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Abstract
We consider the “house-swapping” model of Shapley-Scarf (1974), except with
a transferable resource. We consider two cases: First, in the TU case (where utility
is transferable) we characterize the set of core points using linear programming. For

the NTU case (where money but not utility is transferable), we present.a “deferred
acceptance procedure” which calculates a point in the core. The results here paral-

lel work done by Shapley-Shubik (1972) and Crawford-Knoer (1981) for two-sided
matching markets. :

1. Introduction

Many timés in economic theory, a single “unifying” paper comes along which
ties ‘together under one general model several seemingly unrelated results. In the
~ area of two-sided matching markets (TSMMs), perhaps the best example is that of
Quinzii (1984). Her idéa was a'sfollpws. It is known that several “two-sided” games,
such aé those of Gale & Shapley (1962), Shapley & Shubik (1972), Cra;wford & Knoer
(1981) and Gale & Demange (1985) are balanced, i.e., have nonempty cores. Can
we present a class of balanced games containing all thése models? Quinzii answers ]
“yes”, by presenting her class of “pairing models”.

In an earlier part of the same paper, Quinzii uses a similar proof to show
that a similar class of games with an indivisible good is balanced. These are the
“house swapping” games, first defined [for the ca.se.of ordinal preferences| by Shapley
and Scé.rf (1974). However, Quinzii’s games also include those with a transferable
resource [cardinal preferences], a much larger class of games.

In this paper, we analyze these house-swapping games with a transferable re-
source. The fact that Quinzii’s “balancedness” proofs for these games and for
two-sided matching markets are so similar suggests that our analysis might parallel

work done with TSMMSs. Indeed, this is the main theme of this paper.
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First, we consider a house swapping game with transfera‘t;ie utilify (TU).In a
manner similar to Shapley & Shubik, linear proéramming is used to charactérize
the game’s core points. Thus, the results of Curiel (1980) is extended. Also, the set
of economic equilibrium prices is shown to be a sublattice. Again, a similar result
applies in Shapley-Shubik.

Next, we consider a more general class of non-transferable (NTU) games, which
can best be described as the “house swapping” analogue of Gale-Demange’s two-
'sided matching market. First, we show that although economic equilibria always ex-
ist, the set of such prices is not necessarily a sublattice. We then provide an analogue
of the “deferred acceptence proceciure” used for TSMMs [Gale-Shapley, Crawford-
Knoer, Kelso-Crawford (1984), Kamecke (1987), .Quint' (1987)] which finds a core

point under certain conditions.

The paper is organized as follows. Section 2 presents background material, |
namely the Shapley-.-Scarf model. Section 3 discusses the TU model. Finally, Section
4 covers the NTU case.

2. Background

Shapley and Scarf’s house-swapping model is as follows. Suppo'se n traders
in a market each originally own a house. The (initial) house of the ith trader is
denoted as house 5. Each trader also has a preference ordering, or ranking, over
the entire set of n houses (including his own). Thus, in the four trader example
presented below, Trader #1 prefers House #2 the most, House #3 sécond, his own
house third, and Trader #4’s last. Using the usual preferente ordering notation, we

write this ag 2 7 3 >=; 1 =4 4.

T1. 2,3,1,4
T2: 2,4,3,1
T3 1,2, 3,4
T4: 3,2, 4,1



The object of course is to try and find a “sensible” assignment of houses to
traders (presumably accomplished via house “swaps” between pairs of traders). To
this end, let an assignment, or matching x : N —s N be any one-tq—one mapping of
traders to houses in which x(i) = j means that trader ¢ gets house ;. We say that J7
can be improved upon through S if 3 assignment 7 with 7(S) = § and #(s) =, uli)
for all ¢ € §. An assignment 4 is a core matching if there is no coalition S through

which y can be improved.

Shapley and Scarf proved that a core matching always exists. In fact, Gale ()
gives an explicit procedure, called “top trading cycles” (T'TCs) for finding such an
assignment. In a nutshell, it runs as follows. Each trader’s first preference is used

to form a directed graph. For instance, in the example above, the graph is:

1 /‘\Q

3 e—-——\
The graph s cycles determine part of the core assignment. In this case the cycle
containing only “2” is the only such “top trading cycle”. Set u(2) = 2, take “2” out

of the model, and reiterate the process:

1

J—,

Now the top trading cycle is {1,3}. Set u(1) = 3 and u(3) = 1, leaving us with

" 4
Obviously we set u(4) = 4. So the final outcome is p1 = {(1 3)(2 2)(3 1)(4 4)}. This
is in fact in the core.

