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HIGH-ORDER ESSENTIALLY NONOSCILLATORY SCHEMES FOR
HAMILTON-JACOBI EQUATIONS*

STANLEY OSHER' ann CHI-WANG SHU?

Abstract. Hamilton-Jacobi (H-T) equations are [requently encountered in applications, e.g., in control
theory and differential games. H-J equations are closely related to hyperbolic conservation laws—in one
space dimension the former js simply the integrated version of the latter. Similarity also exists for the
multidimensionai case, and this is helpful in the design of difference approximations. In this paper high-order
essentially nonoscillatory (ENQ) schemes for H-J equations are investigated, which yield uniform high-order
accuracy in smooth regions and sharply resoive discontinuities in the derivatives. The ENO scheme
construction procedure is adapted fram that for hyperbolic conservation laws. The schemes are numerically
tested on a variety of one-dimensional and two-dimensional prablems, including a problem related ta controi
optimization, and high-order accuracy in smeath regions, good resofution of discontinuities in the derivatives,
and convergence to viscosity solutions are observed.
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1. Introduction. The Hamilton-Jacobi (H-J) equation
(L. bt Hidy,, -, b0 =0,  &(x0)= ¢olx)

appears often in applications, e.g., in control theory and differential games. The
solutions to {1.1) typically are continuous but with discontinuous derivatives, even if
the initial condition ¢4(x) is C™. The nonuniqueness of such solutions to {1.1} aiso
necessitates the introduction of the notions of entropy conditions and viscosity sol-
utions, to single out a unique practically relevant solution. See, e.g., Crandall and
Lions [1] for details. _

An important class of numerical methods for solving (1.1) is the class of monotone
schemes discussed by Crandal! and Lions [2]. Monotone schemes are proven convergent
to the viscosity solutions. Unfortunately monotone schemes are at most first-order
accurate. Traditional high-order methods are unsuitable, because spurious oscillations
will generally occur in the presence of discontinuous derivatives.

There is a close relation between (1.1} and a hyperbolic conservatinn law

(12) wt T A =0,  u(x0) = ug(x).

i=1

In fact, for the one-dimensional case d =1, (1.1} is equivalent to (1.2) if we take
u = ¢, For multidimensions this direct correspondence disappears, but in some sense
we can still think about (1.1} as (1.2) “integrated once.” Hence successful numerical
methodology for solving hyperbolic conservation laws (1.2) should also be applicable
to the H-J equation (1.1}.
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908 S. OSHER AND C.-W. SHU

Essentially nonoscillating (ENO) schemes have been very successful in solving
the hyperbolic conservation law (1.2) (Harten and Osher [3], Harten et al. [4], Sha
and Osher [7],[8]). The key idea is an adaptive stencil interpolation which automatically
obtains information from the locally smoothest region, and hence yields a uniformly
high-order essentially nonoscillatory approximation for piecewise smooth functions.
We summarize this ENO interpolation procedure as follows.

Given point vatues f(x;}, j =0, 1, 2, - - - of a {usually piecewise smooth) functions
at discrete nodes x;, we associate an rth degree polynomial P%, »(x) with each interval
[ %3, X211, constructed inductively as follows:

(1.3) (1) Pﬁrl],fz(x) :f[-’cj]"'f[xj, xj+1](x""xj); i =J,
(2) IfkL” and PH/(x) are both defined, then et

a'? = Lo, 0, o],
b(” ufixk(,:‘\i_“”ml Y xk(”',:nl)drlfl]y
and
« —_— . f7
(i) la]z b, then ¢ = b, ki), = kini” = 1, otherwise ¢” = o' k), = ki,
KU=Dpfg
11 kN — pli—1 [43]
(ii) Pj+1/2(x)*Pj+1/2(x)+C 11 (x = x;). a
=K
In the above procedure f[-, - -, ] are the usual Newton divided differences. Note

that we can also start from one node x; to build a polynomial P}"’(x) using the same
procedure.

