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DOMAIN DECOMPOSITION INTERFACE PRECONDITIONERS
FOR FOURTH ORDER ELLIPTIC PROBLEMS *

TONY F. CHAN!, WEINAN E! AND JIACHANG S5UNS

Abstract: We present preconditioners for the interface system arising from solv-
ing fourth order elliptic equations with domain decomposition methods. These pre-
conditioners are derived from a Fourler analysis of the interface operator . We show
that the condition number of the interface Schur complement is of order O(h~3),
where h is the grid size. Precise estimates concerning the decay properties of the
elements of the Schur complement are also obtained. Relationships between interface
preconditioners for second order problems and fourth order problems are established.
Analytical as well as numerical results are given to assess the performance of these
preconditioners,

Keywords: Domain Decomposition, biharmonic equation, Schur complement,
interface preconditioner.

1. Introduction. There are two key issues involved in the design of efficient
domain decomposition methods for solving elliptic problems on domains decomposed
into nonoverlapping subdomains. One is the coupling of the solutions on neighboring
subdomains through interfaces and the other is the global coupling of non-neighboring
subdomains. For second order elliptic problems, a vast amount of literature is available
on how to handle these two kinds of couplings [9, 5, 11]. In particular for the first
problem, a lot of insight has been gained by analyzing the following model problem:
the interface operator for the Laplace equation on a rectangle which is decomposed
into two rectangles. For example, the hierarchy of preconditioners constructed by
Dryja [8], Golub and Mayers [10], Bjorstad and Widlund [3], and Chan [7}, can be
viewed as successively more accurate approximations of the exact interface operator
for the model problem. Such preconditioners can then be used as the basic building
blocks in constructing preconditioners for the case when the domain is decomposed
into more complicated geometries [4].

The situation is less satisfactory for fourth order problems which arises naturally
in modeling the deformation of thin elastic plates and in the stream-function formula-
tion of incompressible flows. For some fourth order problems, domain decomposition
algorithms can be obtained by solving iteratively a system of second order problems
and apply known domain decomposition techniques for the latter. Such is the case for
incompressible flows which in velocity-pressure formulation, is described by a system
of second order elliptic equations coupled with the incompressibility condition [12, 14].
On the other hand, not much is known about the interface operators obtained from
solving directly the fourth order problems. For instance, it was not clear how to
construct the analog of Dryja’s preconditioner which was largely based on estimates
of the condition numbers of the interface operators. To the best of our knowledge,
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there were even no precise rigorous estimates on the condition number of the interface
operators for fourth order problems. The numerical resulis in [6] give an estimate of
O(h~27) where h is the grid size. We mention that [6] also contains an extension of
the boundary probing technique to fourth order problems.

In this paper, we focus on analyzing the following model problem: the interface
operators arising from solving the biharmonic equations on a rectangle which is de-
composed into two rectangles. Using discrete Fourier analysis, we obtain the exact
eigen-decomposition of the interface Schur complement (see Theorems 3.1 and 3.2).
This allows us to read off precise information about the interface operators, including
an estimate of their condition numbers which is shown to be O(h~%), and the decay
rate of their elements (see Corollary 3.5). We remark that such precise information on
the decay rate of the elements is very important for designing and analyzing boundary
probing type of preconditioners. Moreover, this also allows us to construct the analog
of Golub-Mayers’ and Chan’s preconditioners {denoted by M., and M respectively)
for the fourth order problems. In addition, we give a simple recipe of converting inter-
face preconditioners for second order problems to interface preconditioners for fourth
order problems (see Theorem 3.6). In this way we obtain the fourth-order analog of
most of the second-order preconditioners. We note that the analog of Golub-Mayers’
and Chan’s preconditioners constructed according to Theorem 3.6 (denoted by M,
and M, respectively) are different from the ones we obtain from Theorems 3.1 and
3.2.

