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Abstract

A "Hamilion-Jacobi” ievel set formulation of the equations of motion for propagating interfaces has
been introduced recently by Osher and Sethian. This formulation allows fronts to self-intersect,
develop singularities, and change topoiogy. The numerical algorithms based on this approach handie
topological merging and breaking naturally, work in any number of space dimensions, and do not
require that the moving front be written as a function. Instead, the moving front is embedded a5 a
particular Jevel set in a fixed domain partial differential equation. Numerical techniques bormowed
from hyperbolic conservation laws are then used o accumaiely capwure the complicated surface
motion that satisfies the global entropy condition for propagating fronts given by Sethian. In this
peper, we malyze the coupling of this leve! set formulation v a system of conservation laws for
compressible gas dynamics. We study both conservative and non-conservative differencing of the
level set function, and compare the two approaches. As applications, we study the incompressible
Rayleigh-Taylor and Kelvin-Helmbholtz instabilities for air-air and air-belium boundaries. We per-
form numerical convergence studies of the method over 3 mnge of psrameters, and analyze the
accurcy of this approach applicd o these problems.
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COMPUTING INTERFACE MOTION IN COMPRESSIBLE GAS DYNAMICS

A variety of physical phenomena involve propagating interfaces. The interface (or interfaces)
scparale regions which may differ according to their density, viscosity, or chemical type. The com-
phxhyofmemoﬁondmeinmfaceunmg.cﬁommepmﬁcuhr!ysimplccasedpassiveadvec-
tion of two different colors, t0 problems in flame propagation and dendrite solidification, in which
there is an intricate feedback mechanism between the local properties of the front and the physics
on cither side of it

Recently, & new set of algorithms for following propagating interfaces has been developed. In
[46], & Hamilton-Jacobi level set formulation for moving interfaces was introduced. These algo-
rithms handle topological merging and breaking naturally, work in any number of space dimensions,
and do not require that the moving front be written as a function. Instead, the moving front is
embedded as a particular kevel set in a fixed domain partial differential equation. Numerical tech-
niques borrowed from hyperbolic conservation laws are then used to accurately calculate the correct
solution which satisfies the global entropy condition for propagating fronts given in {58).

‘These schemes have been used to model a variety of problems in front motion, flame propa-
gation, and the geometry of moving surfaces, sec {46,58,59]. This level set formulation of the mov-

ing fronts has been used as the basis for theoretical analysis of motion by mean curvature in {9,17].

In this paper, we analyze the coupling of this level set formulation to a system of conserva-
tion laws for compressible psdynmlics. We consider two different approaches. In one approach,
the level se fonction is solved in noo-conservative form, using the velocity obtained from conserva-
tive differencing of the standard byperbolic system. In another approach, we directly incorporate the
Jevel set formulation into a system of five conservation laws, in which the moving front becomes
onc extr variable in the Sow solver. In both the conservative and non-conservative settings, we
m.matmﬁmmdmw'mmhMBmemﬁncﬁm.We
then compere the various approaches, and discuss how the physics of the problem suggest the

sppropriate approach.



As spplication, we study the incompressible Rayleigh-Taylor and Kelvin-Helmholtz instabili-
ties for air-air and air-helium boundaries. We compute the position of the moving interface, show-
ing the development of plumes and rolls in the Rayleigh-Taylor instability and the rolling up of vor-
tex structures in the Kelvin-Helmholtz instability. We perform numerical convergence studies of the
meﬁiadaﬁimigéﬁfwﬁﬂem.mdmﬁyuthemmacyofﬁslppmxhapphedmﬂmcprob-
Jems.




L Physical Problems

In this section, we discuss the two physical problems under investigation.

A. Physical Problems

The Rayeigh-Taylor instability occurs when a light fluid pushes a heavier one. Imagine & hor- |
izonwl interface, in which a fluid with density p,; Lies sbove a fluid with density p2. Here we
sszume that gravity is pointing downwards. If p,<p,, the interface is stable, and the two fuids
remain motionless. Small perturbations in the initial shape of the interface remain bounded. On the
other hand, if p,>p,, the interface is unstable. Small perturbations in the initial shape grow as the
heavier fluid on the p pushes through these perturbations, and long fingers of the heavier fluid
reach down into the lighter fluid. At the same time, plumes of the lighter fluid grow upward. The
initial growth rate of the perturbations is exponential. Experimental observations indicate that the
heavier fluid forms long "spikes™ as it reaches into the lighter fuid, while the rising light fluid
forms rounded tops, or "bubbles”. The length of the interface increases dramatically, and can break
into several parts, developing bubbles. Some examples where this instability can occur are in the
collapse of a massive star, the laser implosion of deuterium-tritium fusion targets, and the elec-
tromagnetic implosion of a metal liner. One of the most straightforward examples is the novelty-
sore Wy in which fiuids of differing densities are trapped between two glass plates. By upending
ﬂcmnﬁ,meﬁghwr fluid rises to the top by forming long spikes in the interface. Bubbles can
break off from the imerface and later merge with other bubbles. The inerface between the two
fluids becomes highly complex, breaking into numerous diffierent parts with wildly varying shapes.