In [6] Osher and Sethian constructed ENO type schemes and applied them to a
class of H~J equations and perturbations, arising in front propagation problems. They
achieved very good numerical results. In this paper we provide a more general ENO
scheme construction procedure, mainly by considering different multidimensional
monotone building blocks. We then numerically test the schemes on a variety of one-
and two-dimensional problems including a problem related to control optimization,
check the accuracy in smooth regions, the resolution of discontinuities in derivatives,
and the phenomenon of convergence to viscosity solutions. Concluding remarks are
given in § 4.

2. Scheme construction. For simplicity of exposition we take d =2 in (1.1}, and
use x, y instead of xy, X,

(21 &t H(ds, 6,) =0, &(x 0, 0)=dolx, y).

For mesh sizes Ax, Ay, Af, ¢ will denote a numerical approximation to the
viscosity solution ¢{x;, y;, 1") = ¢ (iAx, jAy, nAt) of (2.1). We also use standard nota-
tion such as

A A
! A 3“1 Ai‘ibr;,'xi(@z],j*d)ij), Ai¢ﬁ:i(¢f,jtlw¢ﬁ)-

Ay =— , ,
ToAxT 7 Ay

We start with a first-order monotone scheme [2]:

834] 824] 419} 819])
Ax 7 Ax 7 Ay 7 Ay

A+l __ gn 3
(2.2} P =dp AtH(
where H is a Lipschitz continuous monotone flux consistent with H:

A, u, 0, 0)=H(u, v).
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Monotonicity here means that Ois nonincreasing in its first and third arguments and
nondecreasing in the other two. Symbolically, H(|,1,{,1).

We now give some examples of monotone fluxes a:

(1) Lax-TFriedrichs [2]:

,. YhuT oty 1 1
(23) H*F(u™, u",v", 07) = H(u , ) —=a*(ut—u") — a*(pt—v7)

2 2 2
where
(2.4) a®= max_|H(u v), a’= max |H,(u, v)|.
A=u=R A=Zu=H
C=zv=D C=sv=Eh

Here H(u, v} is the partial derivative of H with respect to the ith argument. The flux
H' is monotone for ASu*=B, Csv*D=sD.

{2} Godunov type {5]: Y
(2.5) ASu* u,v" v7)= ue:?ftu “ ueﬁ)}(tu Hu, v)
where
(2.6) I{a, b)=[min(a, b), max (g, b)]

and the function ext is defined by

ext — J a=u=bd .
{2.7) uel(a,b) max ifa>b

As pointed out in [5], since in general min, max, H{u, v) # max, min, H(u, v),
we will generally obtain different versions of Godunov type fluxes He , by changing
the order of min and max. Uniqueness of H¢ happens when, e.g., H(y v)=
H'(u)+ H*(v), and in many other cases. Then, by [5], —tHC(u, v) is the exact solution
to the Riemann problem of (2.1}, i.e,, this is the viscosity solution of (2.1) for

do(x, ¥) = xug(x}+ yoe( ),
ut, x=0,

U x <0,

+

LT, y=0,
v y) = o <0

(28) ug(x) = {

evaluated at (x, y)=(0,0), and r=>0.
For this reason all monotone fluxes can be regarded as approximate Riemann solvers

in this sense.
(3) Local Lax-Friedrichs (LLF) [8]:

~—a™(u u ) u" - u)

+ - -
A _ . u +u v+
HLLF(u+,u,v+,v)=H( U) 1

2 ’ 2 2
(2.9
1
=3 a”(v”, v} (v —v")
where
(210) e, u)= max [Hiwo),  a’(v",07)= max, |Hy(uv)l.

uel{u ,u"} ve (o
C=sv=D A<u<E
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In the Appendix we prove that " is monotone for ASu™=<B C=v*=D: Note
that H""F has smaller dissipation than H*F.
{4} Roe with LLF entropy correction [8]:

rH(u*, v*)
if Hy(u, v} and H,(u, v) do not change signs in
wel{u",u™), vel(v, v"),
. v, -
H(“ = ,u*) -t W)t -,
) otherwise and if H,(u, v} does not change sign in
(211 H*(u,u™, 07, 07) =¢ AsusBovel(v,vh,

AE TN
H(“*’ — ) —5 (0", 07) (0" )

2
otherwise and if H,(u, v} does not change sign in
uel(u ,u"),C=v=D,
LEM w07, 0", 07)  otherwise

where u*, o* are defined by upwinding:

N {uJ’ if Hy(u, v}=0, . {v+ if Hy(u, v) =0,
={ pr=]"

u i Hy(u, v) =0, v- i H{u, v)z0.

