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1. Introduction

In this paper, we consider numerical approximations to weak solutions of the scalar
initial value problem:

(1.1) ue + fu)s =0

(1.2) u(z,0) = uo(z)

The initial data ue(z) are supposed to be piecewise-smooth functions that are either period-
ic or of compact support.

Let u} = up(z;,t,) denote a numerical approximation to the exact solution u(z;, ¢,)

of (1.1) and (1.2), defined on a computational grid z; = jh , t, = nAt, in conservation
form:

(1.3) uit! = u} = Mfiy = Fioy)

where A = ‘-"};-‘-, the numerical flux is a function of 2k variables

(1.4) f1+i_ =f(u?_k+1,...,'u;‘+k)
which is consistent with (1.1), i.e.
(1.5) Fluy. .. yu) = f(w)

The total variation of a discrete solution is usually defined by

(1.6) TV(u") =Y lufss — uf]
J

This is the total variation with respect to x of the numerical approximation uj(z,t) in
(1.3), considered as a piecewise-constant function defined by

(1.7) ua(z, ) = ul
forz;_y <z <=z and nAt <t < (n+1)At where Tivp = (J + Pk

We say the scheme (1.3) is TVB (total-variation-bounded), if there exists a constant
M > 0, independent of A for 0 <t < T (T fixed), such that

(1.8) TViup( -, 1)) < M -TV(u)
If M =1, the scheme is called TVD (total-variation-diminishing).
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The importance of TVB and TVD methods relies on the fact that any refinement
sequence h — 0, us, has a subsequence h,,, such that u;, L!-converges to a weak solution
of (1.1) and (1.2). The notion of TVD scheme was introduced by Harten in [2], where
he constructed TVD schemes that in the sense of truncation error are high order accu-

rate everywhere except at local extrema where they necessarily degenerate into first order
accuracy,( see [1],[2] and [6]).

In order to get high order accuracy in smooth regions, Harten, Osher, Engquist and
Chakravarthy constructed essentially non-oscillatory (ENO) schemes which use adaptive
stencils, obtaining information from regions of smoothness if discontinuities are present.
The analysis and numerical experiments of these methods can be found in [3),[4], and [5].
However, the most efficient implementation of ENO methods has been investigated by
C.W. Shu and S.J. Osher in the remarkable papers [8] and [9], where they reconstructed
numerical fluxes from point values, applying the adaptive idea of the ENO interpolation
and using a TVD Runge-Kutta type time discretization. Originally, ENO schemes were
based on the reconstruction of the solution from cell averages. The following lemma (taken
from [9]) establishes a useful relation between the numerical flux and the flux of a solution

to (1.1):

Lemma 1.1 (Shu and Osher) If a funtion g(z) satifies

x+§-
(19) fuE) =7 [ o) dt

then

oz +3) — oz~ b)
flu(a)), = LEL2

Lemma 1.1 implies that in order to approximate the numerical flux f; j+4 toahighorder
a.ccuracy it is enough to reconstruct g(x J+r) up to the same order. The reconstruction
“via primitive function” (see [4]), seems to be the most efficient, and, it is used in [9] in

an ENO fashion.

In this paper we construct a local third order accurate method by using a piecewise
hyperbolic reconstruction of the function g in (1.9), instead of the polynomxa.l ENO inter-
polation of the primitive function of g as in [9], and the evolution in time is performed by
means of the Shu-Osher third order TVD Runge-Kutta method (see [9]), computed by the
recurrence formula:

i—1

(1.10) u =3l ul + B (-2) - Fiy - Ff20,  i=1,23
k=0

where

(1.11) ugo) = uf, ug—s) = u?“



with
(1.12) r= 2oy,
h

and Ao is inversely proportional to maz|f'(u)|, as usual, with coefficients of Table 1. The
obtained method is local in the sense that the numerical flux depends only on four point
values, in contrast with the corresponding third order accurate ENQ that uses six point
values. When discontinuities are present, some smoothing becomes necessary in order to
prevent the increasing of the total variation of the solution, and this is achieved, in our
method, by means of a “preprocessing of derivatives” carried out in every computational
cell, as explained in section 2. The method is constructed using the Roe entropy-fix frame-
work as presented in [9], and it becomes third order accurate in smooth regions except
at local extrema where it may degenerate to O(h*), due to the shifting of the fluxes and
the monotonic character of the reconstruction, which may degenerate into second order
accuracy along the cell of transition at local extrema (see tables 2 and 3). We present
two piecewise hyperbolic reconstructions: The first one, satisfactory for contact discon-
tinuities, and “overcompressive” for non linear fluxes, consisting of natural hyperbolas
without “preprocessing” of derivatives; and the second one, satisfactory for all fluxes, with
more smoothing for contact discontinuities, consisting of hyperbolas with “preprocessed
derivatives”. Concerning the method, built from the second reconstruction, the following
features were found through numerical experiments (see section 4):

a) Third order accuracy in smooth regions of the solution except at local extrema
where it may degenerate to O(h?).

b) Correct position and speed of discontinuities.
¢) Entropy-satisfying discontinuities for non linear fluxes.

d) No spurious oscillations, due to the “denocising” effect of the monotonic character
of the reconstruction.

e) Good resolution of linear discontinuities and jumps of derivatives, where the smear-
ing appears to be more local than in ENO methods, with a satisfactory behavior for high
CFL (see Figs. 6 and 9).

f) The Artificial Compression method (see [10] and [9]), for linear discontinuities works
efficiently with low CFL, (as in ENO methods), (see Figs. 7 and 12).

As the third order ENO method (as it appears in [9], with r=2), our method behaves
as a TVB method, but we have not yet been able to prove this property. However, we have
found a “local TVB property” of the reconstruction, (too weak to imply TVB), that is a
practical criterium in order for a method, based on point values, to prevent the increasing of
the total variation of the reconstruction essentially, when discontinuities are present. This
property is satisfied not only by our method, but also by the third order ENO, making
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our method close to the ENO methods. A maximum principle appears to be necessary in
order to prove the TVB property of the scheme.

The paper is organized as follows: section 2 contains the reconstruction step, the
complete algorithm is presented in section 3, and section 4 contains numerical experi-
ments, including one-dimensional non-convex Riemann problems, contact discontinuities
in 1D and 2D, one-dimensional Burgers’ equation with smooth data and two-dimensional
Riemann problems for Burgers’ equation.



