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ABSTRACT

If the coefficient matrix in the general Gauss-Markov linear model is ill-
conditioned, then the solution is very sensitive to perturbations. For such problems,
we propose to add Tikhonov regularization to the model, and we show that this actu-
ally stabilizes the solution and decreases its variance. We also give a numerically

stable algorithm for computing the regularized solution efficiently.
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1. Introduction

This paper is concerned with the general Gauss-Markov linear model Ax + €= b, where
A eR"™ (m2n)and b € R™ are known, x € R” is an unknown vector to be estimated, and € € R
is a random vector with zero mean and variance-covariance matrix V(€)= s?BBT with B € R™¥
{m 2 p). The best linear unbiased ésu'mator of x in this model is the solution to the following con-

strained least-squares problem:
min ||u[], subjectto Ax+Bu=5b. (1)

Here, we have introduced the vector € R? such that € = B u, where u has variance-covariance
matrix V{u) = szl,, and where I, is the identity matrix. The model (1) was introduced by Paige [10],
and computational algorithms can be found in {7,9,11]. A more detailed analysis of (1) in terms of the
generalized SVD is also given by Paige [12], while Bjorck [1, Section 23] extended this analysis to the
case when both A and B may be rank deficient. However, the case when the problem (1} is ill-
conditioned, for example if A or B is ill-conditioned, has not been given much attention and, according

to Paige {10], needs further work. The present paper is a step in this direction.

First, a word about our notation: ||-{| denotes the matrix and vector 2-norm, I, is the identity

matrix of order p, and A* denotes the pseudoinverse of A .

Let us consider the sensitivity of the solution to (1) to perturbations of the right-hand side b. Let
e denote the perturbation, and let ¥ denote the perturbed solution. Then the following approximate
error bound follows from [10, Eq. (46)]:

llx -2l < A7 L+ 1B/ 1@TBY ) el @

where the columns of Q form an orthonormal basis for the null space of A”. We immediately see that
if A is ill-conditioned then x may be very sensitive to perturbations. This is also clear from the
analysis in [12] since we can always expect trouble when dividing by the small generalized singular
values of (A,B ). Eq. (2) shows that a small ||(Q7B)*|| also indicates trouble.

In this paper we investigate the case where A is ill-conditioned while B is well-conditioned. To
overcome the problems associated with the ill-conditioned A we suggest to add Tikhonov regularization
to the problem (1) (Tikhonov regularization is discussed in e.g. {3] and {1, Section 26]). Thus, we pro-

pose the following regularized Gauss-Markov problem

min { || ||*+ A*||C x]|*) subjectto Ax+Bu=b. 3)
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Here, for simplicity, we assume that B and C have full rank,
AclR™™ B eR"™ , CeRV™, rank(B)=p<sm, rank(Cl)=g<n<m. {4a)

We also assume that
rank [’é] =n | . (4b)

which guarantees that the regularized solution x5 to (3) is unique for any A > 0. Notice that we make
no assumption about the rank of A since this in not important in connection with Tikhonov regulariza-
tion, cf. e.g. [4]. Typically, we will take C to be the identity matrix /, or a well-conditioned discrete
approximation to some derivative operator to ensure that the solution x; is sufficiently ‘smooth’. The
quantity X is the regularization parameter which controls the weight given to minimization of ||C x ||

relative to minimization of ||u}|.

We know that the regularized solution x; to (3) is no longer an unbiased estimator (which is in
fact the case for any regularized solution). However, inspired by the success of adding regularization to
ill-conditioned least-squares problems, we feel that x, has other nice properties (cf. Section 3) that
make it useful in connection with general Gauss-Markov linear models with ill-conditioned coefficient

matrix A.

The paper is organized as follows. In Section 2 we introduce the restricted SVD and apply it as a
tool for analyzing the model (3), and in Section 3 we use these results 1o describe the properties of the
regularized solution x,. In Section 4 we briefly discuss the discrete Picard condition as it applies to the
regularized problem (3). Finally, in Section 5 we present a numerically stable algorithm for solving (3)
efficiently.