Some subtleties are involved for the fourth order problems with regard to the
different types of boundary conditions. It is well-known that the biharmonic equation
is not amendable to the method of separation of variables when the clamped bound-
ary conditions are used (see Problem 1 of the next section), which happen to be of
the most practical interest. For this reason, our analysis is carried out essentially for
the simply supported boundary conditions only. We propose to use the same pre-
conditioners for both problems. As has been pointed out [13], the elliptic operators
with different boundary conditions are not necessarily spectrally equivalent. Indeed in
our numerical experiments we observe a logarithmic growth of the condition number
of the preconditioned interface operators for the clamped boundary conditions (see
Figures 4 and 5). However, we also observe that only a finite number of eigenvalues
of the preconditioned matrices grow. Therefore one naturally expects that, when a
preconditioned conjugate gradient (hereafter abbreviated PCG) methed is used, only
a finite (bounded) number of iterations are needed for a given level of tolerance. We
emphasize that while the derivetion of the preconditioners are based on the model
problem on a rectangular domain, the preconditioners themselves can be applied to
more general fourth order problems on irregular domains by first obtaining an ap-
proximating biharmonic problem on a rectangular domain sharing the same interface
with the irregular domain.

We mention that a similar and more detailed development of the eigen-decomposition
of the interface operators for the biharmonic equations and application to some fluid
flow problems can be found in [16]. The idea of using Fourier eigen-decomposition to
derive preconditioners (on the whole domain rather than on an interface} has been
used in [2] to obtain a fast biharmonic solver.

This paper is organized as follows. In section 2, we present a class of discretization
schemes for the biharmonic operator. In section 3, the Fourier analysis of the interface
operator is carried out and our main results are presented . Finally, some numerical
results are given in section 4. We will use k(C) to denote the condition number of a
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symmetric matrix C.

2. Discretizations. Consider the following biharmonic equation
(1) AW =gq in 0,

where § = [0,1] x [0,1]. Let 3Q denote the boundary of Q and 9Q, and 99, the part
of 2 that are parallel to the z and the y axis respectively.
Three kinds of boundary conditions are usually imposed:
Problem 1. The clamped boundary conditions:
ow

W"—“—a—a—zo on 39.

Problem 2. The simply supported boundary conditions:
| W=AW=0 on 80

Problem 3. The mixed boundary conditions:
ow
Wlsn = AWlan, = 5-—lea, = 0.

Note that Problem 1 is neither decomposable nor separable even for a rectangular
domain. However, it is well known that Problems 2 and 3 are separable:

Problems 1-3 can be discretized by either a finite element method or a finite
difference method [1]. In this paper , we will restrict ourselves to the family of
difference schernes obtained by combining the standard 5-point scheme and the rotated
(by 45 degrees) 5-point scheme for the Laplace operator :

0 1 0 1 0 1
(2) Ab=h=*tf1 —4 1)4+0-0){0 -4 0]}
0 1 0 1 0 1

When ¢ = 0, this scheme gives the standard 13 point scheme .

3. Fourier Analysis of the Interface Operator. Suppose that the rectangu-
lar domain §2 is decomposed into two subdomains Q; and Qj, with interface T'.
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Figure 1: The domain § and its partition.



Also suppose that a uniform mesh with size h is used on 2, with n interior grid points
in the vertical y direction. The simplest way of decoupling the two subdomains is to
introduce two computational grid interfaces {2} and 2} near the physical interface T
as shown in Figure 1. Assume that

11 = mlh, 12 = mgh,

where my, mp denote the number of grid points along the horizontal x direction of the
two subdomains, as shown in Fig. 1. If we order the unknowns in such a way that the
interior points in the sub-domains appear first and those on the two interfaces appear
last, then the discrete solution vector u = (u;,ug, us, 1t4) , where u; denote the set of
unknowns on Q}, satisfies the linear system

Au=1">

which can be expressed in block form as:

An 0 Az Ais uy by
(3) 0 Az Az Ay uz | _ [ be
A"lra Ags A33 A34 Uz b3
Afy Aly Asi Au g ba

Here the matrix A and the vector b depend on the specific discretization method we
choose and the boundary conditions, etc., but they can always be expressed in the
above form. The Schur complement (corresponding to the reduced interface operator)
on the interfaces is given by:

4 cC= (Asa Aa«)_(Aia AH)T (Arf 0 )(Am A14)
Ag; A‘I'ﬁ A23 A24 _ 0 Az-zl A23 A24 )

We are concerned with the problem of solving efficiently the reduced equations:

© o(2)=(5);

Becanse C is dense and expensive to form explicitly, the PCG methods are usually
preferred in this case. Since C is an ill-conditioned matrix (as we shall show later),
and for fourth order problems it is much more so than the corresponding ones for the
second order case, it is imperative to use an efficient preconditioner.

We now proceed to compute the exact eigen-decomposition of the matrix C for
problems 2 and 3, using discrete Fourier analysis. The basic idea is the same as the
one used in [7] , although the actual computations are much more cornplicated.