2. Piecewise Hyperbolic Reconstruction

The most important step in our method, as well as in ENO methods, is the recon-
struction step. Since we look for the reconstruction of the function ¢ in (1.9) up to third

b

order accuracy in the sense of truncation error, we shall define what we will call “natural
data”(i.e. grid data) and we will establish the general reconstruction problem.

Let g(z) be a piecewise smooth function that is either periodic or of compact support.
We have defined a computational grid x; = jh, j integer, h > 0, where the cells are

(2.1) ' Ci={z:z;  Sz<z;4;}
where x4 = z; + &

Natural Data :

(1) For every j the mean value of g(z) in Cj, v; is given, i.e.,

(22) v=3 [ a0
24

(2) For every j, d j+4 18 given, which is either ¢'(z;, ;) or

U¢+I _v-
(2.3) djpy = R0

(dj43 = ¢'(zj43) + O(h?)). For our purposes we will suppose (2.3) satisfied all the time.

Let R be a class of elementary functions. We shall only concern with third order
accurate reconstructions:

General Reconstruction Problem (GRP): For every j, find r; in R, defined on Cj,
such that r;(z) reconstructs g(z) on C; up to third order accuracy, i.e. for every j such
that g(z) is smooth on C;, then

(2.4) g(z) — ri(z) = O(h%) Ve € Cj
A method of reconstruction is a well-defined rule to solve GRP.

In order to solve GRP with different classes of functions ® we will consider the fol-
lowing concept

A natural solution to GRP is a third order method of reconstruction {r;} consisting
of functions chosen from ® such that for every j the following conditions are satisfied:

1 [%i+d
(2.5) vj = = ri(€) d¢
7 hlj~}
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(2.6) dipy =ri(%j4y)

Standard arguments show that (2.5) and (2.6) imply third order accuracy.
Our discussion will include the following two classes of elementary functions:

(1) The class of parabolas of the form:

c:
2.7) pi@) =aj+b; (v —25) +(3) (s —z5)°
defined on ;. We denote this class by ®,.

(2) The class of hyperbolas of the form:

Aj
(2.8) ri(z) = a; + RPN

defined on C;. We denote this class by R
We are interested in reconstructions with the following property:

Definition 2.1 We say a method of reconstruction {r;} of g(z) is local if for every
J the function r; depends only on vj, d;_ 3 and d;, 3

The simplest example of a local third order method of reconstruction is the “Local
Parabolic Reconstruction” (LPR). Indeed, for every j there is a unique parabola of the
form (2.5), defined on C; and determined from v;, dj_,§ and dj+§ by

d'+ —d'__l

(2.9) ¢j = mz%_z
| diyy +d;_

(2.10) b; = ;__%__._é__J_%
h2

(2.11) a; = vJ- - CJ' . i

It is easy to see that the LPR is the natural solution to GRP with ® = R,,.

We will use the following notations:
(2.12) Dj=djy—d;_y

7



_dipytdiy

(2.13) d; 5

If d; is non-zero then we define the adimensional parameter:

(2.14) o= —i-

Obviously we can also determine the parabola from v;, d; and D;, through (2.9),(2.10)
and (2.11).

The reconstruction procedure is repeated at every time step, and, therefore, the change
in total variation of the reconstruction must be controlled. The local total variation of the
reconstruction {r;} is defined by

(2.15) | LTV, = TV(r,)

where TV (r;) means the total variation of the function r;(z) in the cell C;. The size of
LTV; determines locally the increasing of the total variation of the reconstruction. Then,
we introduce

Definition 2.2 A method of reconstruction is Jocal total variation bounded (LTVB),
if there exists a constant M > 0, independent of h, (depending only on the function g(z)
to be reconstructed), such that

(2.16) LTV;<M-h v

The local total variation for LPR is

2 0d;_1|-1d; 1
(2.17) TV(p;) = g (Id-..l,l +ldjy gl ~ () - |d_',-+1 I%il» Icli 'J?I)
3 =

where ¢(j) = 0 if d;_; - d;,; > 0 and ¢(j) = 1 otherwise. If discontinuities are present
in g(z), then, for some j, d;, 1 = O(h™'), and therefore, (2.16) is not satisfied for that j.
Thus, LPR method is not LT%’B. We have seen, through our numerical experiments, that
when using the LPR method for Burger’s equation with smooth data, with the algorithm
of section 3, the total variation of the numerical solution blows up near discontinuities,
(when they appear). The LTVB condition appears to be necessary for a method to own
enough “smoothing” to deal with discontinuities and to behave as a TVB method.

Thus, we must look for methods of reconstruction satisfying Definition 2.2 in order to
prevent the increasing of total variation. Since the total variation of the function g(z) on
a cell Cy, where it is smooth, depends essentially (up to O(h®)) on the size of d;y 3 and

d j—3> (this follows from the trapezoidal rule), then, in order to get local total variation
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bounded methods of reconstruction, it will be necessary to correct the values of diy 3 and
j-4> on every cell, preserving the third order accuracy of the reconstruction. For this
purpose we introduce the following

Definition 2.3 A numerical left derivative, is a function of 2k + 2 variables, (k > 0)

(2.18) dlj=dl(dj_t_y,..., J+k+*)

which is “consistent” in the following sense:

(2.19) dl; —d;_3 = O(R?)

The concept of numerical right derivative, dr; is defined analogously and satisfying
(2.20) drj—d; 4 = O(h?)

instead of (2.19). The numerical central derivative, dj, is also defined in the same way, by
using

(2.21) di - d; = O(*)

where d; is defined by (2.13). The numerical difference, D}, is defined also as a function
of the same variables and the following consistency property

(2.22) D! —D; = O(h)

]

where D; is defined by (2.12).

A consistent preprocessing of derivatives is a set of pairs of lateral numerical derivatives
{dl;,dr;}, defined as above, associated to the natural data. A preprocessing is called local
if the numerical derivatives are functions of only two variables.

A preprocessed solution to GPR is a third order method of reconstruction consisting
of functions chosen from % such that for every j, (2.5),

(2.23) dlj = ri{z;_3)
and
(2.24) _ drj = ";(3’;‘-;-;-)

are satisfied. We need consistency properties (2.19),(2.20),(2.21) and (2.22) since they keep
preprocessed solutions third order accurate.