We will prove in the Appendix that H™T is monotone for A=< u* = B Csv'sD.
Note that A is s;mple to code, purely upwinding, with almost as small dissipation
as H. Also note that H™F is not continuous: for example if H{u)=u%/2 {one space
dimension) then HRF(I 0} =0 but

(2.12)

However, this type of discontinuity does not hurt, because we have
(2.13) A, w05 o) =A% u o o) = M (e —u | ot — o)
hence we stilf get consistency and accuracy.

Remark 2.1. A flux with even smaller dissipation than H'F is

ut Ay v*+u’) 1

-~

HYSuwt u v, v )= H(

——a (uF, v ) ut-u")

{2.14) 22 2
1 . . _
=3’ wh o) (0" —v7)
where
(2.15) a™(u™,07)= max }iﬂl(u,v)l, a’(u*, v*)= max | Ho(u, v)|.
vel(v ,v ) vel(v v )

Unfortunately it is not monotone: for example, if H{yv)=e""" then
HL”’F(E 0,0,20)> H”’"F(O 0,0,20). For separable Hamiltonians with H{w, v)=
H'(un)+H? (v) we have FIMLF— fJUEF,

We now begin the description of our high-order ENO schemes. Monotone fluxes
play the role of “building blocks.” The ENO interpolation idea in (1.3} is used to
obtain high-order nonoscillatory approxtmations tou” = ¢, and v* = ¢ . These values
are then put into a monotone flux H{u*, u”, 0™, v7). Time accuracy is obtained by a
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class of TVD Runge-Kutta type time discretizations [7]. We summarize the algorithm
as follows.

ALGORITHM 2.1.

(1) At any node (i, ), fix j to compute along the x-direction, by using (1.3),
obtaining

d ur
(2.16) HE:E P?:;:l/.’z,j(xl‘)'

Similarly for v};. Then let

(217) L!.J.z “A!I:I(u;, u;’ I);—;, U:j)
(2) Obtain ¢"™' from ¢" by the following Runge-Kutta type procedure:
k-1
(2183) ¢Ejk)x X [ak!¢g!)+BkJL¥}], I = I’ .. F,
=0
(2.18b) ©_ g, () e ]

We can take F=r and positive «,; and By for up to third-order r =3, The method
(2.18) can be proven TVD under the CFL condition

At
(2.19) A=—=2C A,
Ax
if the Euler forward version of {2.17) is TVD under the CFL condition
At
2.20 =1 Ag.
(2.20) A

We summarize some of the schemes (2.18) in Table 2.1.

Algorithm 2.1 is formally uniformly rth order in space and time in smooth regions
{measured by local truncation errors).

Note that in the algorithm above, we need to evaluate two polynomials P?;',,LJ-
to get u*. If the monotone flux is purely upwind and there is no “sonic point” (a point

TABLE 2.1
TVD Runge-Kutta method (2.19).

Order Qpr Bi\-.‘ Cr
1 1

2 1
L 0 4
1 1

3 51 0 ! 1
303 o3
1 :
. 4

4 12z 2 wlﬁ,il %
9 9% 3 9 T3
0l it 0 oy
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at which H, or H, changes sign), one of ¥~ and u~ is never used. We thus recommend
the following algorithm.

ALGORITHM 2.2.

(1) Compute 4 =A%¢p/Ax and 05 =A@/ Ay. If H (u, v} and Hy(u, v) do not
change Signs in nel(uy, u,jr) ve I{Dy, 0;), then compute only u} and v} by (2.16)
where u*, v* are defined by (2.12); and take Ly = —AtH (u*, v*); otherwise take (2.17).

(2} Same as step (2) in Algorithm 2.1. 0

Note that Algorithm 2.2 is NOT equivalent to Algorithm 2.1 with H = A®F. Since
we expect sonic points to be isolated, Algorithm 2.2 is usually almost twice as fast as
Algorithm 2.1.