2. An RSVD analysis of the regularized Gauss-Markov problem
We notice first that if p < m then min { ||[B*(A x — b)}|% + A2}|C x ||} is not a valid formula-

tion of (3), and we can therefore not base our analysis of (3) on Van Loan’s §,T -singular values [13].

The proper tool to analyze (3) is the restricted SVD (RSVD) of {A,B,C } due to Zha [14]:

Theorem 1. Let A, B and C satisfy the assumptions in Eqs. (4a) and (4b). Then there exist nonsingu-
lar matrices X € R™™, Z € R™" and orthogonal matrices U € R,V € RYY such that

ZTAX=% , ZTBU=M , VICX=N 5)
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where T, M and N are pseudo-diagonal matrices with nonnegative elements in the following structure:

Z, 0 0 0}s I, 0]s
0 I; 0 0}j 0 01
=0 01 ok M= |0 Ik Nﬁ[{ifgg]{ ;
o000l oot 7 0 ®)
0 00 0}u 0 0u tJ
t j ok 1 5k
and where
I, = diag(oy,...06,)e R |, o,20;2---206,20 , r=min{s,t]}. (6a)
The dimensions of the submatrices are
J=ra+q —rta k=n+p—ru =ty —pP~q
S = Vape — N t =Fape ~ Tap U=m-="g (7)

in which r., = rank (A,B ) and r, = rank [‘é g].

Proof. The proof of the RSVD as well as the notation is from [14, Theorem 4.2] with the
simplifications imposed by our assumptions in (4a) and (4b). 0O
Remark. In [5] it is shown that if A is ill-conditioned and C is well-conditioned, and if A = U £ X7,
C =V M X is the generalized SVD of (A,C), then £ is ill-conditioned while M and X are well-
conditioned. Using this result in the constructive proof for the RSVD [14], which consists of a
sequence of generalized SVD’s, it follows immediately that if A is ill-conditioned and both B and C
are well-conditioned, then X is ill-conditioned while X and Z are well-conditioned.

Inserting the RSVD into (3) and using the fact that the 2-norm is invariant under orthogonal
transformations, we immediately obtain the equivalent problem

min { ||JZ]|2+ A2||NE||*) subjectto ZEZX+Miu=5b (8)

where we have defined the transformed vectors & = UTu, ¥ =X 'x and b = Z7 b. At this point, it is
convenient to partition the matrices X and Z column-wise and to partition the vectors ¥, & and b

element-wise according to the partitioning in (6),

X=0X,X;,%.X11 , Z2=12,,2;,%.2,,Z,] (Ga)

(9b)

M|
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s —
i
| SE—)
o
1]
i e o]



-5-

The equality constraints in {8} then take the following simpler form:

I

A% +H =Db, X +

=

k-:

0=>0b, (10)

x_,-=j X

=

—

We immediately see that consistency of the model |(3), ie. the requirement that the right-hand side b
belongs to the range of the matrix (A,B ), corresponds to requiring that b, = 0. Using the results in

(10}, the minimization problem in (8) can now be written as

el [ 2 EI-=MENH W

The minimum is obtained for X = b, and %, being the solution to

2

+ AZ

min {[[Z4 % - & [1> + A [|% |I*)
which is a discrete regularization problem in standard form and with the unique solution given by
% =F50h, 12)

where we have defined F, = diag (f;) € R™ with diagonal elements
o}
o+

fi= i=1,.,1. 13)

For more details about discrete standard-form regularization, cf, e.g. {4]. Notice that all parts of the
solution X are determined from Egs. (10) and (11), I the matrix [é] does not have full rank, then
there will aiso be a non-estimable (arbitrary) part of the solution,

The solution x5 to (3), as a function of A, can thus be written as

Fo 3}

>

x;_=X

o OO
oo o

ZTb = X, Fa 5} Z2Tb + X, 2] b + X, 2] b + X, Z[b . (14)

colo
O oo

oo
b

!