Then, we have the following



Theorem 2.4 The polynomial ENOQ third order method of reconstruction ‘via primi-
tive function’ of the function g(z) is a nonlocal preprocessed parabolic solution to (GRP)
that is local total variation bounded

Proof: The following algorithm determines the lateral numerical derivatives in the
ENO third order method on a cell C;:

if |d;_ 4] < Id_H_*[ then

dlj =d;_;
if |D;| <|Dj-1| then
else

drj=dl;+Dj_,
else
drj=d;.}
if |D;| < |Djusl then
dlj=d;_,
else
dly =drj— Djyy

Thus, we determine the parabola (2.7) by substituting in (2.9) and (2.10), d;_4 and

dj+§_ by dl; and dr;, respectively. We denote that parabola by p;. Since the numerical
derivatives are functions of four variables, then, this preprocessing is not local. On the
other hand, let us choose a number h > 0 such that there is at least two cells between two
jumps of g(z). Since g(z) is a piecewise smooth function it is easy to see that there exists
a constant M > 0, depending only on derivatives of ¢, in smooth regions, such that for all
J, except for a finite number of “isolated” j's (for which d;y } = O(r™1)),

ldjr 3l < M
Thus, by the definition of the preprocessing we have that for all j,
(2.25) |dl;| + |drjl < 4-M
Therefore, according to (2.17) applied to p}, we obtain
(2.26) LTV; =TV(p})<4-M-h
and the ENO reconstruction will be LTVB. ||

Next, we shall look at local piecewise hyperbolic reconstructions. For the class ®; we
have no natural solution to GRP if local extrema are present in g(z), because hyperbolas
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are monotonic. However, we can find a unique hyperbola r; of the form (2.8) in every cell
Cj, such that d;_y - d; > 0, satisfying (2.5) and (2.6). We say a cell C; is a transition
cellifd,_ } djy 3 < 0 Since we look for a hyperbola at every cell, including transition cells,
we will study more general conditions for the existence. For our purpose we shall need the
following simple lemma,

Lemma 2.5 We consider the generic cell
h
Co={z:jz—z0| < 5}

Let 6 be a real number between —1 and 1. We set z(6) = zo + 8- %. Let vy be the mean
value of g(z) in Cp. Let d be a nonzero real number. Then
(1) The hyperbola

_ 1 o 2-a(l-6)y h
@20 rele)=wtd-h- 5 (lg(2+a(1+9)) (x—m)—%-<e+%))

with d‘.'erivati've
h2
2
o ((@=z) - }-(0+2))

(2.28) ro(z)=d-

is well-defined according to the following restrictions on the range of values of the parameter
«

(0)If~1<6<1then % <a< 12y
(6) If6 =0 then -2 < a < 2
(c)If6=—1thena<1
(d)If8=1 then a > -1

(2) The mean value of ro(z) in Cp is vy, i.c.,

To+ 4§
(2.29) vy = % f AT ro(€) d¢

zo—‘-

(3) The derivative of the hyperbola at z(8) is d:
(2.30) ro(z(8)) =d
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(4) If d1 is a nonzero real number such that d-dl > 0, and 6, is a real number such
that —1 < 8, <1 and 8; # 8, then, we can determine the value of a by the formula

(2.31) o= (57;'2:5) | (1 - %)

such that
(2.32) ro(z(6;)) = d1

Thus, the hyperbola is completely determined from vy, d and d1, when d- dl > 0. Moreover,
the denvatwe of ro(x) at the mid point z(&Lh) is

. . 2
(2.33) r:,(a:(%g}»)) = sgn(d) - (2\/%::—[ ﬁ)

(5) We set dly = rf(zo — %) and dro = rj(zo + &). Then, the total variation of the
hyperbola on Cjy is

(234) TV(TQ) = h Y dl{) ' d‘r‘o

(6) If § = O then the lateral values of ro are well defined for —2 < o < 2 by the
formulas:

h
(235) o (mo -+ '2-) =ypy+d-h- n(a)

(2.36) ro(zo — g‘) =v—d-h n(-a)

where the function n is defined as:

as 0= - (1os(372) - 22)

(the function 7 is posztwe in -2 < a < 2, and it has a removable discontinuity at o = 0
by defining n(0) =

(7) Let Dj be a nonzero preprocessed difference satisfying (2.22). If a defined by

Do
2-d

L3

satisfies the restrictions in (1), the hyperbola vy satisfies (2.30) and r{i(2(6)) = %’-
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Proof: Straightforward. I

First, we will study the “most natural” local hyperbolic reconstruction (LHR). Since
our reconstruction is local we restrict our discussion to the cell C;; and the natural data of
the cell: vp, d_} and di_r. In order to fit the hyperbola we establish formulas to obtain d

and & with & = 0. The LHR algorithm computes for the generic cell Cy the derivative at

the point g, and the adimensional parameter a from d_j and d*.' If Cy is a non-transition

cell, then the value assigned to d is the mean (2.33) and a is computed by means of (2.31),
and, therefore, the hyperbola obtained has as derivatives at the end points of the cell d_;
and dy. If C is a transition cell we change the derivative with largest absolute value by

the other one multiplied by A2, thus, the reconstruction on this cell may degenerate to
second order.

Let tol be a constant such that tol = O(h?), (e.g. define tol == h?).

* Local Hyperbolic Reconstruction
if (ld_;|<tol) and (|di|<tol) then
d=0and a=10
else
if (|d.}4| <tol) or ( Co is a transition cell with |[d_;| < |dy|) then

d=4.d (rﬁr)z

Lo € 1

1
1

a=2

+
&

else

if (|dy] <tol) or ( Cpis a transition cell with |dy| <]d_y]) then

d=4-d__*- (T—?—'ﬁ')2

« = 2334
else
4ld_|dy |
d"‘sg“(d—})'u_ [ Al §

§|+|d§|+2-\/d_}-d}
if |d_§,| < Idi'l then

a=2-( 3"———1)



if (|dy| <tol) or ( Cois a transition cell with [dy] <ld_4|) then
d=2.d_y- (HLh,)

0:=--2-( ﬁh-,-—l)

else

p 2d_y.d
Lty

if |[d_i]<[d}| then

a= -(1—\/%)

Transition cells are treated analogously to the LHR method, but using the harmonic
mean instead of (2.33). In Table 3, we have the numerical order computed for LHHR
method, for the same function as in Table 2, under the same conditions.

