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Abstract

In the computation of discontinuous sclutions of hyperbolic systems of
conservation laws, the recently developed ENO {Essentially Non-Oscillatory)
schemes appear to be very useful. However, they are computationally
costly compared to simple central difference methods. In this paper we
develop a filtering method which uses simple central differencing of arbi-
trarily high order accuracy, except when a novel local test indicates the
development of spurious oscillations. At these points, generally few in
number, we use the full ENO apparatus, maintaining the high order of
accuracy, but removing spurious oscillations. Numerical results indicate
the success of the method, We obtain high order of accuracy in regions
of smooth flow withont spurious oscillations for a wide range of problems
and a significant speed up of generally a factor of almost three over the
full ENO method.

1 Introduction

Recently, a new class of high order schemes related to numerical calculations
of linear and nonlinear systems of conservation laws has been developed. This
new ciass of methods uses an explicit TVD Runge-Kutta Multistage time dis-
cretization together with high order Essentially Non Oscillatory (ENO) spatial
discretization methods. Details of these methods can be found in [6, 7] and
in references quoted therein. These methods are applied to soive numerically
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hyperbolic systems of conservation laws

ug+(f(“))s = 0, (1)
u(z,0) = wue(z), {2)

to be solved for ¢ > 0 and 2 in some interval £2 with appropriate boundary
conditions. An example of such a system of conservation laws is given by the
Euler equations of compressible gas dynamics for which

f(u) = vu+ (0,p,vp)” ()

and u = (p,q,p), p is density, ¢ is momentum, v is velocity, and p is the
pressure, A similar example for two dimensional flows will be considered. The
two dimensional version of the equation ( 1) now has different fluxes for each
space dimension. We have:

ue + (£(u))s + (g(u)y 0, (4)
u(z,y,O) = uﬂ(z:y)! (5)

to be solved for ¢ > 0, (z,y) € {2, some compact set, with appropriate boundary
conditions. The fluxes are f(u) = vyu + (0,p,0,v.p)T and g(u) = wu +
(0,0, p,vyq)T, respectively, where u = (p, ¢z, gy, €)7. In numerical experiments,
we approximate the solution of equations ( 1) or ( 4) by using point values.
That is, u{z;,t"} is approximated by uy, given a regular triangulation of the
domain €. In this paper, only a line by line discretization will be considered,
restricting the shape of domain £ to regions which can be mapped onto squares
or rectangles.

The TVD time discretization performed is the one introduced in [6, 7).
The method is explicit and relatively easy to program. Such algorithms can be
briefly described as follows:

i-1
u ™ = Y e u I B ALL (M) 6)
k=0

where m is the number of stages to move the solution from time ¢ to ¢ + At.
Generally, second to sixth order methods are investigated. The coefficients a; &
and f; ; are calculated so as to improve the CFL number in order to minimize
the number of time iterations. In the class of method defined by ( 6), the CFL
coefficient A must satisfy:

A < min —u

Tk 1Bkl

where Ay is the maximum allowable value for the forward Euler method (see
{6]). In particular, it is possible to obtain a third order accurate TVD time
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discretization method with a CFL number of 1. This is only slightly reduced
{to %) for the fourth order method. In addition, it is possible to derive a class
of time discretizations that require the evaluation of L(u"+(~1)/¥} only, so that
Bo, ., Bi—z = 0. This process reduces the storage requirement significantly.
However, such procedure is possible only for methods of up to third order ac-
curacy. For higher order methods, several evaluations of the operator L are
needed to enforce the TVD property; see [6, 7] for more details.

For the space discretization, we use high order ENO methods to approximate
L(U) using conservation form.

~L(uy) = L{{ VRS ---,“j+.+1/2); fu;_r_1/2, ---:uj+a-—1/2). @
z

For multidimensional operator, ~L = f; + gy, —f; is performed as in ( 7), and
—gy is approximated analogously. For systems of equations, a field by field
decomposition is used. We calculate at each point the eigen decomposition of
different fluxes, evaluating the r*» order accurate interpolating polynomial that
approximates the fluxes in each field, and then recover each vector field in the
physical space by inverse decomposition. In many cases (Euler equations for
example), the decomposition in each field uses the left eigenvectors Ly, so that
fri+1/2 = Le.A(ujj41), where A is the Roe matrix for Vf(u) (see [10] for
more details). The ENO algorithm is based on a Newton interpolating polyno-
mial using an adaptative stencil. That is, instead of considering a polynomial
interpolant using a fixed centered or a fixed upwind stencil, we derive an in-
terpolating polynomial minimizing the successive undivided differences. This
process limits oscillations, thus the name of the method. In the case of a shock
discontinuity, this method works quite well, leading to sharp transitions over a
few points. However, smearing of linear (e.g contact) discontinuities may occur,
In this case, a particular treatment using subcell resclution or artificial com-
pression is available to sharply resolve large transitions. The interested reader
can find more details in [4, 7, 12], we do not use this improvement here,