In particular, if ¢ = n then k& + 1 = 0 such that the last two terms in (14) vanish. In gencral, we have
X3~ x, =X Z*ZTh for A — 0. Note that the matrix X Z¥Z7 is not a weighted pseudoinverse of A
as defined by Elden [2].



3. Some properties of the regularized solution

We shall now describe some of the nice features of the regularized solution x; to (3). First of all,
we see that if A has any small o;, reflecting the ill-conditioning af A, then the norm of the unregular-
ized solution x, =X Z*ZT b may be very large because of the division by these small o;. For the
same reason, x, is very semsitive to perturbations of . Consider now the first term in the expression
{14) for the regularized solution x;;

r o b

X F. 5725 = Y —— —
t £ ) A £p §0i2+l2 o;

X .

This is the only term where small ; occur. We immediately see from this expression that by choosing
a suitable regularization parameter A somewhere between ¢, and oy, we are able to ‘filter out’ the con-
tributions to x; corresponding to the small o; via the matrix F,. In this way, we can use A to control
the norm and the sensitivity of x,, at the expense of neglecting a (small) part of the information in the
right-hand side b. This is, in fact, completely analogous to regularization of least-squares problems [4].

Next, we prove that the regularized problem (3) is indeed better conditioned than the original
problem (1). For simplicity, we restrict the perturbations to the right-hand side.

Theorem 2. Let the perturbed right-hand side be b = b + e, let %, denote the corresponding per-

turbed solution, and let x, and %, denote the solutions for A= 0. If 6, £ A < &y, then

Hlxs, — %4l I1Z]] lle]
AR I TN VIR T )
llx, =% 1 _ |z lleli
< X Z .
w56 XO@ | o

Here, ||Z|| = max {6,1), ba=A x5, b, = A x,, and x(X) and x(Z) are the condition numbers of X
and Z, respectively.
Proof. The relations |lbaf] = {lAxll < HZ7IHZHIX7H lxall and  [ixs - %l <
WX | max ({|FR 251 1 IZ ]| e || give

lxa — Zall

AL <o) 5l max (IFA 5 1) %(2) il

lfxall leall

It is straightforward to show that ||F5Zf|| = max {f;/0;} = max {g; /(c? + AD)} < 1/(2X) such that
max ([|[FaZ5ll .1} = 1/min (22,1}, and since ||Z|| = max {||Z4]],1} = max {&;,1}, this yields (15).
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Eq. (16) is derived analogously by using that |jx, ~ %, || < IX || IZ*|l l|Z ]| |le}] and that [|2*] = o,
O

Remark. Theorem 2 shows that the condition number x, associated with (3) satisfies

o= lim sup llxa- 3l __ |I2|
ffe]l-s0 Hxall min {2A,1}

K(X)x(Z). a7

The key point here is that Theorem 2 shown that it is always possible to choose A such that x; is much
less sensitive to perturbations than x,. Thus, we can say that for appropriate regularization parameter
A, (3) is better conditioned that (1).

Another important property of introducing regularization in (3) is that it decreases the variance of
the solution x;, compared to the variance of the solution x, to (1) without regularization. Since the
variance-covariance matrix associated with & = UTu is V(@)= s*I,, it is easy to show that the

variance-covariance matrix V{x,) associated with the regularized solution vector X, is
V(E) = s (FAZ]). (18)

We readily see that if } is chosen suitably somewhere between o, and oy, then the elements of this
matrix are numerically much smaller than those of the variance-covariance matrix s*(Z})? correspond-
ingtoA=0.