Denote by w;j, j = 1,...,n the eigen-vectors of the one dimensional discrete
Laplace operator:

w; = V2h(sin jrh,sin 257k, ..., sinnjrh)7,
and let
W = [wl,UJg,.. .,w,,]

be the matrix form by these eigenvectors. We shall diagenalize C by diagonalizing
each of its four individual blocks by a similarity transformation using W. As in {7],
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this will involve the computation of terms such as AT; AT} 4y3w;, which corresponds to
solving the biharmonic equation on £}; with appropriately chosen boundary conditions
related to w;. Therefore, we first need a general solution for the discrete biharmonic
equations on the subdomains. We get this by using the method of separation of
variables.

Substituting the expression

V(%h, kh) - dk (w_,-).- = de 2k sinij'rrh
into the discrete model
AV =0,

we get the following fourth order difference equation for dy, :

(6) bodrys + b1digr + badi + brdro1 + bodyo2 =0
where

bo = 2as5cos2imh + a9 cosjmh + agp,

by = 2as1cos2jrh+ 2ayq cosjrh + ayg,

“by = 2asgcos2jmh + 2aigcos jrh + agp,

and the g; ;’s were defined in the previous section.
We will denote by {d)} the solution of (6) with the boundary condition

dp=0,d1 = 1,dn = 0,dpm-1 = dimya;
for Problem 2, and
do=0,d1=1,dp=0,dpu1 = —dmy1;}

for Problem 3. These boundary conditions are needed for the computation of terms
such as —Af AT Aj3w;. Similarly we denote by {d;} the solution of (6) with the
boundary condition

JD = 1131 = Olgm = G,&mu-l = dmq1
for problem 2, and
JD = 1)(?1 = 0, &m = O:Jm-—-l = _Jm+1

for problem 3. These are needed for the computation of terms such as — AT, AT} A; 4w0;.
Explicit expressions of di, and d; will be given later. Once we have these solutions, it
is easy to see that the following relations hold,

A33'w,- = bztl)j, —A'{:;Al—llfilaw.i = (bgda(ml) + b1d2(m1 ))T.DJ',
—Ag,zA;;Agawj = botfg(mz )w,-,

A34w_,- == ble, -*AglAI—IIAMwJ' = bodg(m1)w_,',
—Afy Az Asgw; = (bods(ms) + brdy(me))w;,
5



Asw; = bywj, —AL A Ajaw; = (boda(mz) + brdy(m2))w;y,
— AL AT Avaw; = body(ma )w;,

have a different number of grid points in the z direction.
We summiarize these results by stating the following

THEOREM 3.1. For Problems 2 and 3, the inferface Schur complement C has the
following diagonalized form:

(W 0N [ An ApY(W 0
(™) C“(o W) (Alg Azz)(o W)
where
Alg = diag(An,j), A12 - diag()qg)j), Agg = dt'ag()tzglj)

and

’\li,j bz -+ bods(ml) 4 bldg(ml) - ngg(mg)
Az = b+ bods(ma) + bidy(1ma) + boda(my)
by + buda(ms) + bida(ma) + body(m1).

Az

We now proceed to derive explicit expressions for d and dx. The characteristic
roots 7 for the difference scheme (6) satisfy the following relation

boln+ 7 )2+ b+~ )+ by — 2 =0

or
1
(8) n+ ’7_1 = %{"’bl + b? + Sb% - 46260}.

In principle, the solutions di(m) and dy(m) can be obtained for any discretization of
the biharmonic equation which gives rise to a constant coefficient difference equation of
the form (6) . However, this is typically a very tedious computation. A simplification
occurs for the class of difference schemes in (2). In this case b 4 8bZ = 4byby, and
equation (8) has two double roots r and r~*!, where

=b = Vb — b (0<r<l).

28

T =

A straight-forward computation yields the following solutions. For Problem 2, we
have:
d(m) = k(r™ 4 r=™)(rk=m — p™=k) 4 3(m — k)(»F — r=F)

S e (s ) F 3m = D)

(1 —_ k)(rk—m — rm—k)(rm—i + rl—m) + 2(117, _ k)(rl-k _ rk_._l)
(r=m — rm)(ri-m 4 pm=1) 4+ 2m(r — r=1)
6

Jk (m) =




and for Problem 3 we have:

Er+ =) (r™ —r=™)(rF=m — pm=EY 4 Im(m — k) (7 — r 1) (r* — r—F)

di{m) = (r+ r-)(rm — p=m)(ri=m — pm=1) 1 2m(m — 1){r — r—1)2

K

(1 - k)(r + r-—l)(,.k-—m - rm-k)(rm—i — .,.la-m) + 2(m - k)(m — 1)(,..&—-1 - ri—k)2.