The reader has probably already realized that such methods require a con-
siderable amount of computational time when multidimensional systems are
investigated. It would be interesting to use high order methods derived from
simple spatial discretization most of the time, and use ENQ methods only when
spurious oscillations appear. Of course, it is well known that such oscillations
will generally occur for nonlinear equations even with smooth initial conditions.

In order to deal with problems in which singularities occur but still use simple
interpolation techniques, hence simple finite difference methods, we introduce a
postprocessing step that detects existing singularities and spurious oscillations
and corrects them if necessary. Such a method based on a postprocessing step
has been introduced in [1, 11]. It relies on a simple type of correction by pushing
points up or down up to an acceptable level so that the global solution satisfies
both total variation diminishing (TVD) and conservation properties. By modi-
fying this type of filter, the third author in [1} was able to prove convergence,




in {11], to the physical solution for one dimensional nonlinear conservation laws.
His proof relies on compensated compactness arguments using Young measures.
Some references can be found in [11] and in other papers quoted therein. More
importantly, an extremely simple but useful TVD algorithm which works very
well in practice was developed in [1, 11].

In this paper, we define a new class of filters enforcing uniformly high or-
der of accuracy without allowing significant spurious oscillations. Section 2 is
devoted to a detailed presentation of our method . Section 3 offers several nu-
merical examples in one and two space dimensions for both scalars and systems
of conservation laws. Section 4 will conclude this paper and propose several
different approaches for solving nonlinear problems in general domains using
finite element grids,

2 High order uniform filtering methods

‘We now outline our filtering method. We first only consider spatially centered
differences. This process leads to a simple scheme with low computational cost
for the evaluation of the numerical fluxes. Then, from the solution which has
been evaluated from this basic simple scheme, we perform another step that
filters the numerical oscillations by using high order accurate ENO interpolation.
We then use a high order TVD-RK time scheme. The algorithm is thus simply:

e Fori=1mdo
1. Approximate the equation ( 1) or ( 4) using the basic scheme
ynHiim D(u“, .. .,un-i-(l'-l)/r'n),‘ (8)

where D is the numerical operator that performs the m-multistage
TVD-RK algorithm as in [6] together with centered spatial differ-
ences approximating the operator L in { 7) in conservation form.

2. If v*+/™ hasspurious oscillations Then we correct it using the filter:
un-i-i/m = F(u", e un+(i—2}/m,vn+(i—1)/m), (9)
where F is the numerical operator that uses the same time discretiza-

tion algorithm as the basic scheme together with a high uniform ENO
type filter in evaluating numerical fluxes.

+ End For.
We define high order 2p** approximations as follows:

¢ Second Order: (p=1)

f(u; fu;
fi 412 = w’ (10)



s+ ¥ourth Order: {p=2)
7 ' 1
G172 = 75 (E(042) + £(9;)) = (E(wy42 + £(wjon)), (A1)

¢ Higher Order Vp: It is a simple matter, using Richardson’s extrapolation
to construct and obtain arbitrary high order accurate centered difference
methods. This has been done in many places, e.g [5]. We will have:

4
f,'+1/2 = E ﬁl’f(“ji-l')s
fz-ptl
where f_i41 = fifori=—~p+1,..,p~1,

r
and > B = L

i=—p+41

For the time discretization, we consider the TVD Runge-Kutta type idea
introduced in [6, 7}, that is

s For second order method: {(p=1)

w2 =yt ALL("), (12)
uﬂ+1 = %un-i-l/? o+ %un +AtL(uﬂ+1f2), (13)

s For Third order method: (p=3/2)

W = w4 AtL(u™), (14)
w"ts = _i_un + %u"“/a + %AtL(u""'l/a), (15)

o Higher order methods of this type are described in [6] up to sixth order.