In this discussion we have not considered the ‘smoothness’ of x;. We feel that such an analysis
can be performed in analogy with that in [5]. For example, we know that the null space of C, which is
spanned by the columns of X, and X;, is always ‘smooth’ (in the sense, few zero crossings) when C is
a discrete approximation to a derivative operator — thus ensuring that the component X, Z{ b + X; Z[ b
in x; (14) is also ‘smooth’. However, we were not able to derive any results about the ‘smoothness’ of

the columns of the submatrices X, and X;.

4. The discrete Picard condition

Of course, the introduction of regularization in (3) changes the solution x; compared o the
unregularized solution to (1). The purpose of this section is to investigate the difference between these
solutions. In this connection, notice that if A docs not have full rank then the solution to (1) is not
unique: the general solution can always be writien as the estimable part of the solution plus an arbitrary
amount of the non-estimable part of the solution [12]. For A — 0, the regularized solution x; con-

verges to 4 member of this general solution (but not necessarily to the estimable part; we can only
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guarantee this if rank (A) = n). It is therefore correct to compare the regularized solution x, to the
solution x, = X Z*ZT b obtained from Eq. (14) by setting A = 0.

An analysis of the regularization error x, — x; for general A, B, C and b is probably not possi-
ble. Instead, we use the same technique as in {4,6]: we assume a very simple (but still realistic)
‘model” of the right-hand side and determine the conditions in which the regularization error is

guaranteed to be small. Our ‘model’ here is

r 0','“ N I=1,.,r
o= {gx | iorets -+ @200 (19)

The parameter o controls the decay of the z7 b relative to the decay of the corresponding o;, in such a
way that the z7b decay faster to zero than the o; for > 1. A direct analysis of x, — x3 is very
difficult, so we multiply by the well-conditioned matrix X! and consider instead X ¥ (x, - x5):
Theorem 3. Let x, = X T ZT b be defined as the solution x,, (14) with . =0, and let the right-hand
side b satisfy Eq. (19). If 0, < A < 0y, then

”X..l( il ‘J;—(Gl"cr)t“u , Dfa<il
"Mn}%“ﬁﬁ_ < {Vr o)™ , 1<£0a<3 (20)
Xs
r (M oy , a3,
Proof. We have |IX7@, -xdll = NE-FAIDZAbI = ¢ -FOEiZTb]| <

V@ - FOEEZTb . = Yrmax{(1-f)of'). Here, (1-f)of! = M(c?+MW) o' =
A2¢(c;), where we have defined ¢(c) = 6%/ (0 + A?). It is easy to show the following:

For 0 £ o < 1: ¢(0) is decreasing, such that

AZ -1 -1
gFl<agX,

62+ At

A2o(0) < A20(0,) =

For 1 € o < 3: ¢(o) has its maximum at 6% = A2(0— 1)/ (3 -0, and

A2 0-1.,15" 3¢ [o-1 %"
A2 < —= 22 =2 [ o-1
4(0) AMo-1D/3-o) +A? [3—0c } 2 [S—a} A

=4 (o 1)‘/:(&—1) (3~ a)'/&@—u) o1 < po-1 ,

For o = 3: $(0) is increasing, such that
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A29(0) < M o(oy) =

- : 2 oft < A2af.
Now, let X, denote Z (6a) with the three identity matrices replaced by 0. Then ||Z7b]| = ||, X' x, ||
< =Xl =6, {|IX"'x,]|]. From the definiion (19) of b we also have
Z76)| 2 ||2Tb||..=cf Thus, 1/||X'x,]| < 1/of . Together, these formulas lead to Eq. (20).
o _ .

Not surprisingly, we see that in order to ensure a small upper bound for the regularization error,
we must require that the coefficients |z7h] decay to zero faster that the 6;. We also see that the faster
the decay, the better x, approximates x,. Following the idea in [6] we are then lead to the following

definition of the discrete Picard condition for the regularized Gauss-Markov problem (3):
Definition 4. The discrete Picard condition (DPC). The right-hand side b in (3) satisfes the DPC if,

for all numerically nonzero o;, the coefficients |z7b| in average decay to zero faster than the ;.

