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ABSTRACT

We investigate the convergence properties of regularized solutions to discrete
ill-posed Ieast squares problems, A necessary condition is that the Fourier coefficients
of the right-hand side, when expressed in terms of the generalized SVD associated
with the regularization problem, in average decay to zero faster than the generalized
singular values. This is the discrete Picard condition. We illustraie the importance of
this condition theoretically as well as experimentally.
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1. Introduction

By discrete ill-posed problems, we mean a particular class of discrete least squares problems

min lAx -Bll;, AeR™, m>2a
x

o~
[
Ik
o

where the singular values of the matrix A decay gradually to zero in such a fashion that A is very ill-
condiioned. Often, due to rounding errors as well as errors in the data, such ill-conditioned matrices
have full rank in a mathematical sense and the discrete least-squares problem (1.1) is therefore not ill-
posed in the original sense due to Hadamard (see e.g. [12, Section 1.1]). However, we feel that it is
still practical to use the terminology ‘discrete ill-posed problems’, partly because many of the
difficulties of ill-posed problems carry over to the problem (1.1), and partly because (1.1) often arises
when an underlying ill-posed problem — for example a Fredholm integral equation of the first kind —
is discretized in order to compute a numerical solution,

For such problems, a variety of direct and iterative numerical regularization methods have been
proposed, see e.g. [1,5,6,8,11,15,18,22,242527] and the surveys in [2,3,9,12,19,20,28,29]. Many of
these methods seek to either compule or approximate a certain regularized solution, namely the solution

X, to the discrete Tikhonov-regularization problem
x5 = argmin {[[A x - b[| +3?||L x ||} 1.2

where L typically is either the identity matrix or a well-conditioned discrete approximation to some
derivative operator, Both the matrix L and the regularization parameter A are used to control the
smoothness of the regularized solution x,. An underlying assumption when using these methods is
therefore that the exact solution, which one is trying to approximate by x,, is indeed smooth. Another
assumption, which is equally important, is that the larger the singular values of A, the smoother the
corresponding singular vectors (in the sense: less zero crossings). For a discussion of these aspects, see
[28] and [15, Section 2].

There is, however, one more assumption which is not so well understood, and which bears a simi-
larity with the Picard condition for ill-posed problems., Let K (s,t) = L2, 0; 4;(s) v;(t) be the singular
value expansion of the compact operator K, and let the right-hand side' g be expressed as
2(s) = L7 Bi u;(s). In order that the equation K f = g have a square integrable least-squares solution
f . it is necessary and sufficient that g satisfies the following condition [12, Theorem 1.2.6]:
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The Picard condition (PC). The right-hand side g in K f = g satisfies the PC if

3 .g) /2 < o, 0 %0 (1.3)

i=l

where (1, ,g) denotes the usual inner product between u; and g.

Eq. (1.3) implies that from a certain point in the summation, the Fourier coefficients (i;,g) must decay
to zero faster than the o;. For the finite-dimensional discrete problem {1.1), the equivalent of Eq. (1.3)
is always satisfied. Nevertheless, the rate between the decay of the singular values of A and the decay
of the Fourier coefficients of the right-hand side b, when expressed in terms of the left singular vectors
of A, still plays an important role for the success of discrete Tikhonov regularization, The purpose of
this paper is to illustrate this phenomenon, via the introduction of the ‘discrete Picard condition’, and to
show how this condition is used in practice. The work extends and further develops the authors work
in {13,15,16], The concept of a 'discrete Picard condition’ was first discussed by Varah [28,29].

The paper is organized as follows, In Section 2 we introduce the generalized SVD, which we use
throughout the paper to analyze Tikhonov regularization as well as a related regularization method,
truncated GSVD. In sections 3 and 4, we investigate the conditions in which Tikhonov regularization
and truncated GSVD will produce reasonable solutions. This analysis leads to the definition of the
discrete Picard condition in Section 5, where we also briefly discuss how (o test this condition numeri-

cally. Finally, in Section 6, we give two numerical examples.

2. Discrete Tikhonov regularization and generalized SVD

The most convenient tool for analysis of the discrete Tikhonov regularization-problem (1.2) is the
generalized SVD (GSVD) of the matrix pair (A,L). The GSVD was introduced by Van Loan [26] and
further generalized by Paige and Saunders [23]. Here, we use a slightly simpler formulation, which is
sufficient for our analysis.