The filter step changes the centered differences spatial approximation to the
more stable ENO approximation of fluxes. As building block, we use either
the Roe scheme (see [10, 7]} which admits expansion shocks at sonic points
or the Local Lax-Friedrichs decomposition of the fluxes at such points, see [7].
Both building blocks first decide on the initial stencil that respects the local
characteristic direction and then evaluate the polynomial interpolant using an
adaptstive stencil. This stencil is chosen in order to minimize derivatives of the
interpolating polynomial. The algorithm for computing the numerical fluxes in
the filtering step is precisely the algorithm 2.3, in [7}. Furthermore, in order to
still get a globally conservative scheme, backward and forward corrections are



. . . fntifm :
performed. This lead to these four possible approximations of u; H/M after the
filtering step:

W = A, u'.'+("-‘)""')+ﬂ (€532 - 5572 ),
u;.'+"/m = A(uf,.,u utl- 1)lm)~|" ,’2?/2 £_12);
utim = A(u;,...,u'.'+<*-”f'")+—( TPEL His T
utit = Al ;'+<'-‘>"")+E(f,9+1,2uf,9_1,2),

for i = 1,...,m. The operator A represents some linear combination of u"+*/m
for k = 0, ...,i—1, given for example by the equations ( 12),( 13), or ( 14),( 15),( 16),
and £, £*7° are the computed fluxes using centered differences or ENO inter-
polants, respectively. If the evaluation of f"{,, is needed, then a correction is

performed on u"+;/ ™ where j is a multiple index in the case of several dimen-

sions. Hopefully, for regular grids, backward corrections will only occur at the
first column and first row of the computational domain £2. Hence, at interior
grid points, only forward corrections of the fluxes are performed. For example,
in two dimensions, an initialization step in the filtering step is done for the first
column and first row, say { = iy, and j = jo, leading to corrections of the fluxes
fi’..f"i‘llz and fs‘+1/2,j for i > ip and i> jg only.

In the muitidimensional case, this is done separately in the z and y directions.
The global scheme is therefore as simple as for the one dimensional case. For
gystems of conservation laws, the centered approximation is performed for each
component of the fluxes. The ENO interpolant, when needed, must be evaluated
in each characteristic field. To do this, we follow the algorithm 4.1in [7]. That

is, we evaluate the gradient of each fluxes using Roe averages for the unknown

Ajjipz = g‘fx'ﬂ:uﬁ;n’ where uR_ﬁ;/z = R(u;41,1,) is the Roe average of u;

and u;4y (see [10]). Denoting the left and right eigenvectors of A; /s by

L?H/z# R?+1/2’ p = 1,..,n, where n is the number of equations, we correct

each characteristic flux f}f"_)i /2 using the divided differences projected in each

field B,E'?l/z = lf.._1+}1/2 Bji1/2, where the B; /s are the successive divided
differences of f;,/, needed in the evaluation of the interpolating polynomial.

We then reconstruct each flux in the physical space f..172 = Ep.,l ,1(1)1 /2 (’_’31 /2
At sonic points, we replace the Roe building block by the LLF decomposition

of the fluxes. Also, instead of natural divided differences of the fluxes, we

apply the formula (2.11a) and (2.11b) of [7] in each field taking f( )1 2 =

§(f-,,_1/2-—)l 1/2“; 1,2),:1t1df(”1/2=l( 1,2+,\( )1/2 u® 1/2)where,\(‘°)/ =

min (u (r )1, 5”)) in the case of convex fluxes or genuinely nonlinear fields. For

more details, see [7].



The most interesiing and imporiant part of this method consisis in the way
large transition areas are detected, For the basic ides, we use concepts related
to a front capturing method which has been introduced in [8] in the case of
combustion type problems dealing with Hamilton-Jacobi type equations and in
many other applications where fronts must be located with high accuracy. For
conservation laws, we will say that from time t to time ¢ + At the solution
has changed considerably, if the normal at this point to the solution surface
at these two different times has rotated by an angle exceeding some preset
value o, |a| < |&|. In numerical computations, spatial derivatives of utHi/m
are evaluated using backward or forward derivatives, so that the change of the
normal is described via this formula:

ApulAgul < Ae?(-1+cosen /14 (%)K/H (-‘-A-igi)z), (17)

where the + tests are performed to detect fast transition locations for u; 1/
Or U,_y/q, Tespectively, and Agzul*! = t(wiz1 — w;) are for the forward and
backward differences.

If this inequality is satisfied with the value of the parameter ---!21 <a< %
then the correction step is performed. The parameter « is introduced to restrict
more general changes of the normal to the surface from different times. In the
numerical examples introduced in next section, it has been necessary to tune this
coefficient in order to obtain the smallest possible number of corrections without
introducing oscillations in the numerical solution. If, instead, we let cosa = 0,
more corrections must be performed. Basically, we also have to correct when an
extremum point already exists at time ¢. This test can be avoided when larger
values of the parameter cos o are used. This process has greatly reduced the
number of corrections when two dimensional Euler equations for compressible
gas dynamics with shock-turbulence interaction has been studied. However,
it has been difficult to adjust this parameter to optimize the global algorithm
(computational time). Nevertheless, less than 40% of the grid poinis required
corrections for cosaw = 0.1. Further optimization will probably lead to even
fewer corrections.