In their most complicated form, the equations of motion are the equations of full viscoes,
compressible flow plus interface effects. Some important factors controlling the growth of instabil-
ity are (1) the density ratio, which governs the growth of small amplitude perturbation (2) surface
tension, which stablizes wavelengths shorter than a critical wavelength (3) the viscosity, which
reduces growth rate and regularizes the flow (4) compressibility, which reduces growth rate, and



(5) heterogeneity, which can excite instabilities of various wavelengths,

The Ke.lvin-ﬂelmpohz instability occurs when one fluid is moving at a different rate relative
t0 ancther. Imagine onc fluid atop another, moving at different speeds initially paralle]l to the inter-
face, The initial horizonta! interface rolls op into large vortical structures, which serve to eatrap the
fluid In compressible gas flow, the Kdvm-H;hnMIQ instability can be seen when a jet of fluid is
injected into another, producing large vortical structures which roll up the interface between the two
fluids. Another example is provided by peralle! shear flow for incompressibie fiuids, which can be
modeled through the study of vortex sheets. Here, the vorticity is zero everywhere expect along an
infinitely thin line or curve. A good example is Aow around as trailing edge of a8 wing, which forms
8 voriex sheet whose strength depends on the given wing design. The ensuing motion and rollup of

the variex sheet affects both the drag on the wing and the flight of following aircraft.

For some expc_rimcnla.l studies of these phenomena, we refer the interesied reader o
(12,16,28,29,36,37,50,52,54], In addition, we draw the interested reader’s attention to the recent
experiment on the three-dimensional Rayleigh-Taylor instabilities described in [29]). This paper
contains some fascinating photographs of three-dimensional instabilities in circular tubes, and direct
comparison with sofutions from linear and non-linear theory developed in [28). For studies of the
theoretical aspects of Rayleigh-Taylor and Kelvin-Helmhotz instabilities, a possible starting point
may be found in [4,5,6,8,20,27,34,39,40,43,44,49,53,55,57,63].

B. Nzmerical Studies

Two different types of numerical methods are ofien employed for computing interface prob-
Jems in fluid mechanics. The first, or "Eulerian” type, compute the full Navier-Stokes equations in
both fiuids. In these techniques, the finite difference spproximations are typically employed across
the entire domain. The second, or “Langrangian” type, reduce the equations of motion 10 equations
h&hﬂiﬂ:iﬂﬂ.ﬂm.mdﬁmmwmmm.mmhlﬁs

caicgory are voriex methods, which rely on a discrete approximation 10 a boundary integral along




the interface, see [3,11,18,30,31,32,33,39,51,64]. An excellent overview of some work on the
Rayleigh-Taylor instability is dve % Shap {61} Other cakulatons include
[1.2,15,19,26,41,42,45,67). Some particular beautiful calculations of compressible jets may be
found in {7,66].

Hybrid "Eulerfian-Lagrange™ methods have also been employed. These methods are used in
some of the earliest numerical calculations of the Rayleigh-Taylor instability, which were performed
by Harlow and Wekh [23]. In these calculations, the marker-and-cell method was introduced, in
which a finite difference scheme is used © solve the full Navier-Stokes equations. One of the two
fluids, say Type 1, is tracked by placing marker points at the centers of cells initially containing the
chosen fluid. These markers are then advected with the computed fluid velocity. At subsequent
times, cells are divided into three types: (a) those containing marker particles and whose neighbor-
ing cells contain marker particles (Type 1 fluid), (b) those not containing marker particles and
whose neighboring cells also do not contain marker particles (Type 2 fluid), and (c) surface celis
which must contain the boundary. Using this technique, a moving fluid interface was tracked. An
extension of this technique was used in {14] to track the growth of a single mode of the Rayleigh-

Taylor instability, showing the development of a large bubble and accompanying spike.