Theorem 1. Let the mairix pair (A, L) satisfy
AeR™, LePR", mznz2p, rmank(l)=p,. 2.1

Then there exist matrices U e R™*, V eRP¥ with UTU =1,, VTV =1, and a nonsingular X e R"*
such that

[g 8] [?-]X'l = [51] = 3 ’2» "EP 22)
P
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L, = diag(cy,..0,) € RP? | M, = diag(u,,...1,) € R°¥ 2.3)
where £2 + M2 = 1, and
0<o,< 'S0, $1, lzpy2z--2y >0. (2.4)

The generalized singular values of (A L) are defined as the ratios ¥; = &; /);, i =1,...,p.
Proof. See [23, Secion 2]. 0O

Remark, As long as the matrix L is wellconditioned and its null-space is spanned by smooth vectors,
it can be shown that the o; are closely related to the usual singular values y; of A in the sense that

L' € Wamisa/oi < [lA]l2+ L]z @25

where L* is the psendoinverse of L {16, Theorem 2.4 and Section 3).

Now, if we define F, = diag (f;,....f,) € R°¥ as a diagonal matrix with diagonal elements
fi =¥ +W, i=l..p (2.6)

then it is easy to show that the regularized solution x; can be written as

xkzX

T
ik ,(:)]U”b - l_gf,. %—;’1;.» + .-3;1 Wb x; . @
Equations (2.6) and (2.7) show that A basically ‘filters out’ the contributions to x; corresponding to
small ¥;, and this illustrates how A is used to control the sensitivity of x; t0 perturbations of A and b
[17}. Also, since the oscillation property of the singular vectors of A carries over 1o the columns x; of
X (i.e., the larger the generalized singular values v;, the smoother the x;) [16, Theorem 3.2], we see
how we can use A o control the smoothness of the solution. The ‘cost’ of this regularization is that we

neglect a (hopefully) small part of the information in b and that x, is not an unbiased estimator.

In connection with our discussion of discrete Tikhonov regularization it is also natural to consider
the truncated GSVD (TGSVD) solution introduced in [16], since this method is so closely related to
both Tikhonov regularization and to the well-known truncated SVD method for regularization. Thus,
define the TGSVD solution x; as

iro . , . -
x =X [0" IJUTb. Z, = diag(©,..,0,6,}4,...0;7) . (28)

Since v, =o; /W, = 0‘;1"\!1-&-0‘?, small ¥; correspond to small 6;, so TGSVD simply corresponds to
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discarding the p —k smallest v; of (A,L). The TGSVD solution x, is also a regularized solution, and
it is in fact very similar to x; in many respects, sec [16] for more details. For L =[;, TGSVD
becomes the well-known truncated SVD method [13,15,28}. We include a discussion of x; in this
analysis in order to give an example of how the properties of the regularized solution x; carry over to
other solutions that approximate x,;, such as the TGSVD solution. The same analysis can, we believe,
be carried our for any approximate regularized solution, once its expansion in terms of the GSVD is
known. Seec for example the analysis of iterative methods in [27].

3. Regularization errors

One of the the most important topics in relation 1o any regularization method is the convergence
analysis [12, Chapter 2). For discrete problems, the central issue here is: how well does the regularized
solution approximate the unknown, underlying exact solution. In this part of the analysis, one therefore

ignores the errors in A and b and seeks to give a bound for the mere regularization error.

For both regularization methods considered here, Tikhonov regularization and TGSVD, the

above-mentioned exact solution x, is given by
x, = XTUThH . 3.0

This is because x, satisfies both x, = x3 for A = 0 (no Tikhonov regularization) and x, = x; fork =n
(no truncation). Notice that if A does not have full rank, then the matrix X Z* U7 is, in general,
different from the pseudoinverse A¥, cf. [7, Theorem 2.3]. However, in this case x, =X Z'UT & is
still a member of the general solution to (1.1) given by A* b + x*, where A b is the minimum norm
least-squares solution to (1.1), and x* is an arbitrary vector in the null space of A. Thus, it is always
correct to compare the regularized solutions x3 and x, with x,, and we therefore define x, — x; and

x, —x as the Tikhonov regularization error and the TGSVD regularization error, respectively,

Our approach 10 analyzing these regularization errors is to derive bounds for the nomms
IIL (x, — x2)]|z and HL (x, — x;)il of the differences between the solutions (for L =1,) or between
the derivatives of the solutions (for L # I,). Let U, denote the matrix consisting of the first p columns
of U, Then we can easily obtain the 'naive’ bounds:

12
¥ (¥ + A%

fl

IL (e =xDll2 = |IM, U -FOEUSB2 < mﬂ{ }”5”2 < vl

IL G -2z = 1M, & - EDUSBl < v b,
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However, these bounds certainly do not guarantee small regularization errors. Obviously, we must also
incorporate into our analysis more information about the right-hand side &. Le., we must analyze upper
bounds of the form:

A2 |alb|
L G, -2l < p |IM, €, ~FIZUTB|. = V'Fltggp{-m "":;,:‘"} (3.2a)
IL @ -x)ll2 < o {IM, & -EDU] Bl = b Lil (3.2b)
X, —Xedilz S P {IMp (& pblle = v max 1= .

In the light of these bounds, it is easy to see that the upper bounds for the regularization errors are
related to the ratios between the Fourier coefficient uTb and the comesponding generalized singular
values ;.

To emphasize this relationship, we use the same strategy as in [15,16] and assume a simple, but
still realistic ‘model’ of the right-hand sides b as the typically appear in discrete ill-posed problems. In

this ‘model’, we assume that the Fourier coefficients have the following simple form:

T Vin ' i= lo---fp
u'b = W . i=plaam az0, 3.3

Here, o > 0 is a real parameter which controls the decay rate of the Fourier coefficients u] b relative to
that of the generalized singular values ;. Then we have;

Theorem 2, Let x; and x, denote the regularized solutions (2.7) and (2.8), and let x, denote the
unregularized solution (3.1). Further, let the right-hand side b satisfy Eq. (3.3). Then the regulariza-

tion errors satisfy

p , 0gsac«l
W S (MRt . 1sa<3 (3.42)
’ p (MR, 1sa
IIL (x, = x)l2 p , 0sac<l
“L X, “2 ‘Jp— (Yk—p+1!7p)c-1 , 1o, (34b)

Proof. Inserting (3.3) into Eqs. (3.2a) and (3.2b), we are lead to the problem of determining

- lz a-1 - a1
M) = ;'2?‘2,{%2”,2 Yi } and My = 151?2:4{% ).
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For 0 £ o < 1, M, is a decreasing function, and M,(Y;) € My(y) € v, Similarly, for 3 € &, M, is an
increasing function, and Ma(y;) S Ma(y,) € A2¥2%. And for 1 < a < 3, M,(y) attains its maximum for
v=7=22(c- 13-, and My(7) S M3 (V) = % (o- DD 3 - )21 < 2%1, — Concerning
My, it is easy to show that M;(y;) < ¥ for 0 S o< 1 and M, (¥,) <y for 1 <o — Finally, we
use the relation Lx, = VM Z*UT b =V, M, I} U” b to obtain the bound

!, 0sac<l

I e = UMy 5UTB 12 2 1M, 53UTb I = max (v') = {Y;,.l .

Ingerting ali these bounds into Eqs. {3.2a) and (3.2b), we obtain (3.4a) and (3.4b). O

Remark., ForL =1, = Yp.ps = Vi, Y = V), Egs. (3.4a) and (3.4b) are consistent with the results in
[15, Theorem 3.1,

In any practical application of Tikhonov regularization and TGSVD, to obtain a reasonable ‘filter-
ing’ of the small Y, one always chooses A <%, or k <p. Theorem 2 then shows that in order to
guarantee small regularization errors, o must be somewhat larger than 1, i.e. the absolute value of the
Fourier coefficients, |u] b |, must decay to zero faster than the generalized singular values v;. And the
faster the decay, the better x, and x, approximate x,. This is, in fact, a very basic assumption, and it
must be satisfied by the underlying, exact problem in order to ensure that Tikhonov regularization or
TGSVD be able to produce useful approximate solutions.

4. Similarity of Tikhonov regularization and TGSVD

In this section we take a closer lock at the similarity between Tikhonov regularization and
TGSVD, and we investigate the conditions in which we can guarantee that x, is indeed close t0 x;.
For this purpose, it is convenient to introduce matrices A} and A/ such that x; and x; can be written as

x,=AL b and x, = Alb. Egs. (2.7) and (2.8) show that these matrices are uniquely determined by

Fozy 0|, 7 I ot .,
0 IQU and A =X 0 I U’ . @.1)

Then the difference between the solutions x, and x, and the difference between their residuals can be
measured by the norms of L A{ - L A and A A{ — A A]:

Theorem 3. Let the matrices A} and Al be given by (4.1), and let @y =Y, (Y,4s1. Then for any
A >0 and any positive k <p:

of . ILAL-LAD), o of
T+ ~ A L adll, — 1+0?°

(4.2a)



0
1+ oy

min [|A AL - A A{ll; = (4.2b)
These two minima are attgined for = (Y, 341 Yp— )% and A = (Yp—yi Yo ), respectively.

