mixtures is to postulate a constitutive equation for m% and
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then the status of (2.7) is raised to that of an evolution equation for the
concentration ¢ (see [13]). The simplest such postulate is the m% = 0
of non-reactive mixtures. We shall, however, be more interested in laws
such as (1.2).

Phase mixtures are usually described in thermostatics by the intensive
fields of temperature and pressure with the Gibbs free energy acting as
the fundamental thermodynamic potential. For two phases to be in equi-
librium, their specific Gibbs energies must be equal. Pressure is there
unambiguous but this is not the case in dynamic situations (see [1]). For
evolving systems, it was supposed in [1] that the thermodynamic speci-
fication of a system required, in addition to T" and ¢, a single scalar field
p. Although at the outset this pseudo-pressure p was a formal parame-
ter, later in the analysis it was related to other pressure fields that occur
in the theory. The coarsening system that is the subject of this paper
has an extra degree of freedom over and above that of [1]. This freedom
arises from the non-equality of the solid and liquid pressures. Thus we
assume that the specification of the thermodynamic state for the present
case will require two pseudo-pressures, p, p°. We can formally intro-
duce a Gibbs potential ® = U — ST + p/p and we shall assume that &,
and related variables such as § and p, depend only on p, p°, T and ¢

&= (p,p°, Tc). . (2.8)

The fields p, p° will subsequently be related to both the actual pressure
fields p, p% of the liquid and solid and to the mechanical partial pressures
of the phases. Throughout we shall regard the pressure of the liquid as
being the ambient field (hence no superscript L) and, as the system
approaches equilibrium, the pressure excess p° — p, often called the sur-
face pressure (see {14]), relaxes to zero. We shall require an evolution
equation to govern this relaxation process and must expect that it will
he intimately related to the constitutive theory for the melting/freezing
process. For this reason we postpone introducing our final balance law
until we have made some preliminary discussions of entropy growth.
We adopt as our entropy postulate the inequality

pTS +TV-k —pr >0, | (2.9)

where S is the entropy per unit mass of the mixture and k is an entropy
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flux vector. Using (2.4) we can rewrite this inequality as

~p(® + ST) + p+ pV- [eu’ + (1 - c)u?]
+1TV-k-V.q - g-w+ral:d +o5:d% > 0,
(2.10)

where 0% : d* denotes the inner product of;dg.

Since S and p depend on the argument set of (2.8), equation (2.1)
vields '

dp op|. Op_. 0Op. Op —5——r
o 2 — T — (¥ —
[3@+Bps]p+3T T 5 ¢t s 7 F)
+pV- [cuL—{—(l—c)uS] =0. (2.11)

In our discussion of the entropy inequality, equation (2.11) represents a
constraint and this is most easily accommodated by use of a Lagrangian
multiplier, A. Using (2.7), the inequality (2.10) becomes

apg5+aTT+aD(5o5 — p)mumL—[—TV-ka-q—w-G—i—EL: dL—I—E_S: d® >0,
(2.12)
where the coeflicients ag, pi, the vector G and the tensors Xf; are defined

by
omp[Be 28 LA (2, B0
* = P10 TS p p\Op 095/
— ?E—[—-S—{-i\-@ an = 6_@+i_(?_e~

a® A dp
§o= [—5g+ ;a] )
G =g~ (p— Ap)Vc — uV[pc(l - ¢)],
Sk =of +elp—Ap+ pp(l = )] 6y,
85 =05+ (1—c)[p— Ap— ppe] 6i;.

(2.13)

Assuming that the evolution equation for the surface pressure and the
constitutive theory for m?%, g;, q;, k; and o7 do not introduce any fur-
ther motional derivatives of p and T', we deduce in the usual way that
ap = ar = 0, so that A = \(p, p°,T, ¢).
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If we introduce the pressure fields p = p — Ap and p° = p°

— Ap
together with a Gibbs energy 3 = & — X then we find that
& =&(p,5°,Tc),
92 9% 1 8% _ 0% (2:14)

o 9% _ 9% - _g b
% Ty ar. T B M

and throughout we can eliminate ®, p, p°, A in favour of :ﬁ, D, p°.
Henceforth we shall drop the caret = over @, etc.. We shall see that p,
p° are properly the thermodynamic pressures of liquid and solid.