The most invoived cakulations using 8 combination Eulerian-Lagrangian scheme which cou-
ples the Navic.;'-Slokw equations to 8 method for tracking fronts is the front tracking technology due
t0 Glimm etal. [21,22]. In this work, the compressible Navier-Stokes equations are solved in the
whole domain, and the interface is tracked through a set of marker particles oo the moving inter-
face. A varicty of calculations of bubble and spike development for the Rayleigh-Tayior problem
may be found in [21,22,61].



I1. Equations of Motion for Propagating Interfaces

A. Statement of Problem

In the most general form, consider a propagating hypersurface S(r) (that is, & curve in two
space dimensions or 8 surface in three space dimensions) separating two regions in the domain,
Here, 1 is time, and S(1): [0,0)—R¥, N=23. Suppose that §{¢) propagates normal to itself with
speed F. F may very along the interface S(¢), and depend on such fectors as the position of the
front 5(1), the direction of the normal & (1), the local curvature K (1), as well as the time 1. Note
that the dependence of F on the position 5{/) can generate tremendous complexity, since the phy-
sics on both sides of the interface may enter into the determination of F. Our goal is a numerical

algorithm that follows the motion of § (¢ ).

It might seem most natural to formulate equations of motion by parameterizing the hypersur-
face and describing the evolution of the interface in terms of coordinate-free "Lagrangian™ front
properties, such as the local normal #' and curvature X. Indeed, a standard numerical method for
tracking moving fronts relys on discretizing such a parameterization with marker particks whose
motion is determined by a discrete approximation to the appropriate equations of motion, see [68].
As shown in [58,59), such techniques can encounter considerable difficulties when sharp comers
develop in the propagating interfaces or when the interface changes wopology. A rigorous explana-
tioh of the inherent instability of this approach is given in the appendix of [46]. Instead, we con-
sider an "Eulerian™ formulation of the equations of motion which is more amenable to numerical

approximation. The details of this formulation were first presented in [46).

B. Eunlerian Formalation

Given a closed hypersurface I'(t), we wish 10 produce an Eulerian formulation for the motion
of the hypersuriace propagating along its normal direction with speed F. We motivate the Eulerian
formulation by a simple example, taken from [59]. -




Let (1) be a vnit circle in R ? propagating outward with constant speed F=1 (See Figure la).
Obviously, the solution at any time 1 is just a circle with radius (1+1). (See Figure 1b). Rather than
describe the motion of this circle, we consider the motion of a surface z = w(x,y,t) in R* (See
Fgwe Ic). The level set y = 0 of this mrface is just the set of points in the x~y plane correspond-

ing 10 the propagating curve I'(r). That is,

0= (&)1 ey =0) @
Thos, we have mawched the motion of the front I'(f) in R? with the evolution of a function

z=w(x,y,1) in R3 Al this point, we must describe how o

(1) Construct the initial value w(x,y,0)

(2) Derive the equations of motion for the evolving surface

We shall do this in some generality, referring to an (N -1)-dimensional hypersurface with arbitrary

mpeed function F.

C. Construction of the Initial Valoe for v
Suppose we are given a closed, propagating (N-1)-dimensional hypersurface I'(1), where
) [022)oRY. A straightforward technique for constructing the initial front w(T,1=0), where

¥eR¥, is to let

¥(X,1=0) = 2d 22)
where d is the distance from ¥ 10 I'¢=0), and the plus (minus) sign is chosen if the point ¥ is out-
side (inside) the initial hypersurface I¢=0). Thus, we have mn initial function (%, ¢=0): R¥ =R
with the property that

Tu=0) = (£ 1 wez.t=0) = 0)

Our goal is 10 now produce an equation for the evolving function w(X,7) which contains the



embedded motion of I'(r) as the level set w = 0.