Jk(m) = (¥ rD)(em —r—m)(ri-m _pm-1) t 2m(m — 1)(r — r-1)2

Although these expressions can be used in a practical computation, they are too
complicated to analyze. In order to gain further insight, we make the simplification
by taking the limit as m; and my go to infinity (the case of an infinite strip) . We
then have

(9 dy = kr*=l,  dp = (1 - k)7~

The results in Theorem 3.1 now take the form of

THEOREM 3.2. For the discretizalion scheme (2) on an infinite sirip (my,my =
+00), we have:

M = o3P (44 o5(1 — 40)V2(2 + (1 - 20)05),

Maj = 03 (44 o5(1 — W)Y (=2 + 2t0;),
and
Aza i = Az g,
where o; = 4sin®(jnh/2).

If we let K = Wdiag(o;)W, (i.e. the discrete one dimensional Laplace operator),
then the result of Theorem 3.2 for { = 0 can be re-stated as

o=@+ K)YKY2(4I + K)1/? —2KY4] + K)H/2
- ~2KY2(4] + KY\/? (21 + K)KY2(4] + KW/2 ] -

The next theorem shows how to reduce C' to diagonal form.

THEOREM 3.3. For Problems 2 end 3,

(10) C=WAW

= 1 (w W A0
W'_z(w -—W)’ A“(o Az)

Ay = diag(Ay,;), Az = diag(Az )

where

AL = A+ A2y Az = Ani - Arzg
7



In particular for discretization (2} on an infinile sirip, we have:

A1 o {44 o;(1 — 40) )1/,

i .
.’-

{44 0;(1 —4t)}3>

LY

(Y

;\2'J‘ =

L

Since o; varies from O(h?) to O(1), the eigenvalues of C vary from O(h?) to O(1)
and therefore we have:

COROLLARY 3.4.
(i1) k(C) = O(h‘3)

where k(C) is the condition number of C.

Note that the corresponding condition number for second order operators is
O(h™1).

In [6], the decay properties for the entries of C were explored to construct bound-
ary probing preconditioners. Now, by using Theorem 3.3, it is easy to quantify the
decay phenomenon.

COROLLARY 3.5. Denotle the blocks of C by
Cas Ca4>
C =
(ng: Cuas
and the Schur Complemenis of C by

Cis = Caz—CLCCua
C;4 044 b Cg;cgal 034.

It

Let ¢;; be the entries of either one of the submatrices Caz, Cas, Csq and €} ; be the
entries of etther one of the mairices C33, Cly, then we have:

leis) = O(li — 517%)
and

|ei;1 = O(li — 31~%).

We shall only sketch the proof here since it basically follows the one in [10], where
the decay properties of the interface operator for second order problems are obtained.
From Theorem 3.3, the elements ¢; ; can be written as a sum of three terms — two
from the W terms and one from the diagonal terms. Approximating this sum by an
integral and integrating by parts twice gives the result for ¢; ;. Similarly one obtains
the other result.

Returning to our original problem of constructing preconditioners for the interface
Schur complements, we can readily interpret our results in Theorems 3.1 and 3.2
as ways of achieving such a goal. For this purpose, let us denote by M and M,
the matrices obtained in Theorem 3.1 and 3.2 respectively. It is clear from their
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construction that M and My, are the respective analogs of Chan’s and Golub-Mayers’
preconditioners for the fourth order problems.

The next theo[1983zrem is motivated by the desire of seeking the analog of Dryja’s
preconditioner for the fourth order problems, and the symbolic expression of ' ob-
tained above ( stated after Theorem 3.2 ). This theorem gives a procedure for con-
verting a general interface preconditioner for second order problems into an interface
preconditioner for fourth order problems.

THEOREM 3.6. If My is an interface preconditioner for a second order elliptic
operator, with k(M;*C3) = O(1), then

M2 1+M2 - M 1"'M2
(12) M“:(—M;E(I—Ji}zg) Mzig'i'Mfz)))

ts an inlerfece preconditioner for the biharmonic operaior salisfying
K(M;Cq) = O(1),

where Cy and C4 are the Schur complemenis for the second order operalor and the
btharmonic operator on a recleangular domain, respectively.