The principal interest of this paper is with the coarsening phenomenon
and its relationship to both the pressure field relaxation and to the melt-
ing/freezing process. We, therefore, simplify as much as possible those
aspects of the constitutive theory that have only a peripheral bearing on
the main issue. In particular we concentrate on the case of slurries where
the ‘solid’ phase is in the form of a loose assemblage of fine particles that
can easily be deformed and so has fluid-like characteristics. With this
in mind, the stress tensors of both phases are assumed to follow a linear
viscous model, viz:

0% = — U8 + AZdE 65 + 202 dS (2.15)

13 1 ¥rp 137

where Aj are the phase viscosities and p® are the mechanical pressures,

assumed functions of p, p°, T and c. It is clearly possible to make the
solid phase viscoelastic in the manner of [1] and [2], whereby it would ex-
hibit Maxwellian characteristics but the concomitant complexity would
obscure our main purpose. Again, for simplicity we assume the fluxes of
heat and entropy have the forms

q = Tk + §%w, k = —(x/T)VT + 6*w, (2.16)

where the thermal conductivity, x, and the coefficients 8° are functions
of p, °, T, c. We shall see that through #7 we have the ability to
modify the partial pressures p® without affecting the final governing
equations. The significance of the transport coefficient 8% is lluminated
in the subsequent section where coarsening in a slurry confined between
two horizontal flat plates is considered.

Next we turn to the evolution equation for the surface pressure

p° — p. First and foremost, this equation must predict relaxation to
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an equilibrium state where this imbalance vanishes. Being associated
with the solid, the motional derivative should clearly be taken using the
solid velocity u® and one of the simplest possible choices is a generalized
‘power law’

D5

= N
Di

“‘”P)_ = —af(p —P)N — WLv,f,k — st;f,k, (2.17)

where IV is an integer. We expect the coeflicients #% to vanish with
p® — p so that the equation imposes no restriction on the velocity fields
for local thermodynamic equilibrium. It will emerge that the coeffi-
cient « appears as a prefactor of a temporal law for the ripening phe-
nomenon. The precise determination of the préfactor by experimental
means has not yet been possible although it does appear that there may
be a volume fraction dependence [15]. We assume quite generally that
a=alp,p®,T,c).

The diffusive force g¢; reflects the nature of the interaction between
the phases and undoubtedly its most significant contribution will be a
term proportional to the relative velocity. This term gives rise to the
‘Darcy friction’ that can often dominate other contributions to the linear
- momentum equations, such as the inertia or viscous terms. The specific
form we adopt for g is suggested in part by the inequality (2.12) when
(2.14)—(2.17) are substituted, viz:

gi = peitaloe(l - c)] ;—pc(0%/0p®)[p® —pl i —6°T,; — 0% —nw;. (2.18)
With this form for g; the dissipation associated with the relative velocity

w from such terms as ~w-G in (2.12) and other sources becomes simply
nw? and the inequality reduces to

o(pd®/0p° ) (p° —p) —m* (@ —@5)+6L‘U,‘E’k+bsvk‘9’k+D >0, {2.19)
where

D = nuw? + (x/T)TiT; + AFaL db +20Labd?

1 %ppaq iy
+ AT dS + 205 dSd

i Vo - (2.20)
b” = cp + puc(l — ¢} + p(0®/0p” )™ — 67 — p~, :

b7 = (1 = c)p — puc(l — ¢) + p(98/p”)n° + 67 — p°.
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We expect that it should be possible for the melting/freezing processes
to cease in a static isothermal system without the pressures p, p° being
equal. Thus, anticipating that %/9p° > 0 [see (2.26) below], we require

a >0, N = 2n, (2.21)

where 7 is a positive integer. To ensure that (2.17) has the right proper-
ties, let us consider the evolution of a stagnant system with an existing
small surface pressure so that to leading order we may take o constant.