Interestingly enough, this procedure bears some resemblance to the deferred

acceptence procedure (DAP) used to solve the marriage market of Gale-Shapley. In
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the TTC procedure, agents originally are matched to their favorite house. As the
algorithm progresses, the agents (not in cycles) get matched to worse a,;1d worse
houses. In the DAP, the men originally are matched with their favorite woman.
Again, as the algorithm proceeds, the men (who are rejected) get matched to worse
and worse women.

These similarities again suggest that there is a close relationship between two-
sided matching markets and house-swapping models. We investigate these similari-
ties further in the next sectioﬁ, as a house-swapping model with transferable utility

s discussed.

3. The Transferable Utility Case

Before discussing the house—swapping-model with TU, let us briefly réview the
assignment game of Shapley and Shubik (1972). This is a TU game in which there
isaset.] = {i,.:.,n} of buyers and a set J = {1,...,n} of sellers. The data for the
model isan n x n matrixhé, whose entries ¢;; represent the worth of a coalition
consistiﬁg of only buyer i and seller ;. These “one-buyer-one-seller” coalitions are
the essential coalitions of the game. We define an assignment, or matchin , a8 a
1-1 mapping ¢ : I — J and a maximal matching as a matching y* for which
2ier Gipr(iy 2 Dier Cingi) for all other assignments p. The core is a triple (v, w, p)
satisfying v; + wy(iy = Gip() Vi [feasibility] and vi + w; > &; ¥i,j [stability]. The
fundamental result of Shapley and Shubik states that the core is never empty, and
that core triplets ('v,w, p) exist iff i is a-maximal matching.

We now describe the house-swapping market with TU. As in the Shapley-Scarf
model, there are again n traders, but preferences are now expréssed differently.

Again, each trader in the market originally owns a house,! and the original house

1 This actually covers the case where some traders originally have no house,
through the allocation of “dummy houses” (which no one would desire) to those

traders who are originally houseless.



of the ith trader is denoted as house . The valuation that trader ¢ has for house j
is expressed as a constant in dollars, namely ¢;;. Hence, as in Shapley-Shubik, we
have a TU game, where “utility is identified with money”. Furthermore, we assume
¢ij 2 0 for all ¢ and j because it is always possible for trader i to “live out in the
street” instead of using house j. Finally, since the n X n matrix C consisting of the
cij’s will completely define the game, we refer to it as “house-swapping game C”.

The characteristic function V for this game is then the foilowing:

In other words, all that the members of S can do is to trade houses amongst them-
selves according to the n’s. In particular, note that V{{i}) = ci.

If S is the grand coalition N consisting of all n traders, we have

S IOIL B

We call any element of the argmax in (3.1) a maximal matching, and denote one by
n*. Thus, evaluating V() is equivalent to finding a maximal matching p* for the
assignment game with “assignment matrix” € = {cij}P;=1. This is not the only
way in which this game is similar to Shapley-Shubik’s.2
Next, the core of the game is defined as those vectors u = (u1, ..., un) satisfying
"o |
> ui=V(N) (3.2)

i=1

> L i 5!
iezsu! = R:?I;I(lgs,f—us et Cin(d) Al (3 3 )

These represent the usual feasibility and stability constraints for a TTU game. Note
that we can rewrite inequalities (3.3') as

D Ui 2 Y cingiy ¥S, 7 7(S) = S. (3.3)

€S €S

? Curiel (1980) refers to this game as the permutation game.
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Theorem 3.1: (Curiel) The core of the house-swap;;ing market with TU is

nonempty.
Although this result is already known (Quinzit), this proof is of interest because
it parallels the linear programming proof of core existence for Shapley and Shubik’s

market.

Proof: Consider the assignment linear program

n
max E c;j:c,-j (P)

i,j=1

: n
s.f. Zm;j =1
. F=1.
n

> s =1
i=1 i
zi; 20V, 5.