Proof. Using Eqs. (2.6-(2.8) and (4.1), we get ||[LAL -LAlll, = |IFaM, Z} - M, &},
max (£ ¥y oo fpt Yoot A= fptat) Ypohats o (1= £,) %"} and ||A AL - A Al}); = |[Fa- 35, &2
8% {f 14 s St (L= Fpgar)s s {1 =Fp)). Since f; and f; 4" are increasing functions of v;, while
(1-£;) and (1-£;)v! are decreasing functions of ¥;, it follows that

Tp-k 2&2
lIL Af - L Alll, = max , (4.3a)
ATk %2 + A2 7 (s + MDY

2
Yo-i %
A AL —AAlll, = max £ , . 4.3b
IE A k”z {‘sz-* +A.2 l2+7p31+1 ( )

Equating the two terms in (4.3a), we are lead to the following expression:
2 2 2 3 % 3 4
A= ['Yp-—k Voksi— Yot ) + [‘Yp—t (Ypts1—Yp4) + 4%pin1 Yp—k] ] = [’Yp-¢+1 ‘Yp—t] .

Upper and lower bounds for ||L A{ — L A]]|, are then obtained by inserting this approximate value for
A into the two terms in (4.3a), yielding:

o, O < {|ILAL -LA]ll; = oF”
Yo—t+i T+op ki & Yo T+ o2
Finally, we divide these bounds by [|L All|; =¥,7}, to obtain Eq. (4.2a). — Following the same

technique, it is easy to show that the two terms in the expression (4.3b) are equal for A% = Yokl Yotk 1
and then ||A A} - A Al]|, = w, /(1+w,). This proves Eq. (4.2b). O

Remark. For the special case L =1, = @ = Y./ Vi, Egs. (4.22) and (4.2b) agree with the results
derived in [13, Theorem 5.2].

Theorem 3 guarantees similar resuits from Tikhonov regularization and TGSVD whenever @, is
sufficiently small and X is chosen somewhere between (Y41 Yp—)” and (¥,- 3 ¥,—4)” 1If the matrix
A has well-determined numerical rank, i.. if there is a distinct gap in the singular value spectrum, and
therefore also in spectrum of generalized singular values ;, then Wy = Y, /Y,-441 Can always be made
small by a proper choice of k. In this case, it is also natural to choose this k as the truncation parame-
ter in the TGSVD method. Then Theorem 3 shows that there always exists 2 A and a k such that
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TGSVD produces results similar to those obtained by Tikhonov regularization. This is, in itself, an
important result.

However, practical experience with the use of the TGSVD method snggests that is can also be
used successfully as a regularization method when A has ill-determined numerical rank, i.e. when the
singular values of A4, and therefore also the generalized singular values of (A,L), decay gradually to
zero without any particular gap in the spectrum (see ¢.g. [28,29]). In order to analyze this situation, we
must again incorporate information about the right-hand side into our analysis, and we shall again use
the simple ‘model’ from the previous secion. We shall also assume that A lies in the interval

[Y & »Yp—t+1 ], since we know from Theorem 3 that x; and x, are most similar for such A.

Theorem 4, Let x; and x, denote the regularized solutions (2.7) and (2.8), and let the right-hand side
b satisfy Eq. (3.3). If Yp-i € A< Yo, then

L Ll p ot , 0sas<<]

Xy — L X

T € P Gan/p)™  1sa<3 (4.42)
Jﬁ»(Yp—kHIYp)z » az3

Az -Axls _ {Jﬁcvm;mp}“ , 0sa<2

”b I;Z V,A; (Yp—k+! /Yp )2 , a22. (4.4b)

Proaf. Using the same idea as in the proof for Theorem 3, we obtain
L x5 — L xell2 < Vp max (F 1907 o fpt Yot (1= Fpata) Yobats o (= fp ) 727
1A x5 — A xilly < Vp max (f ¥, oo Foct Yok (1 = Fpcat) Yot (A= F, 210}