The value cos o = 1 implies that the filtering scheme is applied everywhere,
while, cos @ = —1 leads only to the simple basic centered difference scherme. The
particular value of the parameter cosa, for which the right hand side of ( 17)
is zero, implies that a change in sign of a partial derivative occured from time
ttot+ At.

We must add that no significant improvement of the solution is obtained
when the value of cos o approaches 1. This is probably due to the fact that the
numerical error is very small in regions where the physical solution is smooth
for which centered differences are used. Furthermore, as shown in the numerical
examples below, there is no visible propagation of the numerical error due to
the filtering step.




To conclude this seciion, we write down clearly the algorithm for multidi-
mensional systems of conservation laws:

e Fori=1,...m Do

-~ For I; =1,..,N; Do, j =1, ...,nd, nd is the spatial dimension,

ndifm

+ Compute u; using the basic centered difference scheme:

1indne
R, = A
At 2
+m(fﬁ+1/2,h.---.1ﬂ gh! VRN
3
At
R v U AR BTy
— End For.

—For;=1,.,N; Do,j=1,..,nd
+ Compute the normal to the surface at time TH(E-1/m apd

Tm+i/m and test whether the directional change of the normals
exceeds the angle o

A;:; u!'l-!-(l'-—l)ij-':;:fl un-{-i/m

Iy Ind 1y dnd
Az’ +
1
Tree. . nd(i—-1)fm 4 21, +ifm
Ai ‘ufh-(--;lnz Ai du?h---;-’nd
Arf
< (-—1 +cosa
oy nt(i-1}/m Tr g nt(i-1)/m
1+ (Ai‘ufh---ujnd )2+ "+(Ai ath---:Ind )2
Az‘,l ' Azxy,,

AFapHT AGreaftin
\/1+(-————-—Azh ) +'“+(WA:,“ ))

* If these tests are satisfied Then compute the ENO interpolant.
in each field and correct the solution.

— End For.
¢ End For.

The number of tests to be performed depends on the dimension of the system
(= ns) and of space dimension (= nd). In general, we will have ns * nd tests
to be performed so that each component of the fluxes in each direction can be
modified. Therefore this postprocessing may imply a high computational cost
if the code is not well implemented.



32 Numerical Resulis

We now apply our algorithm to several test problems dealing with linear and
nonlinear hyperbolic systems of conservation laws, We will focus our attention in
determining precisely the order of accuracy of our filtering method and studying
the propagation of the local error. We will also visualize the numerical solution
when linear (contact) or nonlinear (shock) discontinuities appear and compare
the computational time of the filtering method versus the associated unfiltered
¥ENO scheme.

3.1 ExampleI:

As first test problem, we want to verify that our method is uniformly high order
accurate even at extremum points. To do so, we consider the simple linear
equation

u+u =0,
with initial condition
u(z,0) = cos 2z,

to be sclved for ¢t > 0 and z € [0,1] with periodic boundary conditions at
0 and 1. Numerically, we discretize the interval [0,1] and let z; = iAz, for
i = 0,..,n. The exact solution u(x;,t,) is then approximated by pointwise
values u? for which we set u = u(z;,0) from the initial condition. The ex-
act solution is calculated by the method of characteristics so that the local
numerical error and order of accuracy can be estimated. In the numerical ex-
periments, we fixed n = 40 and ran the program for one period of time, e.g
t = 1. The number of corrections per each time substep was never higher than
4. Moreover, these corrections occur at extremum points. Table 1 shows the
local error at points 245 = 4j.Ax. Table 2 describes the global order of accu-
racy in L* and L™ norms for the (3-2), (3-4), and (3-6) filtering methods (FM).

x-location | {3-2)FM Local Error  {3-4)FM Local Error | (3-6)FM Local Error
0. 7.15 % 10~ 2 560+10- 1 | 1.34*10-¢
0.1 2.60 %1072 170%10-% | 1.00 % 10~ ¢
0.2 1.06 % 10-2 1.26%10~% [ 3.36 % 10-°
03 327+ 10~ 7 6091 %102 | 4.75%10°°
04 1.25 % 10~ 2 1.05%10°7 | 1.01 %103
05 7.24 % 10-2 B.50+10-° | 1.34*10-3
06 271 %102 1601072 | 1.01+10" 7
0.7 2.02+10-2 1.24 %107 | 3.36 % 10-°
0.8 331107 732%10-5 | 4.74+10-°
0.9 1.31 % 10-2 110%10-7 | 1.27 %10~
1. 6.20 % 102 558102 | 1.32+10-3