Remark 2.2. Note that, in smooth regions, by Taylor expansion,

d bty _x
{2'21) dx Pril/l )—— Ax = ¢xx(§)

If we choose, instead of (2.16),

N d
(2.22) Uy =P[A;¢,-,-/Ax,MAx]( xi:2 ;(x ))

where the projection P is defined by

y fa-b=y=a+b
(2.23) Plasiy)=3a—-b ify<a-—b

a+b ify>a+h

we will still have uniform high-order aceuracy uj; = (¢, }; -+ O(Ax") in any region where

Il =2M. Algorithm 2.1 will then give a scheme which deviates from a monotone

scheme by MArAx; hence we trivially obtain convergence to the viscosity solution

through the theory for monotone schemes. In practice we do not recommend (2.22),

because the parameter M is not intrinsic—it has to be adjusted for each individual

problem. See {7, p. 452] for a discussion of a similar situation for conservation laws.
Remark 2.3. When implementing (1.3} we use undivided differences:

(2-243) (P(J's 0) = ﬁpj:

(2.24b) e k)=e(j+Lk-D-e(jk-1), k=1,---,r+L

The computation of (2.24) can be casily vectorized. The ENO stencil-choosing process
is, for computing u” = (¢,)", starting with i(j) =j and performing

(2.25) if (abs (@ (i(j), k). gt.abs (e(i(/) =L K)}),  i(j)=i(j)-1

for k=2,---,r where i(j) is the leftmost point in the stencil for Pf,»(x). This can
also be vectorxzed. Finally,

(2.26) u! = (o)} *f z (i), K0, k)

where

1 m+k—1 m+k-1
(2.27) elmb)=p5 L 11 (=D,
I#s



END SCHEMES FOR HAMILTON-JACOBI EQUATIONS 313
Note that the small matrix ¢ is independent of ¢, is only computed once, and then is
stored. Equation (2.26) can be vectorized easily as welil.

3. Numerical results.
Example 1 (One dimension). We solve

¢+ H{d,) =10,

3.1 —1=x<1
3.1) ¢ (x, 0) = —cos rx, o
with a convex H (Burgers’ equation):

+ 2
(3.2) H(w) =t e)

2
and a nonconvex H:
(3.3) H{u)=—cos {(u+g).

Note that if we let v=¢.+a, f{v)=H(v—a), then (3.1) becomes a conservation law

v+ f(v} =0,

3.
(3-4) v(x, 0) = a + 7 sin 7x,

-1=x<1,
which is a standard test problem for conservation laws (e.g., [7]). We can easily use
the method of characteristics to obtain the exact solution of (3.1) through that of (3.4).

We take o = 1 and compute the result to 7= 1, = 0.5/« (when the solution is still
smooth) and to t = t,=1.5/#* (when the solation has a discontinuous derivative). We
print out the [, and L, errors, in Table 3.1, for selected first-order monotone schemes
and third-order ENO schemes in smooth regions, i.e., the whoie region {1, 1] for
t = t, and the region |x — x| = 0.1 for ¢ = t, where Xx, is the location of any discontinuity
of the derivative. We also present the graphs of the numerical solutions (in diamonds)
versus the exact solutions {in solid fines) in Figs. 1 and 2.

Remark 3.1. From Table 3.1 and Figs. 1 and 2 we can chserve the following:

{i) The resolution of third-order ENO schemes with 10 points is roughly the same
as that of the corresponding monotone schemes with 8¢ points;

{ii) ENO-3-Godunov and ENO-3-RF have roughly the same resolution, even if
the latter is much simpler than the former and onliy takes about half time.

Example 2 {Two dimensions). We solve

¢+ H{p,, $,)=0,
d(x, y,0) = —cos w(%—y) ,

with a convex H (Burgers® equation):

(3.5 —2=x,y=2

+v+a)
(3.6) H(u,v)= &%mﬂ
and a nonconvex H:
3.7} H{u,v)=-cos{u+v+a)

Note that, under the transformation £={x+y)/2, n=(x-y}/2, (3.5)-(3.7} become
(3.1}-(3.3) in the £ direction. We can thus use the one-dimensional exact solution to
analyze our numerical results. Since we use (x, y) coordinates, this is a true two-
dimensional test problem.