Here, f;v*" and f;y* are increasing functions of v; for y; < A, and since Yo+ S A S Ypg41, we have
Fi¥ S foaws <ol and £y S fpa¥is S Yo We also have (1) ¥ <y, 34, v™ which is
bounded above by 5., for 0<w<3 and by Y iuy® for 3<a  Similaly,
A=F)¥" < ¥p3.:¥7% which is bounded above by v, 3, for 0sa<2and by v, 2,y for2< a.
Hence, we obtain the bounds

o v ,0<sacl
HLexa-Lxdl, € 4V ¥oa s 1sa<3 f[Axn-Ax|,; < {
J.EYP-EH‘Y:-S ’ 3sa

JEY;—&*»I * 0<a<2
.J‘p—YP—%+1‘Y:_2 ’ 2$a'

To obtain the results in (4.4a) and (4.4b), we combine these bounds with
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- T rp_kl.'. » 0 ..-< o< 1
L X 2 M E U b = max ' ) r 1 :
” k”2 ” P~k Yp ”- [ p—k+1s =0 {p } 2

Ve . 1ga

and with [[b{l2 2 |[UT bll. =y s ¥y O

Remark. When L =7, = Y441 =V, % = Y1, Eqs. (4.4a) and (4.4b) agree with the results in [15,
Theorem 3.2].

Theorem 4 extends the results in Theorem 3: it shows that if o is somewhat larger than one, such
that the Fourier coefficients u7b decay to zero faster than the 7;, then there exist A and k such that the
regularized solutions x, and x, are very similar, even if there is no particular gap in the singular value
spectrum of A. In this connection, it is interesting to notice that practical choices of A and &, based on
e.g. generalized cross-validation (GCV) [10], always produces A and k satisfying Y, 4 < A < Ypts1,
see {13, Section 5]. The important conclusion is therefore that whenever Tikhonov regularization pro-
duces a satisfactory regularized solution x,, the TGSVD is also guaranteed to produce a satisfactory

solution x; which is very similar to x;.

§. The discrete Picard condition

As we have seen in the previous sections, the decay rate of the Fourier coefficients indeed plays a
central role in connection with discrete ill-posed problems. The key result is that the regularized solu-
tion x, or x, is only guaranteed to approximate the exact solution x, if the Fourier coefficients |u7b |
decay 10 zero faster than the generalized singular values 7y;. Of course, the decay of the Fourier

coefficients needs not be monotonic, as long as they in average decay to zero faster than the v;.

There is an important exception to this requirement to the Fourier coefficients, If some singunlar
values y; of A are numerically zero (ie., smaller than some threshold reflecting the errors in A), then
the corresponding generalized singular values y;, are also small due to (2.5), and the decay of the
corresponding [u7b | is not important. Instead, the size of these |u7b | largely determines the norm of
the residual and therefore, in turn, signal whether the problem (1_.1) is consistent or not. This has noth-
ing to do with the existence of a smooth solution, and it is therefore important to consider the decay of
the Fourier coefficients corresponding to numerically nonzero generalized singular values (or, if L = 1,,
singular values) only.

This discussion leads to the following definition of a discrete Picard condition for discrete ili-
posed problems:
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The discrete Picard condition (DPC), Let b denote an unperturbed right-hand side in (1.2). Then b
satisfies the DPC i, for all numerically nonzero generalized singular values v;, the Fourier coefficients
lulb | in average decay to zero faster than the ;.

When solving real-world problems, where the right-hand side (and sometimes alsc the matrix} are
contaminated with measurement errors, approximation errors, and rounding errors, then the given, per-
turbed problem rarely satisfies the DPC. However, if the underlying exact problem satisfies the DPC,
then by a proper choice of A or k£ one can often make the regularized problem satisfy the DPC. 1e.,
one can regard regularization as a method to derive from the given ill-posed problem a related problem
that satisfies the DPC and therefore has a regularized solution that approximates the exact, unknown
solution.

As a typical example of this situation, let the problem (1.1) be derived from a first kind Fredholm
integral equation satisfying the Picard condition. Then, ideally, due to the strong connection between
the singular value expansion of the kernel and the SVD of the matrix A [14], the DPC is also satisfied.
However, due to data errors as well as approximation errors in setting up the discrete problem, all the
Jufb | do not satisfy the DPC. Instead, they typically ‘roll off” gradually until they reach an almost con-
stant level, determined by the errors, By means of a proper choice of the Tikhonov regularization
parameter A one can, however, guarantee that the Fourier coefficients for the regularized problem,
namely |f; u[b |, satisfy the DPC. Similarly, for TGSVD, one can choose a truncation parameter k
such that the |u b | satisfy the DPC for i > p —k. We give examples of this behavior in Section 6.