We find |
(p.S' ___p)""(2n-~1) — (ps . p)D—(Zn—-l) + (271 . 1)at, (222)

where the suffix 0 indicates an initial value. By appealing to the Laplace
formula (1.7) for a single grain of solid, we can relate the solution (2.22)
to the theory of coarsening developed by Lifshitz & Slezov [5]. They
showed that the average particle radius R of an isolated spherical grain
satisfied

R® = R} + Kt, , (2.23).

where K (> 0) is constant. All the weight of experimental work has
confirmed the veracity of this law and this evidence suggests we take
n = 2 and henceforth we shall adopt this value.

It is worth noting that the simpler choice n = 1 is physically implausi-
ble. In terms of the evolution of R, (1.7} and (2.17) give (in the simplest
case 7l = 7% = 0)

| " DR B ag?nt
Dt — Ran-2°
which predicts, in the case n = 1, that the mean grain radius increases
at a constant rate even when the system approaches bulk equilibrium
(R = 00). This unrealism makes n == 2 the simplest plausible choice of
n. :

If we assume, as we shall in (2.27) below, that the constitutive pos-
tulate for m% is independent of velocity gradients then (2.19) gives
b =% = 0 and (2.20), 3 determine the mechanical pressures pt, p°:

P = cp + ppc(l — ¢) — apnl — 99,
P° = (1=c)p— ppe(l —¢) —apr® + 9.

We note that 7% = 7% = 0 by assumption when local thermodynamic
equilibrium prevails, and then the sum of the pressures p* properly
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equals the common phase pressure p. We can now see that 09 reflects
an arbitrariness in the pressures p®, but it does not affect the sum of
these pressures nor does it appear in either of the final momentum hal-
ance equations (2.2)—(2.3) being removed from p® by the penultimate
term of (2.18). The inclusion of the §? terms has, in fact, no physical
consequences and may be omitted. |

To make further progress we need to make more explicit the assump-
tion (2.14);. It is well known that in local thermodynamic equilibrium
the Gibbs energy satisfies the lever rule and is, therefore, linear in the
concentration ¢. As a direct consequence of this linearity the phase coex-
istence curve is independent of ¢ and any concentration is possible for a
pT'-state lying on that curve. We shall soon find that for the coarsening
slurry there is a whole family of curves on which the melting/freezing
process ceases. We shall likewise require that any distribution of concen-
tration is possible on each member of this family. This requires that the
® of the present theory be linear in ¢ also. The partial Gibbs energies of
the phases are assumed functions of the common temperature and their
respective thermodynamic pressures so that

8(p,p°,Tyc) = @ (p,T) + (1 - )2°(p°,T). = (2.24)
By rewiiting this equation as
& = c®%(p,T)+(1-c)®°(p,T) + (1 - ¢)[@°(p°,T) - &% (p, T)], (2.25)

we can see that the lever rule of local thermodynamic equilibrium has
been generalized by the addition of the last term of (2.25) which reflects

a contribution of the microstructure and which properly vanishes when

p® = p. If we introduce the actual densities p<, specific volumes v& and

entropies S¢ by

1 ., 0% 9o
——-«.."‘"...."v*x —_—
p2 dp~

oT’

, 8o = (2.26)

then (2.13); 2 can be written as
b 4 (LS =1p S =St (1055,

which are also generalized lever rules. It is perhaps worth emphasizing-
that the densities p¢ should not be confused with the partial densities
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p®: the ‘starred’ variables are the mass of a unit volume weré it totally
filled with the a-phase at pressure p® and temperature T'. We note that
p v? is the volume fraction, f, of the solid present.

Finally, we consider the melting/freezing process. In [1] the driving
‘force’ of this process was essentially the difference in Gibbs energies and
here we take the simplest possible generalization, viz:

ml = A 84 (p, T) - ®5(»°,T)], (2.27)

where A = A(p,p°,T,c). With these constitutive assumptions the en-
tropy inequality becomes

D =A@ - 8% + fa(p® —p)*+ D > 0, (2.28)
so that we require
A0, 920, w20, A0,  AT+IA 0. (229)
The energy equation reduces to | |
pTS = pr ~TV-k+ D, | o (2.30)

with the entropy flux k being given by (2.16).
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3. Simplifications and simple solutions.