Now, we will show that LHHR method is LTVB. We shall need the following

Lemma 2.6 The range of values of the adimensional parameter a for the LHAR
method is

(2.39) ~2(V2-1) <z <2(V2-1)

Proof: For transition cells the proof is trivial. If Cy is a non-transition cell then we
will suppose that |d_ }l <|d %l’ (the other case is symmetric). Then, the algorithm defines

d
a-2-( _d_1 —-1)
%
Thus, it is enough to prove that Eig' < 2 and this follows from d_; -d 3 > 0. I

Theorem 2.7 The (LHHR) method of reconstruction of the function g(z) is a local
preprocessed hyperbolic solution to GRP that is local total variation bounded

Proof: Following the same argument as in Theorem 2.4, we can find a constant M > 0
such that for all j, except for a finite number of ‘isolated’ j’s (for which diyy = O(h™1Y)),
ldjy3| < M. From (2.28) if C; is a non-transition cell and ]dj*%| < }di'*'i'l’ then the

preprocessed derivatives at the end point of the cells are the following:

(2.40) . iy =d;_4
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(2.41) drj=d;_, - (%)2
From (2.34) and Lemma 2.6 it follows that

(2.42) LTV; =TV(r;<2-M-h
The argument is similar for transition cells. II.

In theory, it is possible to choose other means between the harmonic mean and (2.33)
giving methods of reconstruction which are LTVB, (and more compressive!), but we have
not found any else as computationally convenient as LHHR.

Other reconstructions, based on hyperbolas, are possible and methods of reconstruc-
tion that recover accuracy at local extrema are under investigation. For contact discontinu-
ities we have constructed methods based on Lemma 2.5 (7), more compressive than (LHR)
method, and they will be treated in future papers. As a sample, we show in Figure 8 an
experiment involving jumps in the derivative, where we have compression and resolution

with high CFL (0.8).
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3. Piecewise Hyperbolic Methods

In this section, we describe the algorithm based on the first order Roe scheme ([7]),
with the entropy-fix correction, due to Shu and Osher ([9]), for local piecewise hyperbolic
reconstructions, giving us what we will call Piecewise Hyperbolic Methods (PEM). Since
the evolution in time is performed by means of the third order TVD Runge-Kutta method
(1.10) with positive coefficients (see Table 1), we have that the numerical solution at every
time step is a convex combination of Euler forward time substeps (1.3). Thus, we restrict
our description of the algorithm to the computation of numerical fluxes fj+% in (1.3).

Roughly speaking, the reconstruction procedure is integrated in (1.3), taking into
account the dynamics of the differential equation (1.1). Indeed, the numerical fluxes are
reconstructed from the upwind side, (i.e., according to the direction of the wind), except
if wind changes direction at the cell, (i.e., there is a “sonic point” at the cell), then, a local
Lax-Friedrichs Flux Decomposition is performed. Thus, we have two alternative phases:
Upwindness or Flux Decomposition. Flux Decomposition is only used in cells containing
“sonic points”, and, since that points are isolated, the cost of the algorithm depends on
the “upwindness phase”. The “upwind side” is determined according to the Jocal sign of
f'(u) at z;, 1. We use in our case the “Roe” speed

(3.1) Gy = f(u,j;;) - i;ﬂj)

to determine the sign of f'(u;, 3)- For a detailed explanation on the Local Lax-Friedrichs

Flux Decomposition we refer to [9]. We then have the following algorithm with the LHHR
method: '

Algorithm PHM-REF

Step 1: Computation of Natural Data

From u} we compute the natural data by means of:
(8.2) v; = f(u})

Vity — 0
(3.3) diﬂ:ﬂ;}*’

for all j.
Step 2: Local Preprocessing of Derivatives

Computation of d(j) and a; using LHHR for all j.
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Step 3: for every j do
begin
if f'(u) does not change sign between u} and u},; then
Upwindness Phase
(UP1) Ty = sﬁf;—,— (Roe speed)
if ‘c‘i'j_,_& >0 then
(UP21) fi1q =vj+d(j)-h-n(e;) (using (2.35))
else
(UP22) fiyp =vju1 —d(i+1) - h-n(-ap) (using (2.36))
else
Flux Decomposition Phase
(FD1) Mj+§- = MaXu? <u<ul,, | £'(w)l
(FD2) vf = 5-(vk + My u),  k=j—1,j,j+1

oF —oF o
(FD3)d} , = 2t=2,  k=j,j+1
(FD4) Computation of d*(5) and o} using LHHR from d*+’s.
= ot : +
(FD5) f* = v} +d*(5)- k- n(a})
(FD6) vi = F-(ve = Mjyy-uf),  k=jj5+1,j+2

(FD8) dp,, = 22—~ k= j+1
(FD9) Computation of d~(j) and a; using LHHR from d™’s.
(FD10) f~ = vj}; ~d=(§ +1)- h-n(—aj,)
(FD11) fiyy = f*+ £~

end

If we use LHR method instead of LHHR we obtain a compressive PHM method tha
we will refer by (CPHM-REF). '
Some remarks are in order:

(1) From the algorithm it follows that numerical fluxes are functions of four variables.
This is also true if we use any local reconstruction method instead of LHHR. However, the
third order ENO reconstruction in this case (due to Shu and Osher, [9]) gives numerical
fluxes which are functions of six variables. That point is crucial in order to distinguish the
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behavior between local and nonlocal methods. As we will see in numerical experiments the
spreading of “noise” coming from the singularities of the solution is clearly more reduced

in local methods.

(2) Since “local smoothing” ignores the information about the smoothness of second

differences, then the “corners” of the solution, (jumps in first derivative), are well preserved
during the evolution, as numerical experiments show, { see Figs. 3 and 4).

(3) The “pseudocode” that describes the algorithm (PHM-REF) was made for better
understanding and it is not optimal in the sense of computational cost. In spite of obvious
improvements, (division by h can be avoided), the cost of the algorithm is a bit higher than
third order ENO. The cost depends on the computation of the first differences and the
evaluation of the parameters d, a and the function 7. In order to evaluate 5 at values close
to 0, it may be computationally convenient to use a Padé approximant near 0, because of
the removable discontinuity at 0. On the other hand, local methods constructed in this
way are stable and accurate for high CFL’s (Courant-Friedrichs-Lewy constant), and that
reduces computational cost.