If the underlying, unperturbed right-hand side in (3) does not satisfy the DPC, then there is no
point in trying to solve (3) at all, because x, does not approximated the true solution x, for any value
of A. If, on the other hand,. the unperturbed right-hand side b satisfies the DPC, and if the given
b = b + e (which is contaminated with errors) is not completely dominated by the errors e, then b
actuaily satisfies the DPC for i <K, where K is determined by the magnitude and the statistical distri-
bution of the errors. Hence, if we choose A = oy, then the effect of regularization is to dampen the
contributions to x; corresponding to the small o; < A. In other words, we can regard the addition of
regularization to the linear model as a means for producing a slightly perturbed model that is
guaranteed to satisfy the DPC, thus ensuring that the regularized solution x; is a meaningful estimator,

For more details and how to implement a check for satisfaction of the DPC in practice, cf. [6].

5. A numerical algorithm

In this section we describe an algorithm for computing the unique regularized solution x; to (3).
It is easy to see that (3) can be reformulated as

|

which is a simple equality-constrained linear least-squares problem. Algorithms such as those described
in [8], especially the null-space method [8, Chapter 20}, can be applied directly to solve the above
problem. However, as also pointed out in [10] (which is in the setting of general Gauss-Markov linear

min

subjectto  {A,B] [:] =b
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models without regularization), such an approach does not treat x, u, A, B and C separately and in
turn can not take advantage of any special structure of the problem. The following algorithm tries to
take these aspects into account, and is inspired by the work of Paige [10,11]. The algorithm requires
that the assumptions (4a) and (4b) be satisfied.

B
Step 1. Make a QR decomposition of B so that B = [05], where B, € RP’¥ is upper triangular

and nonsingular. Let

Ay b1] P @1

QT[AJ’]: {AZ b2 m-p -

Step 2. Make the following decomposition of Ay

AU=[0, Aplm-p

n—i i
so that I/ is orthogonal and A,, € R™®> is of full column rank i. Let

Al _ Au A12 T _ X1 n—i
{C]U_[C; C, and U'x = x| i

n—i i 22)

A .
Then [ CI::! is of full column rank.

A
Step 3 (including consistency check). Make a QR decomposition of A such that Ap =0, 0221
be

where A, € R¥™ is upper triangular and nonsingular, and let Q7 b, = [b ;52)]’ with b{" e R, Then

the regularized general Gauss-Markov linear model is consistent only if 5§ = 0. In this case,
x2=Az b . @3

After some manipulation, we obtain the following ordinary least-squares problem, which only involves

the component x:

min lCl o — lszz
BilA, ! Bl (b~ Appxy)

I . (24)
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Step 4. The observation here is that we do not need to explicitly compute the matrix products involv-
ing B in order to solve the above problem, and this enhances the numerical stability of the algorithm.
In fact, (24) is equivalent to the ‘standard’ problem described in [11] with

= ACyx, ~_ |ACy : 5 _ |1 0
y—[bl_AmIZ] ’ C_[Au] and B"[O By |-

We only need to choose orthogonal P and  such that

. . = 100 R T Rl r RIZ"‘_i
Tt .5y, B1(010{=|0n 0 p w
00 P 0 0 0 0 R,
n—i 1 n-i 1 @5)

where R, Ry and R, are upper triangular and nonsingular, Now, if we let

vy n—i
PTy=vy= I 1
vy | ptg—(n—i}-1

then x; can be obtained by solving the following nonsingular upper triangular linear system

R r|l*1{_ iz
{0" p] [u}‘ {n] (26)
For details, see [11].