We know this solves with any x = z*, where

*

T =1<—-———}7r*(i)=j

75 =0 — (i) #

for some maximal matching 7*. Also, the optimal maximand of (P)is V(N).

Now, take the dual of (P):’

n n

min Z v + Z w; (D)
=1 o j=1

s.t. vi +w; 2 ¢i; Vi, J. (D1)

Let {v7}l;, {w}}}=, be any optimal solution for (D). Define u by u; = v* + w? for

all 2.



Claim: Any u defined in this way is in the core.

Proof: To show feasibility (3.2), we have

n n
D ui = (v} +w) = V(N),
=1 =1
where the last equality follows from the strong duality theorem of linear program-
ming.® Finally, to show sta.biﬁty (3.3), consider any assignment 7 and any S with

7(S) = §:

Z u; = Z(v? +wi)'= Z(”f + Weeiy) 2 Z Cin(i)-

€S igs ies eSS

[The last inequality follows from the fact that constraints (D1) hold for (v, w).]
The next result states that all core vectors can be defined in this way.

Theorem 3.2: Let u be any core vector. Then u can be expressed as v + w,
.where (v, w) is an optimal solution for (D).
Proof: Let ui,...,u, be any core vector, and consider the assignment game

defined by

uUyp C12 Cin
a €21 Ugp Can
C = .

cnl an [ ‘Un

%ﬂ_’_ﬁg_: p* defined by p*(i) = ¢ Vi € N is a maximal matching for assignment
game C above. _

M: Consider any other matching u, and define I = {i : u(:) = ¢} and
I° = {i : u(i) # i}, We trivially have 2icrCinr(i) = Xoierthi = Dier Ginti)-
Furthermore, 3 ;¢ e éiye (i) = Yoiere ui > D icre Gin(i) because u in the core satisfies

(3.3) with S = I°. These two facts taken together prove the Claim.

* Dantzig, p. 129.



Now let (%,1w) be any core vector of Shapley-Shubik game C. Since p* : prE) =
iis maximal, we have 9; + W; = &; = u;. Next, (9, W) satisfles constraints (D1)
because its'in the core of C. Finally, its optimal for (D) because of the strong

duality theorem and the fact that 35 6; + 3 w; = S0, u; = V(N). Q.ED.

We interpret Theorems 3.1 and 3.2 a,s follows. Basically, we can view the house
swapping market as an assignment game in which Tracier ¢ is playing the role of
both Buyer ¢ and Seller . Hence, it is not surprising that in core allocations, Trader
v’s welfare is the sum of the welfare he derives from being a “buyer” (v;) and from

being a “seller” (w;).

Next, we define an equilibrium as a set of prices p = (p1y.eny pn) on the houses

L

and an a.ss1gnment 7 with

7(é) € argmax(ei; + pi - p;) ¥i.

Lemma: Equilibria (p, ) exist iff 7 is a maximal matching, Furthermore, if
p is a maximal matching, the set of equilibrium prices is precisely the set of w’s

contained in optimal selutions of linear program (D) above (see p. 6).

We note here that the first part of the Lemma can be deduced from core-
equilibrium equivalence results of Wako (1986). However, we again give an alterna-

tive proof.

Proof: First we show that if (p,7) is an equilibrium, then 7 is a maximal
matching. Suppose not, ie., (p,7) is an equilibrium but 22 Cimi) < 2 Cimn (i) for

some 7m*. Since (p, 7} is an equilibrium,
Cin(i) + Pi — Pr(i) = Cin=(i) + Pi — Pae(s) Vi, which implies (3.4)

Z Cin(i) + Pi — Pa(i) 2 Z Cime (i) T Pi — Pre(i)-
iEN iEN
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But then, all the “p” terms cancel, yielding 3 cin(i) = 3 Cine(i). This is of course
a contradiction. |
heorem, we need to show that, given maximal
matching 7*," (p, 7*) is .a.n equilibrium iff (v, p) solves linear program (D) for some
vector v. To this end, let (v*,p*) be a solution to (D). By the complementary
slackness theorem of linear programming?, 7*(i) = j «= ;=1 = v} + P} = cij.
Since (v*,p*) satisfies (D1), we thus have 0 = v} P iy~ Cine(i) SV +PF—ei; Vi,
or,