(4) In order to sharpen contact discontinuities we have used the Yang’s Artificial
Compression Method, (see [10]), that is applicable to the (PHM-REF) algorithm, in the
version given by Shu and Osher in [9]. We have found that this method works efficiently
for “small” CFL’s. The interested reader can find details about that method in [10].

(5) Numerically we observe that (PHM-REF) always yields the correct entropy sol-
ution even for nonconvex fluxes. See section 4 for some examples.

(6) Scalar multidimensional initial value problems of the form:

d
(3.4) u+ Y fi(u)s =0
i=1
(3.5) | u(z,0) = u(z)

are approximated by applying the one-dimensional procedure to each of the terms fi(u),,
in (3.4), keeping all other variables fixed. Then the Runge-Kutta method (1.10) is used
with CFL numbers shrunk by a factor d~!. Indeed, a classical CFL restriction

2 max] ()] < Do

will be replaced by

d
At max Y =W))< %o
i=1 !
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4. Numerical Experiments

We denote by PHM-REF, CPHM-REF and ENOQ3-REF the algorithm described in
section 3, with the LHHR method, the LHR method and the Shu-Osher third order ENO
reconstruction method, respectively. If we add the label AC, that means that Yang’s
Artificial Compression Method, in the version of Shu and Osher (see [9]), has been applied.
We have run most examples for different CFL’s and time levels, but here we only include
what we consider as representatives. Concerning the figures, circles are numerical solutions
and solid lines are piecewise-linear functions that interpolate exact solutions computed
either at grid points or at points of a finer grid. Three-dimensional figures represent level
curves of the numerical solution.

Example 1. We solve the scalar linear conservation law:
(4.1a) u+u, =0 0<z<l1
with the 1-periodic smooth initial data

(4.15) u(z, 0) = %(é— + sin(21rz))

In Figures 1 and 2 we show the solution of (4.1a),(4.1b) at t = 1 with CFL = 0.8 and
N = 80 grid points, for the PHM-REF and CPHM-REF methods, respectively. Let us
observe the compressive character of CPHM at local extrema. In Table 4 we list the L .-
error and Lj-error for a refinement sequence with N = 20, 40, 80, 160, for both methods,
comparing with the exact solution. We observe that both methods are O(k%) accurate
in the Loo-norm, because of the loss of accuracy at local extrema. In Table 5, numerical
orders, rzo and 74, at 20 points are shown for the method CPHM-REF, computed by
Richardson extrapolation, on 20 and 40 grid points, taken as starting grid, respectively.
Figures for PHM-REF are similar. Numerically, both methods become O(h%"'%) accurate
in Ly. Let us observe that the accuracy is recovered outside a neighbourhood of local
extrema. Thus, the behavior is clearly better than TVD methods.

Example 2. We consider the following periodic initial value problem:

(4.2a) U+ uy =0 -1€zr<«1
in(r- 223) if —03<z<0.3;
.2b = sin(r 0.6 ), i Sy
(4.25) u(=,0) {0, otherwise.
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We solve (4.2a),(4.2b) at t=2 and CFL = 0.8. In Table 6 we list the Lo.-error and L,-
error for a refinement sequence with N = 20, 40, 80, 160, for PHM-REF and CPHM-REF
methods, comparing with the exact solution. We observe that both methods retain first
order accuracy in the L.,-norm, in spite of the presence of two jumps in the derivative of
the solution, showing the good resolution of corners in both methods. In Table 7 we show
numerical orders, r2a and ry, computed at 20 points as in Example 1. Numerical orders
marked with * correspond to transition points of jumps of the first derivative of the solution
and they are meaningless. We have tested our schemes with longer time levels, showing
a good behavior for high CFL’s and the loss of accuracy at local extrema is confined to a
stable neighborhood of singularities. We show in Figure 3 the behavior of PAM-REF for
CFL = 0.8 at t=4 and it is compared with the Shu-Osher third order ENO shown in Figure
4. Figures 5 and 6 show solutions of the same problem at ¢t = 4 with CFL = 0.2, and Figure
7 shows the PHM-REF method with Yang’s artificial compression, (see [9],[10]). In Figure
8 we show the solution by CPHM-REF with “natural compression”, and CFL = 0.8,
based on the substitution of the LHR reconstruction with more compressive hyperbolas,
near local extrema, which will be treated in future papers.

Example 3. We consider the following periodic initial value problem:

(4.3a) : urtu, =0 -1Z5z<1
1, f-02<z<02
(4.30) u(z,0) = { 0, otherwise.

We solve (4.3a),(4.3b) at t=4. Figures 9 and 10 show the solution with CFL = 0.2
for the CPHM-REF and PHM-REF, respectively. In Figure 11 the behavior of PHM-REF
with CFL = 0.8 is shown. The artificial compression method is applied toghether with

PHM-REF ( with CFL = 0.2), to solve the same problem, and the result is shown in
Figure 12.

Example 4. The PHM-REF scheme is used to solve the nonlinear Burgers’ equation
with periodic smooth initial conditions:

2
(4.4a) u,+(3‘-2—) =0 -1<z<l1
x

(4.4b) u(z,0) = %(-;- + ssn(m))

The exact solution is smooth up to £ = £, then it develops a moving shock, interacting
with the rarefaction waves. We compute the exact solution by using a Newton iteration,
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(see [5]). We show in Figures 13,14,15 and 16 the evolution at t = 0.3, at t=0.64 (near
shock transition), at ¢ = 0.9 and at = 1.1, when the reaction between the shock and the
rarefaction waves is over.

Example 5. The PHM-REF scheme is tested with the nonconvex flux of the well
known Buckley-Leverett example:

(4.5a) u +(f(u)): =0 -1<z<«1
where

442
(4.5b) flu) = yr g

with periodic initial data

(4.5¢) - u(z,0)=1,in [— %, 0] yand u = 0, elsewhere

Our scheme resolves the correct solution well, with less viscosity than ENO3-REF.
Numerical experiments with PHM-REF and ENO3-REF at ¢t = 0.2 and t = 0.4 are shown
in Figures 17, 18, 19 and 20, (CFL = 0.1).