Step 5. The mnique solution is given by
x,=U LZ] . @n

‘We now give some more details about the factorization of Eq. (25). Since B is block diagonal,
we can employ this in the reduction step. In order to illustrate the situation, we give below a low-
dimension example with p=g=n-i+1=3 We first use a QR decomposition to transform
{AC1, ACyx3] to upper triangular form. Since the first block of B is an identity matrix, the effect of
this transformation can be compensated by multiplying u by the orthogonal matrix, so that at the initial

stage we have

Einan |
(9]
et
(=]
[
il
K XX
XXX
HEXXXXX
X
x
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We can now reduce the leftmost mamix [C ,§ ] to triangular form, while maintaining the Irianguiar-

form of the rightmost matrix B, by a sequence of left and right Givens transformations. Fig. 1 below
illustrates how to eliminate the first column of the lower part of the first matrix. The same procedure
can be continued in a similar way until we obtain the decomposition in {25). Throughout, — shows the
two rows or columns involved in the Givens transformation, and O indicates the element being annihi-
lated.

1
!
3
i
1
J
1
i

alx x x X X X X X x
X X X X X X
X X X X
X X X X X X X X X X X X
X X X X X X X X X X
210 x x] [ X L x x1 10 X
f A
Sx X X X X X X X X X X
X X X X X X
X X X X
X X X X X X X X X X X X X X
310 x x X X X X X o X X
L ox x] | X | | x xJ 1 X |
f’s
AX X % x X X X X X X X X X
X X X X X X
X x X X
310 x x X X X X X X 0] X X X
X X X X X X X X
| X X X | x xi L X |
L 4

Figure 1. The first steps in reducing the lefimost matrix to triangular form while maintaining the tri-
angular form of the rightmost matrix. -

Acknowledgements

H. Zha wishes to thank Prof. Dr. Deufthard at the Konrad-Zuse-Zentrum for his support and
encouragement, P.C. Hansen would like to thank Prof. Tony Chan for the invitation to UCLA and for

providing nice working conditions there.



-13 -

References

13

2]

(3]

(41

5]
[6]
{7i

[8]
[9]

[10]

1]

[12]

[13)

[14]

A. Bjorck, Least Squares Methods; in P.G. Ciarlet & JL. Lions (Eds.), Handbook of Numerical
Analysis, Vol. HI: Finite Difference Methods — Solution of Equations in R", Elsevier (1989), to
appear,

L. Eldén, A weighted pseudoinverse, generalized singular values, and constrained least squares
problems, BIT 2 (1982), 487-502.

C.W. Groetsch, The Theory of Tikhonov Regularization for Fredholm Equations of the First Kind,
Research Notes in Mathematics 105, Pitman (1984). '

P.C. Hansen, Truncated SVD solutions to discrete ill-posed problems with ill-determined numeri-

cal rank, SIAM J. Sci. Stat. Comput., t0 appear,
P.C. Hansen, Regularization, GSVD and truncated GSVD, BIT, to appear.
P.C. Hansen, The discrete Picard condition of discrete ill-posed problems, submitted to BIT.

S. Kourouklis & C.C. Paige, A constrained least squares approach to the general Gauss-Markov
linear model, J, Amer, Statist, Assoc. 76 (1981), 620-625.

C.L. Lawson & R.J. Hanson, Solving Least Squares Problems, Prentice-Hall (1974).

C.C. Paige, Numerically stable computations for general univariate linear models, Comm. Statist.
B — Comput. and Simulation 7 (1978), 437-453.

C.C. Paige, Computer solution and perturbation analysis of generalized linear least squares prob-
lems, Math. Comp. 33 (1979), 171-183,

C.C. Paige, Fast numerically stable computations for generalized least squares problems, SIAM 1.
Numer, Anal. 16 (1979), 165-171.

C.C. Paige, The general linear model and the generalized singular value decomposition, Lin. Alg.
& Its Appl. 70 (1985}, 269-284,

C.F. Van Loan, Generalizing the singular value decomposition, SIAM J. Numer. Anal. 13 (1976),
76-83,

H. Zha, Restricted singular value decomposition of matrix triplets, Report SC-89-2, Konrad-Zuse
Zentrum fiir Informationstechnik Berlin (1989), submitted to SIAM J. Matrix. Anal. Appl.