We again take o =1 and compute to (=1, =05/ and t=1,=1.5/%". Some
results are presented in Table 3.2 and Fig. 3.
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iD Burgers, LF, 10 points

i A e .
0.5k -
0.0k /S

;oo

~0.5- ’ =

i

1

—1op

L - | | f I}
-177=03 0 0.3 1

(a) First-order Lax- Friedrichs, 10 points.

1D Burgess, LF, 80 points

T B S B A
o5k ﬁx ]
b4
&
0.0[- =
o U 5 - —
—1.0]- St -

H

-1 =05 0 0.5 1
{c) First-order Lax- Friedrichs, 80 poinis.

1D Burgers, ENO-3-GOD, 10 points

0.5F //\\ .
L ' . f :
0.0 ; ;o
~0.5 =
~1.0F S =
{ ! 3

I :
-1 -0.5 0 0.5 1
(e) Third-arder ENO-Godunov, 10 points.

1D Burgers, Godunov, 10 points
e g e e

st /\\ |

0.0} X ;o
—-0.5 \ // 7
R S -

i i _— | o .
i R 0 03 i

(b) Firsi-order Godunav, 10 poinis.

{D Burgers, ENO-3-LF, 10 points

T

\

(d) Third-order ENO-LF, 10 peinis.

1D Burgers, ENO-3-RF, 10 points

+ ;”"‘b
0.5 /N
00‘ .

. S
-1 —0.5 0 Q0.5
(1) Third-order ENQ-RF, 10 points.

Fi1G. 1. One-dimensional Burgers’ equation.

—0.5+ ////// -
—1.0 . 7

T 5 . i § 5 .
-1 =05 o 0.5 1

915
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1D nonconvex, LF, 10 points

e
L -
0.5 ° -]
0.0+

—-0.5 R

4 l ;

—1.0- . | ; L ) 1

-1 —0.5 ] 0.5 1

(a) First-order Lax-Friedrichs, 10 points.

1D noncenvex, LF, 80 points
e : -

0.5 £ x
9.0[ B

I
—3.51- ;‘

=10, i | R
-1 03 0 0.5 1

(c) First-order, Lax- Friedrichs, 80 poinis.

113 nonconvex, ENO-3-GOD, 10 points

F i i T T i X
1.6 // —

0.54- \ 7,

0.0f \ f-

7
-0.5 /

\_‘1/’{/
~1.0 ;

- —{.5 0 G.5 1

s

LA

(e) Third-order ENO-Godunoy, 10 points.

1D noncenvex, Godunov, 10 points

CT 1 " T FE
1.0F & =
_ -
0.5 ' g
0.0F g
:

\ N

~1.0f- 1 L '

VAT i 1
-1 -0.5 Q 0.5 1
(b) First-order Godunev, 10 poinis.

1D nonconvex, ENQO-3-LF, 10 points

[ T T i (-
1.0 =
0.5} ;//// -
0.0~ // .
X /" .
L N / N

i

-0.5

_I-Ot. : 1 o .
—1 -{.5 0 0.5 1
(d) Third-order ENO-LF, 10 points.

- \‘—ﬂ/

1D noncenvex, ENG-3-RF, 10 points
T ; - e
1.0+ ) =

0.5F f/
’ /

¢.0F 7
~0.5 "

L \\ -
~1.0F ) |-

| Lt =
=1 ~.5 0 0.5 1
(f) Third-order ENO-RF, 10 points.

FiG. 2. One dimension, H(u)=—cos (u+1).
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40 % 40 points, Burgers, LF

(a) First-order Lax- Friedrichs, convex H.

40 x 40 points, nonconvex, LF

40 x40 points, Burgers, ENO-3-LF
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(b) ENO-3-LF, convex H.

40 x 40 poinis, noncenvex, ENO-3-LF
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(d) ENO-3-LF, nonconvex H.

{¢) First-order Lax- Friedrichs, nonconvex H.

F1G. 3. Two dimensions, 40 %X 4G points.

Remark 3.2. (i) By comparing Table 3.2 with Table 3.1 we can see that ENO
schemes perform equally well in two dimensions.