Example 6. We test the PHM-REF scheme with two Riemann problems for the
following nonconvex flux example:

(4.6a) u+ (f(u))e =0
where
(4.6b) f(u) = %(u2 —1)(u? - 4)

with the following initial data:
(4.6¢) wz,0)=-3, fe<0andu=3ifz >0,
(4.6d) u(z,0)=2, ifr <O0andu=-2if z >0,
Our scheme gives also the correct solution well, with less viscosity than ENO3-REF.

Numerical experiments with PHM-REF and ENO3-REF for the Riemann problem (4.6c)
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at ¢ = 0.04 are shown in Figures 21 and 22. The Riemann problem (4.6d) is solved for
both methods at ¢ = 0.2, and Figures 23 and 24 show the numerical solutions.

Example 7. We consider the 2D linear equation
(4.7a) Ut us+u, =0 -1<2,y<1

where u is periodic in z and y with periods 2. In order to study the behavior of PHM-REF
scheme with contact discontinuities and corners, we will test the following three initial
data:

(4.7b) d%%m={hiﬂmwe&

0, otherwise.

where

's={<m,y):|m-y|<\/i§, 1x+y|<%}

is a unit square rotated by an angle of I, (due to Harten, see [8], Example 3).

_f1-w, withw=2(z2+y?),ifw<];
(4.7¢) u(z,y,0) = {0, otherwise,

_J1-w, withw=2(z?+24),ifw<];
(4.7d) u(z,y,0) = { 0, otherwise.

We have used for the three examples Az = Ay = . We have tested the example
(4.7b) with PHM-REF and CPHM-REF schemes with CFL = 0.4 at ¢t = 2 in order to
study the smearing and stability of our methods. In Figures 25, 26, 27, 28 and 31 numerical
results are displayed, including cross sections y = 0 and y = —~0.4. Figures 29, 30 and 32
show the effect of Yang’s artificial compression.

.The example (4.7c) is a circular paraboloid truncated by the (z,y)-plane. We have
tested CPHM-REF scheme with CFL = 0.4 at ¢ = 2 and Figures 33, 34, 35 and 36 show
the good resolution of corners for different cross sections. We also test PHM-REF with
Yang’s artificial compression at the same time with CFL = 0.1, and the corresponding
numerical results are shown in Figures 37, 38, 39 and 40.

The third initial data (4.7d) is an elliptic paraboloid truncated by the (z,y)-plane.
We use this example in order to study the smearing of corners, (jumps in first partial
derivatives), in different directions. Figures 41, 42, 43 and 44 represent the numerical
solution for CPHM-REF method at ¢ = 2 with CFL = 0.2 corresponding to the following
cross sections: y =0, y = —0.4, z = 0 and z = —0.4. We observe that our method does
smear differently in the z and y directions due to the asymetry of the initial function.
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Example 8. We solve a Riemann problem for the 2D Burgers’ equation

(4.8a) ur + (P;)t + (%i)y =0

-with the following Riemann data:

ty, ifz>0,y>0;

_ Uz, if$<0,y>0;

(4.8b) u(z,y,0) = uz, ifz<0,y<0;
u, ifz>0,y<0;

We represent a 2D Riemann data by a four component vector (uy, uz, u3, u4), defining
a step function by means of (4.8b). There are eight essentially different solution types,
depending on the orders of the numbers u;’s, (see [11] for details). We have tested PHM-
REF scheme and we have observed that it converges to the entropy solution with good
resolution in all eight cases. Some numerical results are displayed in Figures 45-52. All
experiments were performed for 50 x 50 grid points and using Ar = Ay = . Figures
47, 50, 51 and 52 are viewed from the side of the negative z-axis, (instead of the usual
orientation), for better observation of the resolution of the method.

We have also tested PHM-REF for (4.8a) with the periodic smooth data:

1
2

T+y
2

u(:c,y,O)*-—-‘-i--i— sin{ -2<zr,y<?2

We have observed shock transition ‘pictures’ very similar to the one-dimensional case,
hence we omit them.
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5. Concluding Remarks

PHM schemes based on fluxes and the Shu-Osher third order TVD Runge-Kutta
method seem to work very well in our preliminary numerical tests. The most remarkable
property of our method is the good resolution of discontinuities in derivatives. In spite of
the loss of accuracy of our schemes at local extrema where they may degenerate to O(hg'),
the behavior in presence of discontinuities is stable and the viscosity appears to be lower
than ENO3-REF. On the other hand, we have found that some local reconstructions, as
LHR, work satisfactorily with contact discontinuities and recover accuracy for high CFL’s,
showing that for that kind of discontinuities it is not necessary as much smoothing as for
shocks in order to prevent the increasing of total variation of the solution.
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Table 1

Third Order TVD Runge-Kutta Scheme (1.10)

aik Q) a3p B Bak Bax

1 0 0 1 0 0
3/4 1/4 0 0 1/4 0
1/3 0 373 | 0 0 373
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Table 2: Numerical Order of LHR method

abscisa right value left value
0.025 3.027 2.987
0.050 3.045 2.969
. 0.075 3.063 2.951
0.100 3.081 2.934
0.125 3.103 2.918
0.150 3.133 2.898
0.175 3.187 2.871
0.200 3.318 2.823
0.225 4.892 2.714
0.250 1.985 1.985
0.275 2.714 4.892
0.300 2.823 3.318
0.325 2.871 3.187
0.350 2.898 3.133
0.375 2918 3.103
0.400 2.934 3.081
0.425 2.951 3.063
0.450 2.969 3.045
0.475 2.987 3.027
0.500 3.007 3.007
0.525 3.027 2.987
0.550 3.045 2.969
0.575 3.063 2.951
0.600 3.081 2.934
0.625 3.103 2.918
0.650 3.133 .2.898
0.675 3.187 2.871
0.700 3.318 2.823
0.725 4.892 S 2.714
0.750 1.985 1.985
0.775 2.714 4.892
0.800 2.823 3.318
0.825 2.871 3.187
0.850 2.898 3.133
0.875 2.918 3.103
0.900 2.934 3.081
0.925 2.951 3.063
0.950 2.969 3.045
0.975 2.987 3.027
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Table 3: Numerical Order of LHHR