D. Derivation of the Evolution Equation for vy

We arc given a propagating hypersurface T'(s) and 2 speed function F a1 each point of the
propegating fypersurface. Let (1), 1€ [0,29) be the path of & point on the propegating front That is,
¥(1=0) is a point on the initial front T'(¢=0), and IX,1 = F (¥(r)) snd the vector X, is in the direction
sormal to the front &t X(:). Since the evolving function  is always zero an the propagating hyper-

mrface, we must have

¥(&()e)=0 (2.3)

By the chain rule,

N
Vi+ 2 ¥ x=0 Q@4)

il
where x; is the i* component of X. Let (1,4, ..coee N} = (%11 X210 Z,). Since
i Vi X = (Wa o Wagreona Wy ) © (U182 e ) = F (1)) 1991, (2.5)
i=]
we then have the evolution equation for y, namely

v, +FiVyi=0 (2.6)
We refer 10 this as 8 Hamilton-Jacobi "rype” equation because, for speed function F identically con-

stant, we obtain a standard Hamilton-Jacobi equation.
To repeat, the position of the propagating hypersurface I'(¢) is given as the level set
re)= (£ 1 wez.)=0) @
where w(X,t) is the solution 10 the Hamilton-Jacobi-type equation
v, + FiVyi=0 28)

(&, 1=0) = + digtance I'(1=0)




E. Advaatages to the Eulerian Fonnnhtion.

There arc three major advantages to this Eulerian Hamilton-Jacobi formulation. First, the
evolving function w(%,f) always remains a function for reasonable F. However, the level surface
w = 0, and hence the propagating hypersurface I'(r) may change topology, break, merge, and form
sharp corners as the function y evolves. As an example, consider two circles in R ? expanding out-
ward. The initial function w(¥, r=0) is 8 double-humped function which is Lipshitz continuoys, but
ot everywhere differentiable. As this function evolves according 1o Eqns. (2.7-8) the topology of
the level set w = 0 corresponding w0 the propagating hypersurface I'{z) can change. For example, as
the two circles expand, they meet and merge into a single closed curve with two comers. This is
refiecied in the change of topology of the level set w = 0 in the propagating function.

The second major advantage of this Eulerian formulation concerns numerical approximation,
Because w(T,!) remains & function as it evolves, we may use a discrete grid in the domain of I
and substitute finite difference approximations for the spatial and temporal derivatives.

Finally, the Eulerian Hamilton-Jacobi formulation extends in an obvious way to moving sur-
faces in three space dimensions. All of the numerical methodology described beiow is easily gen-
eralized, with none of the complicated bookkecping that plagues marker particle technology and

volume of fluid methods.

F. Extension of F off the level surface y=0
As mentioned earfier, F may depend on such factors as the position of the front and the local
cwrvature. We point out a somewhat subtle issue that results from our Eulerian formulation, We
have formed an exiension of F off the propagating hypersurface to all of space, That is, the equa-
tion
v, +FIVyi=0
spplies 10 each level set w = C, and thus we have implicitly assumed that F is a function in

RY x [00):F (%,1) such that
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FE,0)=FT() for @1)el()
How does one extend F off the propagating hypersurface I'(s) to the entire domain? In previous
work, (sce [46,59]), the function F depended on the local curvature of the propagating level set
v = 0. In this case, since the local curvature could be cakculated for the entire family of level sets
covering the domain, il is straightforward 10 exiend F by using the valve of the curvanure at a point
¥ in the domain determined by the particular evel st passing through that point

In the Rayleigh-Taylor and Kelvin.-Helmholtz problems considered here, the level set y =0 is
‘earried by the underlying ﬂuid advection, and thus the speed function F depends only on the posi-
ltl'on of the level set y = 0. Thus, we may quite naturally extend the speed F 1o the entire domain
by moving each level set by the underlying fluid.

In more complicated cases, the speed function can depend on such factors as the local normal,
boundary integrals along the level set w =0 and other factors. In such cases, the extension of F off
the propagating hypersurface 10 the entire domain is not straightforward The most complicated
imerface motion studied 1o date using this Hamilton-Jacobi approach is dendritic solidification, see
[60]. In that work, the motion of the front and extension of F requires the global evaluation of a

time history-dependent boundary integral along the boundary. For details, see {60].




)

1. Compressibie Flow and Propagating Interfaces:

In this section, we discuss how to couple the ievel set formulation for a propagating interface
0 8 sysiem of conservation laws. To begin, consider the system of equations which describe

compressible fiow, namely

4 + (Rl + (6@, = A@ G.1)
where the vector @ is defined by
P
pl
a= |, (2
3

Here, p = p(x,y,t) is the density, u = u{x,y,!) is the velccity in the x direction, v = v(x,y,1) is
the velocity in the y direction, and € = €(x,y.¢) is the imemal energy of the system. The fiux

functions F(q) and G(@) are given by

pu pv
~ pu+P 1 oew 33
Fa)=|" o 8®= [,z p (33
puE + uP pvE + VP

The forcing function H(3) depends on the particular problem under stdy. For the Rayleigh-Taylor

problem, we assume that gravity g is pointing up (the positive y direction), and thus have

0
fie- | ° a4
P8

pve
For the Kelvin-Helmholtz problem, we sssume that

By G3)

==
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Finally, we use the equation of state 10 link the pressure P and the density, namely

P = (y - ple - 12(* + v}) (3.6)
where here we have used the typica! y-gas law.