For convenience, we first collect together the governing equations of
the preceeding section. In addition to the mass conservation equation
(2.1), there are (2.2), (2.3), (2.30), (2.7) and (2.17) which we re-express
as :

p Dful L Lpl
p th + smiw; = ptFy — e[l + p(1 —¢)8]p,;
—(frl)i = OT; — g + sk 5, (3.1)
Dy?
p° o+ ymiwi = p F = (1= c)(1 — peblp,;

— (fr%) i+ OT; + qw; + 555, (3.2)

~ apyTp+ pc,T + L [pé + (T/L)(0%w;) ;] — faST(pS -

p)
= pr+ (xTy), + D, (3.3)
pé+ [pe(l — cywi] ; + A [25(p,T) — 8°(p°,T)] =0,  (3.4)
D%(p® - p)/Dt = —~afp® — p)* = wlof, — 75, (3.5)
where ‘
5% = AdS,6i; + 225 dE. (3.6)

In (3.1)-(3.3) & is an expansion coefficient with § = vl — ¥ L is the

latent heat given by L = T(SE — $%) and © = 6* — pe(1 — ¢)L/T.

The other thermodynamic material parameters, such as the isothermal

compressibilities k%, K7, the thermal expansion coefficients a5, o;, and

the specific heats ¢, cr, are best expressed by the differential forms
dP® = v dp® — S dT, dvl = —vIrT dp® +viay dT,

*____._

dS® = —viay dp™ + Tmlcg dT, (3.1
and
d® = vdp — SdT + pde+ (1 — c)v? d(p° — p),
dv = —vir dp +vap dT + §de — (1 — e)vSk? d(p® — p), (3.5)

dS = —va, dp+ T epdT + LT de — (1 — c)vial d(p® - p),
dp = 6dp — LT~ dT - v5 d(p° — p), |
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where the ‘total’ mixture parameters are determined by

C vk =cvlrb 4 (1 - vl k3, Vay, = chaL + (1 —c)via’

p&
(3.9
cp:cc;‘—i—(l—-c)g. )

It is to be expected that the physical effects contained in (3.1)-(3.9) do
not all have the same importance. Unless the slurry is extremely dense,
the individual particles do not interact strongly and the viscous stresses
are negligible. For slow flows the inertial forces are small compared
with the Stokes’ drag on the particle that enters equation (3.2) via the
penultimate term. The solid momentum equation becomes

0=p"F = (1 - c)(1— ped)p; — (F7°) i + OT; + s, (3.10)

where We have set the applied force F° = F;,. The mechanical pres-
sure p¥ is expected to be not much altered by the presence of surface
energy so that we take 7% = 0. For slow flows of the liquid phase under
the action of the body force F; we obtain

0=p"F; —¢(l - peb)p; — OT; — nw; + s& (3.11)

1,3

Consider now a slurry contained between two horizontal planes
z = constant with the liquid in a hydrostatic state, ul = 0, but suh-
ject to a uniform body force F = FZ. Adding (3. 11) and (3.10) we get

V(p+ fr%) = pF. When this result is substituted into (3.10) we find

i = —pe(l — e)ép; + c(fr®) ; + o1 ;. (3.12)

We might expect that solid particles will move predominantly in response
to gradients of p and fr° rather than V7. It follows that © = 0 so

0% = pe(1 — ¢)L/T. (3.13)
Reverting to general flows, (3.10) gives
(o /o yyw; = (1 - p*&)p; — (fv5); — pF;, (3.14)

which is a modified Darcy law with v being a Darcy coefficient that is
directly proportional to the square of a typical length between elements
of the solid phase and 7% vanishes with the surface pressure.
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In the energy balance (3.3) we may usually discard as being small
many of the entropy producing terms connected with the dissipation
due to viscosity and Darcy friction and with the relaxation processes
of melting/freezing and surface pressure. For simplicity we can assume
that L/T is a constant so that (3.3) becomes

pcoT — apTp — fo, T (D% (p® — p)/Dt + cwi(p® — p) ;| = pr + LAp
(3.15)
and equation (3.5) gives