abscisa right value left value
0.025 3.051 2.982
0.050 3.080 2.955
0.075 3.103 2.933
0.100 3.122 2.916
0.125 3.143 2.901
0.150 3.174 2.884
6.175 3.231 2.860
0.200 3.372 2.815
0.225 4131 2.703
0.250 1.994 1.994
0.275 2.703 4.131
0.300 2.815 3.372
0.325 2.860 3.231
0.350 2.884 3.174
0.375 2.901 3.143
0.400 2.916 3.122
0.425 2.933 3.103
0.450 2.955 3.080
0.475 2.982 3.051
0.500 3.015 3.015
0.525 3.051 2.982
0.550 3.080 2.955
0.575 3.103 2.933
0.600 3.122 2.916
0.625 3.143 2.901
0.650 3.174 2.884
0.675 3.231 2.860
0.700 3.372 2.815
0.725 4.131 2.703
0.750 1.994 1.594
0.775 2.703 4.131
0.800 2.815 3.372
0.825 2.860 3.231
0.850 2.884 3.174
0.875 2.901 3.143
0.900 2.916 3.122
0.925 2.933 3.103
0.950 2.955 3.080
0.975 2.982 3.051
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20
40
80
160

Numerical Solution of u, +u, =0,0<z <1
u(z,0) = (5 + sin(27z)) at t=1 and CFL =0.8

PHM-REF

6.45 - 102
2.36- 102
8.60 - 103
3.10- 1073

Table 4

L -error

CPHM-REF

5.14-10-2
1.79-10~2
6.30-1073
2.20.1073

29

PHM-REF

2.53.10"2
6.90.1073
1.70 - 103
5.32-10~4

Ly-error

CPHM-REF

1.80-1072

4.50-1073
1.10-10"3
3.39.10~¢



abscisa

0

0.0500
0.1000
0.1500
0.2000
0.2500
0.3000
0.3500
0.4000
0.4500
0.5000
0.5500
0.6000
0.6500
0.7000
0.7500
0.8000
0.8500
0.9000
0.9500
1.0000

20

0.2434
0.4109
0.5550
0.6523
0.6935
0.6986
0.6936
0.6462
0.5589
0.4194
0.2566
0.0891
-0.0550
-0.1523
-0.1935
-0.1986
-0.1936
-0.1462
-0.0589
0.0806
0.2434

0.2501
0.4041
0.5459
0.6599
0.7222
0.7321
0.7206
0.6607
0.5480
0.4049
0.2499
0.0960
-0.0459
-0.1599
-0.2222
-0.2321
-0.2206
-0.1607
-0.0480
0.0951
0.2501

Table 5

Y

80

0.2500
0.4045
0.5438
0.6549
0.7273
0.7437
0.7273
0.6555
0.5438
0.4045
0.2500
0.0955
-0.0438
-0.1549
-0.2273
-0.2437
-0.2273
-0.1555
-0.0438
0.0955
0.2500
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160

0.2500
0.4045
0.5439

- 0.6545

0.7260
0.7478
0.7262
0.6545
0.5438
0.4045
0.2500
0.0955
-0.0439
-0.1545
-0.2260
-0.2478
-0.2262
-0.1545
-0.0439
0.0955
0.2500

Numerical Orders roy and r4g, for the CPHM-REF method
with the periodic smooth data (4.1b) att =1 and CFL = 0.8

r20

5.9465
3.8372
2.1664
0.6077
2.4857
1.56306
1.9913
1.4772
1.3822
5.4191
5.9362
3.8397
2.1664
0.6069
2.4857
1.5307
1.9016
1.4773
1.3817
5.4153
2.9515

Y10

3.8010
4.4834
4.9464
3.7543
1.9948
1.5175
2.5859
2.4440
5.2062
3.6015
4.1168
4.3775
49771
3.7488
1.9934
1.5180
2.5836
2.4412
5.2256
3.5294
3.7419



Table 6

Numerical Solution of uy 4+ u, =0, -1 <z <1
u(z,0) = sin(7r ZE23) for —0.3 < z < 0.3 and u(z,0) = 0 otherwise,
at t=2 and CFL =08

L.-error Ly-error
N PHM-REF CPHM-REF PHM-REF CPHM-REF
20 4.03- 1071 3.68.1071 2.01-1071 1.82.1071
40 1.62-10™! 1.51-1012 6.84.102 5.92-1072
80 . 8.40-1072 8.06-107? 2.96-1072 2.69 1072
160 4.96- 102 4.72 102 1.34-102 1.19-102
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abscisa

-1.0000
-0.9000
-0.8000
-0.7000
-0.6000
-0.5000
-0.4000
-0.3000
-0.2000
-0.1600
0.0000
0.1000
0.2000
0.3000
0.4000
0.5000
0.6000
0.7000
0.8000
0.9000
1.0000

Table 7

Numerical Orders rog and ryg, for the PHM-REF method
with the periodic data (4.2b) att =2 and CFL =0.8

20

0.0002
-0.0010
-0.0013
-0.0017

0.0055

0.0439

0.1363

0.3083

0.4920

0.5887

0.5965

0.5789

0.4709

0.3170

0.1418

0.0427

0.0080

0.0024

0.0019

0.0011

0.0002

0.0000
0.0001
0.0000
-0.0002
-0.0004
0.0001
0.0237
0.1584
0.4912
0.7995
0.8463
0.7835
0.5058
0.1622
0.0199
0.0010
0.0002
0.0001
0.0000
0.0000
0.0000

80

0.0000
0.0000
0.0000
0.0000
0.0000
-0.0001
0.0022
0.0840
0.4630
0.8803
0.9531
0.8764
0.4769
0.0765
0.0012
0.0000
0.0000
0.0600
0.0000
0.0000
0.0000
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160

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0496
0.4938
0.8706
0.9826
0.8728
0.4965
0.0455
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

T20

4.1642
3.7317
5.8374
3.2136
4.0620
7.8317
2.3883
1.0105
-5.1506*
1.3835
1.2249
1.1374
0.2686*
0.8522
2.7052
5.4843
5.3541
4.2692
5.3310
4.5504
4.1642