(ii) Note that, except for a sharper discontinuity-in-derivative resolution, we
cannot see much difference between Figs. 3(a), 3(c} (first-order monotone schemes)
and 3(b), 3(d) (third-order ENO schemes}. However, from Table 3.2 we can clearly
see a large difference in the resolution of the solution in smooth regions. This indicates
the limitations of graphical presentations.

{iii) In this two-dimensional case, the Godunov flux is considerably more compli-
cated to program than LF or RF, with a not-so-significant improvement in resolution
for ENG-3.

Example 3. We solve a two-dimensional nonconvex Riemann problem

(3.8) $otsin (bt d,)=0,  ¢{x, 30} =m{{y|-ix])

to investigate the resolutions of different building blocks, the behavior of different
versions of Godunov flux (2.5); and convergence to viscosity sotutions. The results are
in Figs. 4 and 5. From the graphs and computer outputs we can observe the following:
(i) ENO-3 with G1, G2 (two versions of Godunov fluxes), LF and RF as building
blocks are all convergent to the viscosity solution, with a much sharper resolution for
the discontinuities-in-derivative than the corresponding first-order monotone schemes;
(ii) ENO-3-RF has roughly the same resolution as ENO-3-Godunov, with a much
simpler program and a reduced computer cost;
(iii} The difference between two versions of Godunov fluxes is very small: the
average difference at r=1 is around 1,000 times smaller than the L, errors.
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40 % 40 points, 1= 1.0, ENO-3, CB

40 % 40 points, 1=1.0, LF, CB
Z z
2.86 2.88
i — ..’-")":’
R R
Sl S
~0.95 o 1,00 ~1.03 )
IitiTs. it
> 0.33 208 / 0.33
—~2.86 —2. X
N 1.00
y =035 5100 ~033 {4100
{a) First-order Lax- Friedrichs. (b} ENO-3-LF.
40 x 40 points, ¢ = 1.0, G1, CB 40 x 40 points, ¢ = 1.0, ENO-G1-3, CB -
Z zZ
2.85 2.89
7
T
~0.95 ‘:;":‘;:,’};}'fr’ 100 -1.02
/ #0.33
5 Ki:
Py 03I 100
{c) First-order, Godunou, version 1. (d) ENO-3-G1,
40 % 40 points, =10, G2, CB 40% 40 points, t = 1.0, ENO-G2-3, CB
0.95':. ‘\z‘;e_,_-.g,"‘;j; 7
—0.93; 7100
i A0.33
—282 ; iz “om”
: 33 S
y 031 5100
(e) First-order Godunoy, version I1. {f) ENO-3-G2.
40x 40 poiats, ¢ = 1.0, ROE-C, CB 40 x 40 points, r=1.0, ENO-ROE-C-3, CB
z z
2.85¢ 2.8%
L H
i 0.93
a’%ﬁ%’-ﬁ’
T -
‘ _0'95? :’,"Z‘::‘;:if’::‘?f%’, — . 1.00 1.02
7 0.33
~2.85] ” et ~298
.00 0.33 03T GO' 1.00
) —-1.00 -
th) ENO-3-RF.

(g) First-order Roe with eniropy correction.
FiG. 4. Riemann problem (3.8), 40 x40 points, 1 =1.
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80 x 80 points, r=1.0, ROE, CB 80 x 80 points, = 1.0, ENO-ROE-3, CB
z z
3.48 3.22
1.16 1.10
—1.16 1.00 -1.02
3.48 ‘ 033 3.14
—~3. x 3.
O E_\/KO-“ 1.00
3 0BT g0
{a) First-order Roe. {(b) ENQ-3-Roe.

FiG. 5. Riemann problem (3.8), 80 x 80 poinis, 1 =1,

(iv) ENO-3, using the Roe flux as a building block without entropy corrections,
i.e., Algorithm 2.2 without using (2.17) for entropy corrections in “sonic cells,”
converges to an incorrect solution just as the first-order Roe scheme {Fig. 5). This
indicates the importance of entropy corrections in “sonic cells.”