If, on the other hand, the underlying problem does not satisfy the DPC (or even the PC), then it is

generally not possible to compute a satisfactory solution by means of Tikhonov regularization or any
related method. See [4] for an example of this situation.

Having introduced the discrete Picard condition as defined above, a natural question is: how does
one check numerically whether the DPC is satisfied? Of course, a visual inspection of a plot of the
Fourier coefficients |27 | and the generalized singular values y; will often reveal this and, at the same
time, guide the user in choosing a suitable ¥ or . But we believe that an automatic check for satisfac-
tion of the DPC may also be required, partly because the amount of data may be large, and partly
because one might want a more quantitative test than just a visual inspection (as is the case for the
GCV method for choosing the optimal regularization parameters A and k).

From the discussion leading o the DPC, it is evident that satisfaction of the DPC is a ‘local’
phenomenon, taking place only for the larger generalized singular values v;. Hence, the check for satis-
faction of the DPC should also be based on the use of ‘local’ information in the sequences |u7b | and
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¥;, only. We could, for example, fit cubic splines to the |17b | and the y; and then check the relative
decay of these splines. However, a much simpler and easy-to-use approach seems 1o be sufficient.

Since we are interested in information about the decay of the data, it is the ratios of nearby
coefficients |ub | and y; — rather than their absolute values — that is important. Therefore, we pro-
pose to base the numerical check for satisfaction of the DPC on the moving geometric mean.:

1
o} e Zg+1 .
Pi = Y.t'l n Iu}Tbl [ 1=q+1-----ﬂ-q : (5'1)
j—

where ¢ is a small integer, thus ensuring the locality of the p;. Note that p; should only be computed
for numerically nonzero ¥y;, and that special care should also be taken if some of the |u[b | are numeri-
cally zero. Based con our experiments, we find that ¢ equal t0 1, 2 or 3 gives good resnlts, and we will
say that the DPC is satisfied when the all p; defined by (5.1), corresponding to numerically nonzero

|ulb | and ;, decay monotonically to zero.

6. Numerical examples

In this section we illustrate by two numerical examples the important role the discrete Picard con-
dition plays in the analysis of discrete ill-posed problems. Both examples are obtained from discretiza-
tions of Fredholm integral equations of the first kind:

b
jK(s,x)dx = g(s), c<s<d. (6.1

Our first example is the classical integral equation deviced by Phillips [24] with [a,b]=
[c,d]=[-6,6],and K and g given by:

1+cos{(s~x)m/3] , |ls-x|%3
K(s,2) = f(s-x) = 0 . s—x|>3 {6.2a)
g(s) = 6-|sD [1+’/zcos-1%§—]+-2-9~;sinﬂ3il. (6.2b)

This equation satisfies the Picard condition, and the square integrable solution is simply f (x) as given
in (6.2a). We discretized the integral equation using the trapezoidal guadrature rule as described in [21]
with m = 78 and n = 49, and as regularization matrix L we chose an approximation to the second
derivative operator,
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L = S e RF, p=n-2, {6.3)
L ~ -1 2 -1]
In order to simulate measurement errors in the right-hand side &, we then added to b a random pertur-
bation vector e with elements from a normal distribution with zero mean and standard deviation 107>,

The perturbed Fourier coefficients |u7b | and the generalized singular values ; are shown in Fig.
1. Notice the ‘reverse’ ordering of the +v; as compared to the usual singular values y;. All the singular
values of the kemel K in (6.2b) are nonzero, but due to the particular discretization method the matrix
A has 7 numerically zero singular values ;. Hence, there are also 7 numerically zero generalized
singular values ¥; of (A,L), while the rest of the v; decay monotonically. The corresponding Fourier
coefficients also tend to decay until they ‘level off® at about 1075, which is the ‘noise level’ caused by
our random errors e. The particular Fourier coefficients corresponding to the numerically zero v; are of

the same size as the ‘noise level’, and the problem is therefore consistent within the ‘noise’,