Our goal now is to incorporatz interface motion in this setting. Let L2; and £; be two regions
in R? separated by a curve T{r=0) which is a small pernrbation of a horizontally swaight line, Sup-
pose Q, is above G, and that the density in Q, is less than that in 0. The system of conservation
laws described above apply in both Q, and Q,, with possibly different y-law equations of state.
~ Suppose the location of the propagating interface I'(7) is given by the level set w(x,y,r) = 0. Then
the full motion of the two regions can be viewed as a single system of conservation laws, which
may be solved by appropriate finite difference approximations. What remains is to couple the equa-

tions of motion for y to the system given in Eqns. (3.1).

A. Nos-Conservative Differencing for y

For Eqn. (2.4), we have

Vi +uy, +w,=0 3.7

where ¥ = iy, v = U5, and v is the evolving function w(x,y,!) such that

o= (x.o)va.y.n=0) 68
Then one spproach is to solve Eqn. (3.7), which is in non-conservative form, using the velocities
(u,v) obtained from the hyperbolic system given in Egn. (3.1).
B. Conservative Differencing for ¥
Ahematively, we may puat the equation of motion for the evolving function v in conservation
form. We have
GV + (puy), + W), = [p, + Pu)s + (V)] + plw, + wy, + vy, ] =04+ 0=0 (39)

For continoous y, the Rankine-Hugoniot jump conditions for this equation sre the same as for the
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conservation of mass equation (Eqn. 3.1). Thus, we may write a singic system of conservation laws

for the motion of the fluid in each region and the level set function v, namely

g + [F(Q),: + [G(q)]; = H(q)

where
P
pu
qg=|pv
PE
v
pu pv
pu+ P puv
F@=| puv G(Q= | pv?+P
pu€ + uP pvE + VP
puy pvY
0 0
0 0
H(q= | pg | Raykigh-Taylor H({(q)= |0] Kelvin—Helmholz
pvE 0
0 0

All that remains is to formulate the equation of state. We define the pressure P by

P = (y(y) - 1) ple - 112> + v)

T ¥>0

Yiv)= |v2 ¥w<0
? y=0

(3.10)

3.11)

(3.12)

(3.13)

(3.14)

(3.15)

Away from y =0, this is a conventiona! hyperbolic system of conservation laws with the
standard propagation velocities of gas dynamics, and a triple linear degeneracy comresponding © the

particle velocity. At y = 0, the fiuxes are discontinuous, and it is not obvious what the correct con-

ditions should be: this is reflected in the guestion mark *7"° in Eqn. (3.15). In Section § we derive

the sppropriate condition st w=0 and its numerical implementation,
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We point out bere that the extra work in computing the front is rather small. To solve the
fundamental system of equations involves the use of & good numerical approximation 10 the system
of conservation laws in two space dimensions. Computing the interface motion via the level set
fanction requires either adding onc moare mnknown o the sysicm, namely (py), in & way thai
preserves the hyperbolic structure, or solving a scparate equation in non-conservative form. In either
case, the same finiee difference grid lattice is used, and requires only one more armay in the above

data structirres.
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IV. Solving Hyperbolic Systems

A. General Outline

In this section, we lay the groundwork for our numerical methods. The field of hyperbolic
solvers has grown mpidly in the past ten years, and good overviews of the material may be found
in the review articles 48,56) and the references therein, Here, we give a brief favor of the basic

idea for those mnfamiliar with the field,

The basic idea behind these methods is as follows. Consider, as a simple example, the » com-

ponent linear hyperbolic system in one space variable, namely
B, + [a(u)], =0 4.1)
Performing the differentiation, we then have

|,+[%(u!)-lﬁ,=n,+Ai,=0 “2)

wbaeA=[%E—] is the (constant) mxm Jacobian matrix. Suppose T diagonalizes A. Then