Tabl

o
sk

Scheme | LT-norm L*®-norm |
(32)FM | 2.08 1.75 _
(TAFM [ 4.11 345 | Teble 2
(3-6)FM | 3.46 356

hese results are iIndeed In agreement with what we should expect. Uniform
high order is preserved even at corrected points.

3.2 Example II:

We now extend Example I to $wo dimensions. As described in the algorithm, a
dimension by dimension approach is used to solve the linear equation

Uttty = 0
u(z,,0) = cos2l(z+y)and0<z,y<],

and again, periodic boundary conditions in both z and y variables are assumed.
We discretize the square domain 2 = {0, 1] x [0, 1] and denote by A; ; the vertices
of coordinates z; = iAz, and y; = jAy, fori=0,..,nand j = 0,..,m. We
choose n # m so that the problem is really two dimensional. The exact solution
of this equation can be easily calculated using the change of variables{ =z +y
leading to a one dimensional problem. Hence, the exact solution is merely

u(z,y,t) = cos (2M{z + y — t)).

Numerically, we use m = 40, and n = 30 so that Az # Ay. The figures
(2.1), (2.2), and (2.3) visualize the local error for the (3-2), (3-4), and (3-6)
FM at different sections z = 0.2,04,0.6,0.8. The local error is highest at
extremum points, particularly for the second order method which is globally
TVD. However, table 3 shows that the global order of accuracy in L! and
L* nporms is uniform. Moreover, table 4 shows that the order of accuracy for
the filtering method does not really depend on the value of the parameter «.
However, the number of corrections increases as cosa approaches 1 for which
the full ENO method is performed.

Scheme | L'-norm _L*-norm

(3-2)FM | 2.00 1.45

(3-4)FM | 3.81 335 reble 3

(3-6)FM | 3.06 3.11

COo8 & # of corrections L*-norm | L®-norm CPU time
0.1 (3-4)FM | 84 3.621(3.01 13.23
0.9 (3-4)FM | 253 3.61 | 3.02 13.45
1.0 (3-4)RM | 1681 3911315 i 36.41

Table 4.

From this table, the computational cost is reduced by a factor of almost
3 as the (3-4)FM is used (cosa < 0.9) versus the full ENO (3-4)RF method

10



{cosa = 1.}. Also, no significant gain in the order of accuracy is obtained when

the full (3-4)RF method is used.

3.3 Example III:

In this example, we study the behavior of the filtering method to nonlinear
equations. As simple case, we consider Burgers’ equation

2
ty + (%), = 0:

u(z,0) = cos 2Ilz.

with initial condition

We again take periodic boundary conditions on the interval [0, 1). The solu-
tion becomes discontinuous at time t = 5}1 at the steady location # = 0.25. The
domain @ is discretized and the grid points are denoted by z;, for i = 0,...,n,
and let n = 40 in the numerical experiments. The exact solution is approxi-
mated by using Newton’s method whenever the solution is smooth. The local
error at each grid points is plotted for the (3-2), (3-4), and (3-6)FM in the
figures 3.1, 3.2, and 3.3. Due to the centered differences which are performed
in the basic scheme, the local error propagates symmetrically with respect to
inflection points. Nevertheless, the table b shows that the order of accuracy of
the filtering method is still uniform. These calculations were performed at time
t= 01 with a CFL coefficient A=1..

Scheme { L'-norm L%-norm
(3-2)FM | 1.95 1.40
(FA)FM | 374 369 Toble S
(3-6)FM | 3.50 3.47

Attimet = 5111 the shock wave appears. The shape of the solution is shown
in the set of figures 3.4, 3.5, and 3.6. No spurious oscillations can be detected
from these plots. The number of corrections was never higher than 8 whatever
the number of grid points. Again no visible change in the solution oceurs when
different values of @ are considered. In this numerical example, cos e = 0.1 and
the extremum test was enforced. o ‘

Using Burgers’ equation again, we want to {est whether our method is stable,
We consider the Riemann problem with v; = +1, and 4, = —1 and run our
program using centered differences only on a 40 point grid with & CFL number -
of 0.5 up to t = 3. The figure (3.7.1) visualizes the solution at this time.
Large oscillations can be seen up to the boundaries. Taking the final solution
of the previous problem as initial condition and using the (3-2)FM with the
parameter cos a = 0.99, we obtain the steady solution w; = 41, u, = —1 (figure
(8.7.2). Moreover, the test for an extrerna was not used. This shows that our
filtering method acts like a viscosity method in regions of smoothness even as

11



the parameter cos a approaches 1. However, the number of corrections occured
at only 10 grid points on the average.