Example 4. We solve the following problem related to control optimal cost
determination:

.~ {sin y), + (sin x +sign (¢,)) b, —3sin® y — (1 —cos x) =0,

(3.9)
${x,y,0)=0,

40 x40 points, control problem, LF 40 x 40 points, control problem, ENO-3-LF

JEES
226 Ay
e,
. A
R
s A
0.79| «\&3\\\\‘1::: 3.14
: S
0'30?4
(a) First-order Lax-Friedrichs. (b) ENO-3-LF.
40 x 40 points, control probiem, ENO-3-RF 40 x 40 peints, control problem, ENO-3-LF
B
z 2
231 Sl
AR,
R
1sal SN
.
L,
~0,00 W
314

{c) ENO-3-RF. (d) —w =sign ($,), ENO-3-LF.

F1G. 6. Control problem (3.9), 40 x 40 points.
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assuming periodicity. The results at t = 1 are presented in Fig. 6. Note that third-order
ENO schemes have sharper discontinuities-in-derivative resolution than first-order
monotone schemes. For this problem the interesting quantity is the optimal solution
w = sign (&,), Fig. 6d). A sharper discontinuities-in-derivative resolution means smalier
error for w in the neighborhood of each such point.

4. Concluding remarks. We have generalized ENO schemes for conservation laws
to Hamilion-Jacobi type equations. Computational results indicate good accuracy in
regions of smoothness, sharp discontinuities in derivatives, and convergence to the
correct viscosity solutions. Algorithm 2.2 (ENO-RF) is usually preferred, due to its
simplicity to program, reduced computational cost, and its excellent resolution, which
is comparable to the results using the much more complicated Godunov type building

blocks.

Appendix. We prove that H and H"" are both monotone. To simplify the
exposition we only consider the one-dimensional case. The proof for the mulfi-
dimensional case is similar.

Lemma Al AT is monotone.

Proof. H"'" in one dimension is defined by
ut+ u‘) 1

= max
2 2 ueltu u

(A1) QLLF(U+, u)—_—H( +)1H'(u)i{u+—-u_).
We assume u; >u; and want to prove A" uf, u ) s HW'(uy, u™). Let D=
HYF(ui, u Y= H" (u3, u™). This equals

i +u” uy+u’ i , . _
H -H ~= max _ |H Q) {ui—u")
2 2 2 we f{u _ur)

+l max VH (u)|(us —u7).

wef{u  us

Case i. ui>uizu . We have, for u = (uy +u")/2=E=(u +u }/25 uy,

D= [H'(g)(u;*wu;)— max [HGoOui —u7)+ Tag,tH'(u)i(u;wu)]

R

lIA

[

[H'(é)(u;*—uZ)- max H'()iu) —u0)+ max  [H@)l(uz —u0)

(u] —u3) [H'(f) - max lH'(u)l] =0,

1
2

Case ii. u~ = u > u3, similar to case i,
(a) uzZu,>u5,and, for uy =£=u” we have

2 Uy =uz=u

D:l{H’(f)(Zu,——uz‘—nuJ’)%— max +§H'(u)[(u""~u;):]
z;(u+—uf)|: max +1H'(u)|—H'(§)j1

Uy Eu=u

+%(u1—wu§)[jgla§ NEOIE H’(@} =0
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or
(b) u, = u" =z u;, and, since H{u)z H(u™) due to the fact that H'{(u}=0 in
[u", u;], we have, for u"Z &= (u"+u3)/2 2 uy,

D=H(ui} = Bt uy)z Hu") — A, u0)

z% ]iHr(f)(u"' _ uz') + uz_rgnuaé(u; lH'(u)f(;ﬁ-_ u2)]

x% (u* - u;)( max , [H'(w)]+ H’(g)) z0.

Uz
Case i, AR, uy)=Hu"), ¥ (u*, u3)=H" (1", u7). As in case (ii) we
can again deduce u' Z u; hence, for u, = (ut+uy)/25 £=u’, we have

D= H(u+) mﬁLLF(u+’ uy)
=% [Hrl(gf}(rﬁ—uz)_uIgféu+ |H (u)|(u” - uz)] -

Case iv. {;TRF(u“L, uy )= {Q‘LLF(u“L, uy), fIRF(uJ’, uy) = H{us ), similar to case (ii);
Case v. H¥(u*, u")y=H" (", uy), A (u’, uz)=H(u"), similar to case (iii).
We have proved H(-,1), and similarly for H({, ). 1]
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