Proof. Let
M, = WA{Z)W.

By assumption My is spectrally equivalent to C3. Furthermore it is well-known [8]
that C, is spectrally equivalent to K1/2. Thus Az is spectrally equivalent to K1/2,
From the definition of Ay, we have

My = (W 9)(!\(2)(1“?2)) “A(z)(I“A?z)))(W 0)
0 W/ \-An(I-Af) Ap(I+Af) 0w

- A3 1] -
w (A ,
( 6 A(z)) W

and

CM;'=W ( -1

4 0 AT
From the formulas for A; and A; in Theorem 3.3, it can be easily verified that they
are spectrally equivalent to K3/2 and K/2 respectively, which are in turn spectrally

equivalent to A?z) and Agzy . O

MAZE 0 N
e )W.

Using Theorem 3.6 we can construct, for fourth order problems, the analogues of
the preconditioners of Dryja [8], Golub-Mayers[10] and Chan [7], which are known for
second order problems. For notational purpose, we will denote these preconditioners
by M4, M, M. respectively. Recall that the matrices constructed in Theorems 3.1
and 3.2 are denoted by M and M, respectively.

Although we have derived the exact eigen-decomposition for the interface operator
C for Problems 2 and 3, the procedure is not applicable to Problem 1 because it is not
separable. Instead, we propose to use the matrices C constructed in Theorems 3.1
and 3.2 as preconditioners for the interface operator arising from Problem 1 and more
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general fourth order problems. The hope is that the interface operator of Problems
2 and 3 are good approximations for the interface operator of Problem 1 since the
only difference is in the boundary condition on part of the boundary. Since at this
point we do not have theorstical results on the performance of this preconditioner,
we present the results of some preliminary numerical experiments to confirm this. As
we will show in the next section, with these preconditioners the condition number
of the preconditioned system on the interface seems to grow only slowly as the grid
size h goes to zero. Furthermore, all except a few eigenvalues remain bounded as
h tends to zero. Hence if a PCG type of iterative method is used, only a bounded
number of iterations are needed to satisfy a given tolerance of the error. We'd like
to add that since the completion of this paper, some theoretical results have been
obtained regarding a similar preconditioner in a finite element setting [15], confirming
the effectiveness of preconditioners obtained using our approach.

4. Numerical Results. We now present the results of some numerical experi-
ments carried out to assess the performance of the interface preconditioners that we
have proposed in this paper. As a preliminary test, the preconditioners are used on
the interface operator corresponding to Problems 1 and 3. The parameter ¢ in the
discretization (2) was set to zero. The PCG method is used to solve the interface
system. The iterations are stopped when the initial residual is reduced to a factor of
10~7. The subdomain solver is chosen to be an SSOR. preconditioned PCG method
with the same stopping criteria.

Figs. 2 - 5 show our numerical results for the case when both sub-domains have
the same size. Fig. 2 gives the iteration numbers for M and M, on Problems 1
and 3. Both preconditioners perform quite well and there is practically no difference
between the two. Note that the preconditioner M, which should be exact for Problem
3, took more than one iteration because of the inexact subdomain solve. Fig. 3
gives similar results for the preconditioners My and M,. It can be seen that a more
accurate preconditioner for second order problems (M, versus Mj) can lead to a
correspondingly muore effective preconditioner for fourth order problems. Figure 4
and 5 show the eigenvalue distribution for the preconditioned systems using M and
Moo. One can see that only two distinct eigenvalues grow unbounded as h tends to
zero. A numerical data fit yields an approximate order of log{h~?) for the growth
rate. This clustering of eigenvalues can be exploited by the PCG iteration.

Next we show some results for Problem 1 where the sizes of the two sub-domains
are different. Fig. 6 shows a similar situation as in Fig. 2. We have the domain
2 discretized by a 32 x 16 grid and vary the aspect ratio of the two sub-domains
by moving the interface. As can be expected, M performs slightly better than M
because the aspect ratio is incorporated in the construction of M. Fig. 7 shows the
results for an L-shaped domain, with a fixed number of 31 grid points on one side of
the square . The picture gives the PCG iteration numbers as the width of the small
sub-square varies. The result suggests that the performance of the preconditioner M
is quite insensitive to the aspect ratios.
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Fig. 6 Problem 1 over two rectanguler sub-domains
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