P;—(i) = Cim*(3) < P; - iy Vi, ;. (3.5)

However, this implies (3.4), .‘mea.ning that (p*,7*) is an equilibrium. For the con-
verse, suppose (p,7*) is an equilibrium. This implies (35) Let v} = CiR‘(iS -
Pye(iy Vi. Then we claim (v*,p*) solves (D). Substituting back into (3.5), we get
—v} < p} —cij ‘Vi,j, which is (D1). Furthermore, since v} + Pregy = Cine(s) Vi, we,
know Y vf + 3 pf = Y ciyes) = V(N). Thus (v*,p*) is optimal for (D) by the
strong duality theorem. QED ‘

Definition: Let a and b be any two points in ", define the join of @ and b by y
where y; = max(a, b;), and the meet of a and b by 2z where z; = min(a;, b;). Then

a sublattice in R™ is any subset L of ®" for which

a,b € L = join(a,d) € L and meet(a, ) € L.

Corollary: The set of equilibrium prices for a house-swapping game with TU

is a sublattice.

We note here that a similar result holds for the model of Shapley and Shubik.®

4 Dantzig, pp. 135-6.
® Shapley and Shubik, p. 120.



Proof: From the previous The;orem, the set of equilibrium prices is the set of
w’s contained in optimal solutions of (D). Since in any optimal solution (v*,w*),
vl + w;’-{;‘) = Cims(i) for some maximal matching 7*  our set is the set of 'z for
which
Cirn(i) — Wa=(3) + W5 2 Ci5 Vi, ].

Due to a theorem of Veinott’s (1987), this is in fact a sublattice.

4. The NTU Case

We next move to the NTU case, in which instead of splitting up an amount
of utility, a coalition (in additon to swapping houses) makes monetary transfers.
The utility that a trader derives [given that he gets a particular house] is then an
increasiné, but not ne'cessarily linlea.r function of the amount of money he obtains.
Thus, the model will be analogous to Demange and Gale’s (1985) model for the two-
sided matching case, and, iater to Crawford & Knoer’s (1981) when we “d1scretme
it. .

The model is as follows. Let N = {1,...,n} be the éet of traders in the market,
and again assume trader i initially owns house 5. Let u;;(z): ® — R Be the utility
to trader 7 if he ends up with house ;j and a net monetary transfer to him of z.
Assume each u;;(z) is a strictly increasing onto function. Finally, we assume that
each trader would only desire to own one house.

In order to calculate the characteristic function V(3), first define the inverse
functions fi;(ui) of the u;;’s. Given that he is to receive house j, fi;(u;) is the
amount of money that trader ¢ needs in order to raise his utility level to u;. Usinrg
this notation, we have )

V(S) = {u € R : 3r with 7(S) = S and Y fin(s)(us) < 0} (4.1)
€S -

In other words, the set of feasible vectors for a coalition S are those in which its
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members swap houses according to some 7 and require a net nonpositive input of
money from the outside world.

Finally, the core of the game is the set of vectors u = (uy,...,u,) such that
u € V(N) (4.2)

AS, w € V(S) such that w; > u; Vi € S. (4.3)

' Having stated these definitions, we should note that the house-éwapping_ game
with TU is just the special case of this game, with u;;(z) = ¢ij + and fij(u;) =

Ui — Ciy Vz,g

Theorem: The core of the hoﬁse—swapping game with NTU is nonempty.

Proof: Quinzii (1984).

Defiriition: An equilibrium is a set of prices p = (p1,.--pn) on the Louses to-

gether with an assignment = satisfying

u(i) € argmax uij(p; ~p;) Vi (4.6)

Theorem: The set of equilibria for the house-swapping game with NTU is
nonempty.

- Proof: Quinzii (1984); Gale (1984).

The two concepts of core and equilibrium are related in that any competitive
equilibrium corresponds to an element in the core (Wako 1987). In fact, our “algo-
rithm to find a core point” actually computes an equilibrium (for the “discretized
game”).

Thus, it is of interest to study the set of equilibrium prices. In particular, we
might first wish to find out if (as in the TU case) it is again always a sublattice.