Finally, we want to test whether our method works for nonconvex fluxes and
for initial conditions solving a Riemann problem having an expansion shock.
First of all, we considered Burgers’ equation with the initial condition u; =
~2for 2 < 0., and u, = 2 for 2 > 0. The centered differences of the basic
scheme let the initial expansion shock unchanged. However, by adding a small
perturbation of amplitude ¢ = 10~2 to the initial condition, the numerical
solution does not violate the entropy condition and does tend for long time to
the stationary solution of the problem, i.e u = 0 (see the figure 3.7.3). In the

other hand, we ran our program with a nonconvex flux f(u) = L‘i’_::.!l}“_’:_‘.‘).,
with the iritial condition v; = 2, and u, — —~2 in each side of # = 0. Again, if
no perturbation is added to this initial condition, the centered differences let the
solution remain unchanged. The results with a small initial noise added to the
initial condition are displayed in the figure 3.7.4. The results are in agreement
with those presented in [6].

In order to avoid the risk of developing an expansion shock, we may im-
plement another test that checks whether AF < 0 < AR, where A\[*® are the
eigenvalues of Vyf in each side of the grid point z; in the genuinely nonlinear
fields (for non convex fields, we correct at all sonic points). If this test is satisfied
then we correct the numerical solution using the filter.

3.4 ExamplelV:

In this example, we extend example III to two space dimensions by taking the
two dimensional Burgers’ equation

u? u?
w+ (), + (7),, =0

with the same initial condition as in example II and 1-periodic boundary condi-
tions in both z and y variables. The square domain is discretized as in example
I with m = 40 and n = 30. The shock discontinuity occurs at time ¢ = 3}
at the steady location z + y = 0.25. We study the propagation of the local
error at time ¢ = (.1 at different sections z = 0.2,0.4,0.6,0.8. Again the error
is symmetric with respect to inflection points, see the figures (4.1), (4.2}, and
(4.3). Moreover, the error is distributed within more grid points as the order of
the space discretization increases. This is in agreement with the fact that the
width of the stencil increases with the order of accuracy. Table & describes the
order of accuracy in L! and L* norms for the (3-2), (3-4), and (3-6) filtering
methods. Table 7 discusses the order of accuracy in these norms for different
values of the parameter cosa for the (3,4)FM. We also compare the CPU time
of the (3-4)FM method versus the (3-4)LLF ENO method.

12



Scheme | L'-norm L*™-norm

(3-2)FM | 1.86 1.64

(3-4§?M 347 319 2Pl 6

(3-6)FM | 4.13 3.49

cos & # of corrections L'-norm | L*-norm CPU time

0.1 (3-4)FM | 126 3.26 ] 3.19 15.51

0.9 (3-4)FM | 211 3241325 18.32

1.0 (3-4)LLF | 1681 3.33]3.38 39.71 |
Table 7.

The CPU time is again reduced by a factor of almost 3 when the filtering
method is performed.

At timet = Eln the shock discontinuity occurs and is visualized in the figure
4.4. A sharp transition is obtained and no spuricus oscillations can be seen.
Away from the shock the local order of accuracy is preserved showing that no
propagation of error starting at the shock location pollutes the smooth part of
the numerical solution. Moreover, the formal orders of accuracy are approxi-
mately the same as those given in the table 6.

3.5 Examples V:

In these examples, we study the smearing of contact discontinuities for one and
two dimensional problems. To illustrate this fact and study the behavior of
the filtering method in such cases, we consider the linear equations given in
examples I and II with different initial conditions:

u(z,0) = cos(2Mz)x05H 025 <z0rz > 0.75

and u(z,0) = 0 otherwise,
u(z,y,0) = cos(2M(x+y))+21{0.256 <2,y <075
and u(z,y,0) = O otherwise,

for one and two dimensional problems, respectively. In the numerical experi-
ments we let n = 40 and study the numerical solution at time ¢t = 1.1 with a
CFL coefficient A = 0.5.