For this particular problem, all the Fourier coefficients |u7b | with even index i are acwally
numerically zero (i.e., of the same size as the ‘noise level’). As mentioned in Section 5, these numeri-
cally zero |u5 | should not be included in the analysis of the DPC, and we therefore only computed the
p; for odd values of i. These p;, computed with ¢ = 1, are also shown in Fig. 1, We see that for
i =45,43,41,39,37,35 the p; decay monotonically, and for i < 35 the p; start growing again. From
such a plot, we conclude that the underlying, exact problem (with ¢ = () seems to satisfy the discrete
Picard condition. We also see that the perturbed problem satisfies the DPC if it is regularized in such a
way that the terms (u7b /v;)x; are damped for i < 35. These observations perfectly agree with the
appearance of the TGSVD solutions x; (not shown here): for small £, x; is dominated by approxima-
tion errors, while for k£ greater than about 15 the solution x, is severely distorted by the influence of

the errors. For k in the range 9 to 14, x; is acceptably smooth and resembles the true solution,

The second example is a model of the transient transport across the blood-retina barrier in the
human eye. A simple version of this model, assuming the eye to be a sphere, was refined to allow for
a more realistic geometry of the eye where the front half deviates from spherical form. The kerne! and
right-hand side of the integral equation (6.1) are then given by:

dD({x

K(s,x) = 2nsinx D(x) '

2%4%
D(x)+ [ ]] E(s?+D(x)*-2sD(x)cosx) (64a)
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g(s) = F(ys+(y-Da,), v=%@B+8/0+d {6.4b)

where [a,b]1=[0,n],[c,d}=[-a,.Ba,], and

!

% (@8-1)a, cos3x + 4B+ 1)a, 0<x <nw/3
D(x} = a, , ®3<x<n (6.5¢c)
-, L (r-a,)s, _ —(t+a,)a,
E(1) = £ . F) = J < : (6.50)

The parameters were g, = 1.2cm (radius of the spherical back half of the eye), § = 0.9 (deformation
from spherical form of the front half of the eye), and s, = (L316 (ime constant for the diffusion
through the blood-retina barrier). We discretized the integral equation by means of the moment method
using piecewise constant approximations (see e.g, [14] for more details), and we used L = [,. This
leads us to considering the usual singular values y;, the Fourier coefficients [u]b | (where u; are the

. . W1/ (2¢+1)
nsual left singular vectors of A ), and the moving geometric mean p; = ;! [2};‘ ' Jufb f] .

When the order n of the matrix is smaller than about 100, the DPC does not seem to be satisfied,
because all the Fourier coefficients decay to zero slower than the singular values. However, if n is
greater than 100, then the DPC is satisfied for i < i, (i.e., for the larger singular values), and the range
i, increases with the order n. This behavior of the i, implies that the growth of the p; for i > i, is
primarily due to the approximation errors caused by the ‘rough’ piecewise constant approximations. A
typical plot of the first 30 coefficients for the case n = 256 is show in Fig. 3, using ¢ = 3. From these
results, we can conclude that the underlying, exact problem seems to satisfy the DPC, which means that
the integral equation model is satisfactory, Of course, use of more sophisticated approximation func-
tions would increase the quality of the discrete solution.

Acknowledgements

I would like to thank Prof. Dianne P. O’Leary for discussions about the discrete Picard condition
that highly influenced this presentation, and Prof, Tony F. Chan for providing very nice working condi-
tions during my visit to UCLA.



-15-

References

m A Bjorck, A bidiagonalization algorithm for solving large and sparse ill-posed systems of linear
equations, BIT 28 (1988}, 659-670.

2 A Bjorck & L. Eldén, Methods in numerical algebra for ill-posed problems, Report LiITH-MAT-
R33-1979, Dept. of Mathematics, LinkSping University, 1979.

3] L1D.Craig & J.C. Brown, Inverse Problems in Astronomy, Adam Hilger, 1986.

4] U. Eckhardt & K. Mika, Numerical rre&rrmm of incorrectly posed problems — a case study, in J.
Albrecht & L. Collatz (Eds.), Numerical Treatment of Integral Equations, Workshop on Numeri-
cal Treatment of Integral Equations, Oberwolfach, November 18-24, 1979, pp. 92-101,
Birkh&user, 1980.

[5] M. Eiermann, 1. Marek & W. Niethammer, On the solution of singular linear systems of algebraic
equations by semiiterative methods, Numer. Math, 53 (1988), 265-283.

[61 L. Eiden, Algorithms for regularization of ill-conditioned least-squares problems, BIT 17 (1977),
134-145.

[7] L. Eldén, A weighted pseudoinverse, generalized singular values, and constrained least squares

[8]

{91
{10]

(11]

(12

(133
[14]

problems, BIT 22 (1982), 487-502.