The answer, as the following example demonstrates, is “no”.
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Example: (with n = 3.)

w11(z) = Uza(z) = uss(z) =
ugs(z) = 2

ugl(m) =z + (a:)"'

us(2) = 7 + ((2)*)?

usi(z) = 2z + 1

ug3(z) = -2“"3 ~1

ugg(z) =z —2

Let p* = (0,0,0), let p? = (}, 3£,0), and 7 be defined by (1) =3, 7(2) = 2, and
m(3) = 1. Then (p', 7) and (p?, r) are both equilibria.

- However, now consider the meet of p! and p?, namely p* = (0, =£,0). Now
suppose (p3,73) is to b;e an equilibrium for some 7°. Equation (4.6) for i = 1 gives
that 73(1) = 2; while, for ¢ = 2, we must have #°(2) = 2. Hence, there can be no
assignment for which:(4.6) holds with p®. Hence, the set of equilibrium prices is not

a sublattice,

There is one other characteristic of the Demange and Gale two-sided matching
model which we would also like to extend to the house-swapping model With'NTU.
This is the fact that there exist numerous algorithms which calculate core points
using modifications of Gale & Shapley’s “deferred acceptance procedure”. Not
only do these procedures provide a method for finding a core-point, but they also
have economic interpretations as bargaining procedures whose final outcomes are
core points. Examples include the algorithms of Crawford-Knoer (1982), Kamecke
(1987), and Quint (1988).

We now proceed to define a similar procedure for the house swapping game

with NTU. However, in order for such a procedure to work, we need to make the
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following geparability assumption:
uii(x) = cij + ui(z) Vi, J. (4.7)

In other words, for each trader i, the effect of gaining income does not depend on, or

is separate from, which house he receives. We can also restate (4.7) as the following:
wij(z1) > wir(zg) => uij(z1 + @) > uin(zs + o) Vi, 5, k, 21,22, and a > 0.

To interpret, if Trader 7 prefers a particular house-money bundle over anot her, then,
sweetening both bundles by $a will not change his preference. The mathematical

importance of this assumption will become apparent later.

To avoid _technical difficulties, we follow Crawford and Knoer’s lead and con-
sider the discrefized market in which only integral salaries are allowed. This adds
the requirement “and j;i,,.(,-)(u,-) is an integér for each 1 € §” to. the definition of
V(8) (p.10). The definition of the core remains the_sa,‘xma-.‘_i

Again, in keeping with Crawford and Knoer, define the n X n matrix P* = {pi; },
the matrix of integer monetary offers that traders i are permitted to rn;,ke for house
J at time ¢. Time is measured discretely. | |

The procedure is then as follows:

1) Initially ¢t = 0, p}; =0, and p? = 0 Vi, ;.

2) Let ¢ = ¢t + 1. Each trader ¢ makes an offer for his favorite house, i.e.,

t—1
i

he makes an offer for house j, where j € argmax ui;(p;” — pf;'l) [He may break -
ties however he likes.] For each j, let K*(j) be the set of i’s who make offers for his
house.

3) Each trader j who has one or more offers for his house now rejects all
but a maximal one, which he tentatively holds on to. [He may break ties however

- he likes.] He sets the new price on his home as p; = max;¢ Kt (j) pfj'l.

¢ However, in this discretized case, there is a difference between core and strict
core (see Crawford and Knoer for details). In this paper only the notion of core is

used, not strict core.
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- 4) Offers not yet rejected remain in force. If in this iteration trader j

rejected i’s offer for his house, set pfj = p:;l + 1. Otherwise, set pfj = pfj'l. .
5) If there have been no rejections
all outstanding offers are accepted. This defines a matching 7* of houses to traders,
a vector of prices p* for the houses, and a utility vector u* where u; = Uins (i) (PF —

Pre(i)) Otherwise, go back to 2).

Theorem 4.1: The procedure outlined above results in finite time in a discrete

core allocation in the discrete market for which it is defined.
We prove the Theorem via a series of Lemmata:

Lemma 1: If Trader j has at least one offer for house j at time t, then, at all

subsequent times ¢’ > ¢ he still has.at least one offer.