For the one dimensional problem, the transition is plotted in the set of fig-
ures (5.1.1), (5.1.2), and (5.1.3) for the (3-2),/(3-4), and (3-6) FM, respectively.-
In all cases, the jump transition is localized within a few mesh points. However,
as expected, the numerical solution near the contact discontinuities is better
approximated for the highest (sixth) order method. In particular, the small os-
cillations that appear near the contact discontinuities for the second and fourth
order methods, are no longer there for the sixth order method. Also, the small
oscillations will disappear as soon as the value of the parameter cos o is not
less than 0.9. Moreover, the transition from the upper to the lower parts of the
numerical solution is better resolved for high order methods (fourth and sixth
order), whereas the transition tends to be smeared for the second order method.
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In the next set of plots, the two dimensional problem is investigated. The
results are shown in the figures (5.2.1), (5.3.1), (5.4.1) where the solution wave
is plotted at time ¢ = 1.1, The transition from the zero plateau to the cosine
wave is smeared within three to four meshes in each vertical and horizontal sides
and probably more at each of the four corners, see the figures {(5.2.2), (5.3.2),
and (5.4.2). Moreover, the maximum error occurs at the bottom left and the
top right corners. Also, the local error is very smooth along each sides and
*digcontinuous” about these two corners. This agrees with the one dimensional
results in which the smearing of the contact discontinuities happens to be more
important in the upper or lower part of the cosine wave,

3.6 Examples VI:

The last examples are devoted to extend our filtering method to systems of
conservation laws. We consider the compressible Euler equations for gas dy-
namics introduced during the introduction. The Euler equations ( 1) and { 4)
are studied with these sets of initial conditions:

s One dimensional Euler:

— We consider the initial condition given in the example 8 of [7}. That
is, we take:

p = 3.857143,¢ = 2.629369,p = 10.3333333 when ¢ < —4
p=1+esinbz,g=0,p=1 whenz > -4

— If e = 0. we get a pure Mach 3 shock moving to the right, Following
[7] in example 8, we take £ = 0.2 in the numerical experiment.

s Two dimensional Euler:

— We consider the initial condition given in the example 9 of [7]. That
is, we consider a Mach § shock located at z = —1 moving to the right
into the state with

pr = 1,
pr = 1,
v, = —g-':- sin 0, cos (zk,cosf, + yk, sin 6, ),
r
v, = :T' cos By cos (zk,cosb, + yk, sin 6, ),
T

where k. = & and 8, = &, In order to have positive pressure during
the calculations, we used a parameter cosa = 0.1 — o ~ 0.9-2—1.
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The results for the one dimensional problem are shown in the set of figures
(6.1.1), (6.1.2), and (6.1.3). The desired, physical, oscillations near the shock
transition which are parts of the exact solution are particularly visible for the
sixth order method. The second order and fourth order method give a fairly
good representation of the expected solution. The number of corrections was
about 25% for 200 grid points and a CFL coefficient A = 0.8.

The results for the two dimensional shock-turbulence problem are plotied
in the set of figures (6.2.1), (6.2.2), (6.3.1), (6.3.2), in which the pressure and
density field are displayed. As comparison, similar results have been obtained
in {7}, and in [13, 14]. Using this value of the parameter cos a, the number
of corrections was approximatively 40% for a 80 x 60 grid with a CFL coeffi-
cient of 0.5. In this experiment, the (3-2) and (3-4)FM have been used. 200
time iterations have been necessary to reach the final time ¢t = 0.2. 70% of the
global computational time was used to evaluate the ENO interpolating poly-
nomials during the filtering step, leading to a reduction of a factor of 2 of the
computational time when the filiering method is used.

4 Final Remarks and Conclusions

The main conclusion concerns the number of corrections which has always been
less than 10 to 256% for ali these examples, except for the two dimensional shock-
turbulence problem in which a very complicated structure of the flow appears.
Therefore, the computational cost for these type of problems is reduced by a
factor of almost 3, Moreover, this factor is quite significant when very high
order methods are implemented. In particular, the use of sixth order method
for the one dimensional Euler equations leads to a very accurate approximate
solution. An important remark is that it would be possible in the near future to
implement other high resolution techniques together with this type of filtering
method, e.g subcell resolution [4].