D3(p% — p)/Dt = —a(p’ — p)* — 25 V-v5, (3.16)

Next we investigate phase coarsening in some particular environments.
First, from (2.27), we see that the melting/freezing process ceases when-
ever

(P, T = &% (p, T). | (3.17)
This equation defines a family of curves in the pT-plane each labelled
by the surface pressure Il = p° — p. Let (py,Tr) be some point, E, on
the bulk equilibrium curve II = 0; see Figure 1. Then for nearby states,
(3.17) may be written as

@) e(@® —p) - 85(p ~ po) ~ Le(l ~ T/Tg) =0, (3.18)

where the suffix E' denotes evaluation at (po,Tg). The curves of constant
IT are, in this approximation, the straight lines

T =Tg— (Tol/L) T+ (T8/L)p (p~ po), (3.19)

which is essentially the Gibbs—Thompson relation. Equation (2.27) is,
to the same order,

m¥ = (M) g [p° —p— (078) (P — po) — (PSL)E(1 — T/TE)] . (3.20)

Some insight into the implications of the present theory may be gained
from the following simple examples, both of which concern the evolution
of a static homogeneous system towards equilibrium. In such a case
(3.16) integrates to give [cf. (2.22)]

- )7 + 3at. - (3.21)



When (2.27) reduces to (3.20), we have by (3.4)

pEdic = (Av])Eg [p° —p ~ (p26)(p — po) — (P L)B(1 — T/T%)] .
(3.22)

We shall, for simplicity, suppose that the phase balance adjusts contin-
uously and instantaneously to (3.17). This implies that A = oo but, by
(3.17), the product on the right-hand side of (2.27) is in general finite
and non zero, as therefore is m*. Evolutionary states near E now con-
tinuously satisfy (3.18), but the product of zero and infinity in (3.22) is
non zero, as is therefore ¢. We shall see in fact that d;c < 0 in our two
examples.

Since homogeneity eliminates entropy flux, then from (2.30) we see
that in the absence of volumetric heating (» = 0) the initial entropy will
be preserved, i.e. § = S where

S =cSHp, T) + (1 - c)S%(p°,T). | (3.23)

Consider the system evolving from its initial state (pg,Tp) which is suf-
ficiently close to the bulk phase line II = 0 and is represented by A in
Figure 1. Since the entropy is constant, we can deduce from (3.8)3 that

Up p f@ng
c=co+ (%)A(P“Po)— (f)A(T—TG)“i“ ( 7 )A(H“HO)-

(3.24)
The first example is close in spirit to the situation envisaged by Lifshitz
& Slezov [5]. We suppose that the (liquid)} pressure is held constant

(p = po) and the system evolves along the path AE. As II decreases
from Iy in obeyance to (3.21), T increases from T, towards T, as
determined from the p = py form of (3.19):

To=Tg — (Tvl/L) o, T =Tg~(Tvi/L), 1, (3.2'5)
so that, by (3.24),
¢ =co+ |(faST/pL) . + (pey/ L), (TvS/L) | (M- Tho).  (3.26)
The final mass fraction of liquid is
cE = cp — {(fagT/pL)A + (pep/ L) (T-vf/L)E} T, (3.27)
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1.e. cg < Cp.
In the second example, the temperature is held constant (T' = Tp)
and the system is allowed to release pressure as it evolves along the path

AB. As II decreases from [y in obeyance to (3.21), so does p according
to the T = Ty form of (3.19):

p—po= (v2/6) p (I~ Iy). (3.28)

By (3.24)

e = co+ (T/pL) 4 [(Fos) , + (ap) 4 (v5/6) ] (M—TL),  (3.29)

so that the final mass fraction of the liquid at the pomt B on the bulk
equilibrium curve is

€ = € — (T/PL)A {(fﬂ’g)A + (ap) 4 (Uf/é) E] Iy, (3'?;0)

i.e.cg < ¢.
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Figure Caption.

Figure 1. A phase diagram illustrating how the melting/freezing curve
depends on the surface pressure II. The curve I = 0 corresponds
to local thermodynamic equilibrium where solid and liquid phases
share a common temperature and pressure.
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