Proof: Suppose Trader j has an offer .a,t time ¢, say, from Trader .  Thus,
ui;(ptt —pf;'l) > up(pi™? —p_f;l) Vk. Note that changes in p; cannot “wreck”
this inequality because of (4.7). Thus, the only way he could not have an offer from
¢t during the né'xt iteration is if pﬁj > pfj—l. In this case, j has rejected ¢’s offer and

thus must have another offer which he didn’t reject. This unrejected offer, say from

!, will remain in effect next iteration because no p;; will have changed. Q.E.D.

Lemma 2: After a finite number of periods, no rejections are issued, every

trader has exactly one offer for his house, and the process stops.

Proof: Suppose not, i.e., the process goes on indefinitely. Since someone gets
rejected on evéry iteration, 37, j such that lim,_, o p!; = co. In other words, the set
IJeo {(3,7) + imy p{; = oo} is nonempty. Furthermore, since max; phi~1<
p% < max; p! ;» we have that I def {t : limM¢roo P} = oo} is nonempty. Consider

IF df {7 : limyoop} < co}. For each i € I¥, let B; be a least upper bound for

14



limy. oo pt. Next, for each such 7, let B; be a number such that, for all r > R;,

uij(Bi —r) < u(0) for all j € I°°, (4.8)

) . - T . mo N I &
Next, let & = max;crr R;. Let T} be a time at which P}

> RV(i,7) € IJ°°. Then
clearly, for time ¢ > T}, no i € I will ever make an offer to a j where (i,7j) € IJ™®
[because, by inequality (.'4.8), i would make an offer to himself rather than j].

So, since after time T3, i € I only makes offers to js whére (i,7) & IJ>, it
must be that.i can only get rejected a finite number of times. Thus, there must be
a time T after which ¢ € I¥ never gets rejected.

Next, consider whether or not, after ¢t = T, 1 € I'F could ever make an offer for
house j where j € I °° From the last paragraph, we know i’s offer would have to.be
accepted. However, since p} — 00, j will get an infinite number of subsequent offers
for his .‘house, the best of which will be infinitely high. Thus, ¢ must eventually be
rejected because the highest offer he could make is R;. _ ‘

So, the upshot of the previous argument is that after time ¢t = Té; not € IF
can ever A) get rejected, or B) make an offer for a j € I°°.

Next, consider ¢ > T;. Lemma 1 implies that since the algorithm hasn’t ter-
minated, there is a trader i; who has never received an offer. Thus, i; € IF, with
p‘;.’l = 0. Suppose i; makes an offer to tg during period t. By B), iy € IT also.
Note 75 £ 17, because by hypothesis 7, never gets an offer. Next, suppose 13 makes
an offer to 13 at time ¢. Then i3 £ 13, because, otherwise, both 7; and i, would
be making an offer to 3, resulting in one of them getting rejected next iteration.
This would violate A) above. Also, i3 # 7, because i; never gets an offer. Finally,
i3 € IT by B). Next, let 7, be the trader that Trader 3 makes an offer to...

Continuing in this fashion, we see that for each k, 7 # 1; because 7, can never
get an offer, and 7 £y, =2, ...,k — 1 because that would mean a rejection for a
member of IF on the next iteration. Since there are only a finite number of agents,

we get a contradiction.
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Lemma 3:‘ The process terminates at a discrete core‘ allocation for the discrete
market in which it is defined.

Proof: Suppose not, i.e., suppose the algorithm terminates at (x*,p?, o Py
with p} = pfﬂ,.{‘-). Then, since this is not in the core, there must be a coalition 5, a

matching 7 : #(S) = 5, and integral prices p;, ¢ € § such that
Uin(i)(Pi = Pr(i)) > Uin=(i) (P} — Pro(sy) Vi € S. (4.9)
We rewrite this as:
Uin(i) (PF = [P} — Pi + Pr(sy]) > tine (3 (P —Pr(iy) i €S,
If w(2) # n*(3), th:is iJ:'nplies that
P:f--(.') > pi —pi + Prgiy Vi E S (4.10) -

because otherwise ¢ would have made an offer (on the last iteration) to () and not
to m*(Z). On the other hand, if 7(3) = 7*(3), (4.10) holds directly from (4.9).

Summing up inequalities (4.10) over ¢ € § yields a contradiction.
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