T40

1.1328
5.2511
2.0182
3.6189
3.5202
1.5502
3.2835
1.1154
-0.1268*
3.0594
1.8546
4.6636
0.5628*
1.4685
3.9823
4.4638
4.3739
9.1782
3.8352
3.6096
1.1328
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Figure legends

PHM-REF, (4.1) with 80 grid points, CFL = 0.8
CPHM-REF, (4.1) with 80 grid points, CFL = 0.8
PHM-REF, (4.2), 100 points, t = 4.0, CFL = 0.8
ENO3-REF, (4.2), 100 points, ¢ = 4.0, CFL = 0.8
PHM-REF, (4.2), 100 points, ¢ = 4.0, CFL = 0.2
CPHM-REF, (4.2), 100 points, t = 4.0, CFL = 0.2
PHM-REF-AC, (4.2}, 100 points, t = 4.0, CFL = 0.2
CPHM-REF-NC, (4.2), 100 poiats, t = 4.0, CFL = 0.8
CPHM-REF, (4.3), 100 points, t = 4.0, CFL = 0.2
PHM-REF, (4.3), 100 points, ¢ = 4.0, CFL = 0.2
PHM-REF, (4.3), 100 points, t = 4.0, CFL = 0.8
PHM-REF-AC, (4.3), 100 points, ¢t = 4.0, CFL = 0.2
PHM-REF, (4.4), 100 points at ¢ = 0.3, CFL = 0.8
PHM-REF, (4.4), 100 points at ¢t = 0.64, CFL = 0.8
PHM-REF, (4.4), 100 points at t = 0.9, CFL = 0.8
PHM-REF, (4.4), 100 points at t = 1,1, CFL = 0.8
PHM-REF, (4.5), 100 points at t = 0.2

PHM-REF, (4.5), 100 points at ¢t = 0.4

ENO3-REF, (4.5), 100 points at t = 0.2

ENO3-REF, (4.5), 100 points at ¢ = 0.4

PHM-REF, (4.6c), 100 points at ¢t = 0.04, CFL = 0.05
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Figure 1: PHM-REF, (4.1) with 80 grid points, CFL=0.8

0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1

i

04 5 5
0

Figure 2: CPHM-REF, (4.1) with 80 grid points, CFL=0.8
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Figure 3: PHM-REF, (4.2) 100 points, t=4.0, CFL=0.8
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Figure 4: ENO3-REF, (4.2) 100 points, t=4.0, CFL=0.8
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Figure 5: PHM-REF, (4.2) 100 points, t=4.0, CFL=0.2
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Figure 6: CPHM-REF, (4.2) 100 points, t=4.0, CFL=0.2
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Figure 7: PHM-REF-AC, (4.2), 100 points, t=4.0, CFL=0.2

-1

08 06 -04 -02 0 0.2 0.4 0.6 0.8
Figure 8: CPHM-REF-NC, (4.2), 100 points, t=4.0, CFL=0.8
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Figure 9. CPHM-REF, (4.3) 100 points, t=4.0, CFL=0.2
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Figure 11: PHM-REF, (4.3) 100 points, t=4.0, CFL=0.8
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Figure 12: PHM-REF-AC, (4.3) 100 points, t=4.0, CFL=0.2
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Figure 13: PHM-REF, (4.4), 100 points at t=0.3, CFL=0.8
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Figure 14: PHM-REF, (4.4), 100 points at t=0.64, CFL=0.8
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Figure 15: PHM-REF, (4.4), 100 points at t=0.9, CFL=0.8

i

-1 08 06 -04 .02 0 0.2 0.4 0.6 6.8 1

-0.4

Figure 16: PHM-REEF, (4.4), 100 points at t=1.1, CFL=0.8
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Figure 17: PHM-REF, (4.5}, 100 points at t=0.2
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Figure 18: PHM-REF, (4.5}, 100 points at t=0.4
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Figure 19: ENO3-REF, (4.5), 100 points at t=0.2
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Figure 21: PHM-REF, (4.6c), 100 points at t=0.04, CFL=0.05
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Figure 22: ENO3-REF, (4.6¢), 100 points at t=0,04, CFL=0.05
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Figure 23: PHM-REF, (4.6d), 100 points at t=0.2, CFL=0.05

Figure 24: ENO3-REF, (4.6d), 100 points at t=0.2, CFL=0.05
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Figure 28: CPHM-REF, (4.7b), Section y=0, t=2, CFL=0.4
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Figure 29: PHM-REF-AC, (4.7b), 40x40 grid points, t=2, CFL=0.1
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Figure 30: PHM-REF-AC, (4.7b), Section y=0, t=2, CFL=0.1
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Figure 31: PHM-REEF, (4.7b), Section y=-0.4, t=2, CFL=0.4
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Figure 32: PHM-REF-AC, (4.7b), Section y=-0.4, t=2, CFL=0.1



Figure 33: CPHM-REF, (4.7c), 40x40 grid points, t=2, CFL=0.4
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Figure 34: CPHM-REF, (4.7¢), Section y=0, t=2, CFL=0.4
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Figure 35: CPHM-REF, (4.7¢), Section y=-0.25, t=2, CFL=0.4
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Figure 36: CPHM-REF, (4.7c), Section y=-0.4, t=2, CFL=0.4
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Figure 38: PHM-REF-AC, (4.7¢), Section y=0, t=2, CFL=0.1
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Figure 40: PHM-REF-AC, (4.7¢), Section y=-0.4, t=2, CFL=0.1
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Figure 41: CPHM-REF, (4.7d), Section y=0, t=2, CFL=0.2
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Figure 42: CPHM-REF, (4.7d), Section y=-0.4, t=2, CFL=0.2
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Figure 43: CPHM-REF, (4.7d), Section x=0, t=2, CFL=0.2
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Figure 44: CPHM-REF, (4.7d), Section x=-0.4, t=2, CFL=0.2
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Figure 45: PHM-REF (4.8) with (-1,-0.2,0.5,0.8), 50x50 points, t=1

Figure 46: PHM-REF (4.8) with (-0.2,-1,0.5,0.8), 50x50 points, t=1
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Figure 48: PHM-REF (4.8) with (-1,0.5,-0.2,0.8), 50x50 points, t=1



Figure 50: PHM-REF (4.8) with (0.8,-1,-0.2,0.5), 50x50 points, t=1
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