In the near future, this type of method will be implemented in for different
type of problems involving Hamilton-Jacobi equations. Moreover, a similar
approach for more general domains using finite element triangulations is under
investigation. So far, by appropriate linear combination using the basis functions
of all triangles around a vertex, it has been possible to construct a second order
method in space and correct the oscillating points by using a first order Godunov
type filter. Higher order filtering method are also under investigation. ENO
schemes for Hamilton-Jacobi equations in Cartesian coordinates were developed
in [8] and in [9].
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Figure Captation

e (2.1) (3-2)FM: z = 0.2,0.4,0.6,0.8 sections, Local Error .10-? For 2D
linear Problem (Example II). )

¢ (2.2) (3-4)FM: z = 0.2,0.4,0.6,0.8 sections, Local Error .10-® For 2D
linear Problem (Example II}.

o (2.3) (3-6)FM: z = 0.2,0.4,0.6,0.8 sections, Local Error .10~% For 2D
linear Problem (Example II).

e {3.1) (3-2)FM: Local Error .10~® For Burgers’ Equation (¢ = 0.1).
¢ (3.2) (3-4)FM: Local Error .10~% For Burgers’ Equation (f = 0.1).
e {3.3) (3-6)FM: Local Error .10~® For Burgers’ Equation (t = 0.1).
# (3.4) {3-2)FM: Shock Transition for Burgers’ Equation at time t = 3.
* (3.5) (3-4)FM: Shock Transition for Burgers’ Equation at time ¢ = .
¢ (3.6) (3-6)FM: Shock Transition for Burgers’ Equation at time { = .

e (3.7.1) (3-2)CD (Centered Differences): Solution Wave of Burgers’ Equa-
tion at time ¢ = 1. with +1, —1 Initial Condition.

e (3.7.2) (3-2)FM: Solution Wave of Burgers’ Equation at time f = 1. with
Initial Condition of Figure (3.7.1).

e (3.7.3) (3-4)FM: Solution Wave of Burgers’ Equation at time t = 1.,2,,83.
with Initial Condition uw; = —2, u, = 2 plus £10~3 noise.

* (3.74) (3-4)FM: Solution Wave of nonconvex nonlinear Equation u; +
F 3
(D=9 = 0 at time ¢ = 0.2,0.4,0.8 with Initial Condition u =
2,4, = —2 plus £10-2 noise.

e (4.1) (3-2)FM: Local Error For 2D Burgers’ Equation {f = 0.1).
¢ (4.2) (3-4)FM: Local Error For 2D Burgers’ Equation (t =0.1).
* (4.3) (3-6)FM: Local Error For 2D Burgers’ EquAa.tion (t=0.1).
¢ (4.4) (3-2)FM: Shock Transition For 2D Burgers’ Equation at time t = 3k,

e (5.1.1) (3-2)FM: Linear 1D Equation - Contact Discontinuity at time ¢ =
1.1

® (5.1.2) (3-4)FM: Linear 1D Equation - Contact Discontinuity at time ¢ =
1.1
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¢ (5.1.3) (3-6)FM: Linear 1D Equation - Contact Discontinuity at time ¢t =
1.1.

¢ (5.2.1) (3-2)FM: Linear 2D Equation - Contact Discontinuity at time ¢ =
1.1.

* (5.2.2) (3-2)FM: Linear 2D Equation - Error Plot and Contour - Contact
Discontinuity at time t = 1.1,

¢ (5.3.1) (3-4)FM: Linear 2D Equation - Contact Discontinuity at time ¢ =
1.1.

¢ {5.3.2) (34)FM: Linear 2D Equation - Error Plot and Contour - Contact
Discontinuity at time ¢ = 1.1,

e (5.4.1) (3-6)FM: Linear 2D Equation - Contact Discontinuity at time ¢ =
1.1.

s (5.4.2) (3-6)FM: Linear 2D Equation - Error Plot and Contour - Contact
Discontinuity at time 1t = 1.1.

e (6.1.1) (3-2)FM: 1D Euler Equations ¢ = 0.2.
e (6.1.2) (3-4)FM: 1D Euler Equations £ = 0.2.
¢ (6.1.3) (3-6)FM: 1D Euler Equations £ = 0.2,

e (6.2.1) (3-2)FM: 2D Euler Equations - Shock-Turbulence Interaction -
Pressure field ¢t = 0.2.

* (6.2.2) (3-2)FM: 2D Euler Equations - Shock-Turbulence Interaction -
Density field ¢t = 0.2,

e (6.3.1) (3-4)FM: 2D Euler Equations - Shock Turbulence Interaction -
Pressure field ¢ = 0.2,

» (6.3.2) {3-4)FM: 2D Euler Equations - Shock Turbulence Interaction -
Density field { = §.2.
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- Local Error at time 1=0.1 -
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- (3,6) CD scheme + uniform ENO-Roe-6 filter - - figure 2.3 -
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x10-5 - (3,4) filter scheme - Error L1 = 3,74, Error Linf = 3.69 -
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