L. Eldén, An algorithm for the regularization of ill-conditioned, banded least squares problems,
SIAM J. Sci. Stat. Comput. 5 (1984), 237-254.

H.W. Engl & C.W. Groetsch (Eds.), Inverse and Ill-Posed Problems, Academic Press, 1987.

G.H. Golub, M.T, Heath & G. Wahba, Generalized cross-validation as a method for choosing a
good ridge parameter, Technometrics 21 (1979), 215-223.

J. Graves & P.M. Prenter, Numerical iterative filters applied to first kind Fredholm integral equa-
tions, Numer, Math. 30 (1978), 281-299.

C.W. Groetsch, The Theory of Tikhonov Regularization for Fredholm Integral Equations of the
First Kind, Pitman, 1984.

P.C. Hansen, The truncated SVD as a method for regularization, BIT 27 (1987), 534-553.
P.C. Hansen, Computation of the singular value expansion, Cbmpuﬁng 40 (1988), 185-199.



[18]

{19]
{201

21)

[22]

[23]

[24]

[25]

[26]

{27

[28]

[29]

-16 -

P.C. Hansen, Truncated SVD solutions io discrete ill-posed problems with ill-determined numeri-
cal rank, SIAM J. Sci. Stat. Comput., to appear,

P.C. Hansen, Perturbation bounds for discrete Tikhonov regularization, Inverse Problems, to
appear.

RJ. Hanson, A numerical method for solving Fredholm integral equations of the first kind using
singular values, SIAM J. Numer. Anal. 8 (1972), 883-890.

F. Natterer, The Mathematics of Computerized Tomography, Wiley, 1986,

F. Natterer, Numerical treatment of ill-posed problems, in G. Talenti (Ed.), Inverse Problems, pp.
142-167, Lecture Notes in Mathematics 1225, Springer, 1986.

D.P. O'Leary & B.W. Rust, Confidence intervals for inequality-constrained least squares prob-
lems, with applications 1o ill-posed problems, SIAM J. Sci. Stat. Comput. 7 (1986), 473-489,

D.P. O'Leary & J.A. Simmons, A bidiagonalization-regularization procedure for large scale
discretizations of ill-posed problems, SIAM 1. Sci. Stat. Comput. 2 (1981), 474-489.

C.C. Paige & M. Saunders, Towards a generalized singular value decomposition, SIAM I, Nusmer.
Anal. 18 (1981), 398405,

D.L. Phillips, A technique for the numerical solution of certain integral equations of the first kind,
J. ACM 9 (1962), 84-97.

A.N. Tikhonov, Solution of incorrectly formulated problems and the regularization method, Dok-
lady Akad. Nauk SSSR 151 (1963), 501-504 = Soviet Math, 4 (1963), 1035-1038.

CF. Van Loan, Generalizing the singular value decomposition, SIAM 1. Numer, Anal, 13
(1976), 76-83,

A. van der Sluis & H.A. van der Vorst, SIRT and CG type methods for the iterative solution of
sparse linear least squares problems, Report 88-43, Faculty of Technical Mathematics and Infor-
matics, Delft University of Technology, 1988,

JM. Varah, A practical examination of some numerical methods for linear discrete ill-posed
problems, SIAM Review 21 (1979), 100-111,

J.M. Varah, Pitfalls in the numerical solution of linear ill-posed problems, SIAM J. Sci. Stat,
Comput. 4 (1983), 164-176,



103

=~ 1 L ] i L] 13 1 L) T -
- x .
— x [ -
100 X
3 1r © E
C x =
- xl -
= o 3
x -
10-3 i x:lxle . < i
o xxix“x‘x o 3
- TXXXXXXKZX o © o -
- 0 -
Fo%0 % oxmge °° 0,° ‘o "o o o, % e © ]
o
10'6§ ° ° o o o o ° o =
- ° -
= ° z
}0'9 E x ‘Yl =
- O |ulb| .
10-12 L — P .
" i3
10-15 xxxx§li | 1 L 1 L 1 3 1
0 5 10 15 20 25 30 35 40 45

Figure 1. The generalized singular values (crosses), the Fourier coefficients |u7b | (circles), and the

means p; (solid line) for example one. The DPC is satisfied for i = 45,43,41,39,37,35.
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Figure 2. The singular values y; (crosses), the Fourier coefficients |ulb | (circles), and the means p;

(solid line) for example one. The DPC is satisfied for { < i, = 20,