TAT!=A 4.3)
where A is diagonal. Then if we define the vector
=Ty, {4.4)

we can premultiply Egn. (4.2) by T and postmultiply by T~ o obtain the decoupled diagonal sys-

tem
% +AL =0 “5)
Consider now the i* component of the above diagonal system, namely

W) + A (@), =0 (4.6)
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We may solve this equation exactly, since A, is a constant, and retrieve the solution u by letting
u=T'% (4.6)

The strategy behind numerical algorithms for more general non-linear hyperbolic conservation
Iaws is a time and space discretization of a non-linear version of the above process. Consider 8 lat-

tice of points x; =ik, i=..-3,-2-1,0,1,23,.... snd the general system of the form

2atw)

F- li,=w,+ A, =0 “.n

w+]

where now A(i7) is nonlinear. Let u? denote the approximate solution at time nAr at point x;. In
order to go from the solution at time aAr 10 the solution at time (n+1)Az, at each point x; we com-
pute the cigenvectors of the Jacobian matrix A(u) to construct the diagonalizing matrices T and T,
The matrices A and T, T~ are functions of u. Their values at an intermediate state between u; and
R, denoted as uma‘n X;.1n. &r¢ approximaled in Section 5 and used in the numerical procedure
to update u as follows. At each point x;,;2, we have a local Riemann problem, which assumes a
constant left initial .sme and a constant right initial state. Imagine then, that at each point x;,1» &t
tine nAs, we consider the local Riemann problem which has initial state u}%3 on the right and
w75 on the left (we postpone until later the calculation of these intermediate mesh values). Using
gpproximate Riemann solvers, we solve this initial value problem for time step Ar, where A7 is
chosen small enough that waves traveling from neighboring Riemann problems do not interact. The
matrices A(w) and T(u) play a key role in the approximate solutions to the Riemann problem.
Deails of these ideas may be found in {48,56).

B. The Equations of Motioa for Gas Flow and Interface Motion




Following the above cutline, the first task is 10 compute the eigenvalucs and cigenvectors of
A, which is the Jacobian matrix of F(q). There is a similarity between our set of five conservation
laws (Eqns. 3.10-11) and the equations of two component inviscid gas flow smdied by [35). In
those equations, the level set function y is replaced by the mass fraction ¥ of species one. In addi-
tion, the quantity Yy defined in Eqn. (3.15) is no longer & piecewise constant function of w, but
instead for the two component mixture case is given by {see [35])

_ Y "v,'fl + (l-ykvgyz

Yec, +(1-YX,, “s

where ¢, is the specific heat at constant volume of species i,
For simplicity of exposition we compute the one-space dimensional Jacobian, where we set
va(), and neglect the pv equation in [Eqn. 3.10-11). We note that v is a function of ¥ for our prob-

lem and a function of y for the two component problem. Using conserved variables, we may view
Y= 7[-%?-] (two component gases) 4.9)

y= 7[-951] (level set, immiscible problem) 4.10)

We Jet ¢ denote either ¥ or v for the two problems and obtain the Jacobian as in [35)

( \

0 1 0 0
e R
oF _ | | @.12)
M |(Elhwtu-wX H-Du? X
it ¢ 0
\ /
Here, the enthalpy H is defined by
H= ET*E. (4.13)



The cigenvalues of A are

AM=H~C, Ay=u=d;,  ASH+

where
- AE
P
A set of right eigenvectors is
] 1
u-c u
"= YW —ur r2= 1,2
s 2
¢
0 1
0 U+
=y x T4 = \Hauc
-1 ¢

For our definition of y(y), ¢X =0 and

=—pf
X a-Dp S (v-0) vl

(4.14)

(4.15)

(4.16)

@.17

(4.18)

Obviously b (w—0) must be approximated numerically. We shall describe this in the next section.

C. Approximate Riemann Solvers

We mast now solve the Riemann problem that occurs in the decoupled diagonalized system.

We use second order TVD schemes, which can be based oe either the true solstion to the Riemann

Osher’s [48] or van Leer’s [65).

problem (Godunov's scheme), or, mare likely, an approximate Riemann solver, eg. Roe's [56]




For otr problem, the simplest scheme is van Leer's, since it is based on a flux splitting
Slq.qn) =r"@) + @) (4.19)

The eigenvalues of —af—* (_B_f__) are all nonnegative {(nonpositive). Each typically has one zero and

o " dq
two non-zero eigenvalves, However, there is no ‘‘switching” across the point =0, thus the scheme

is relatively viscous near siagnation points. This will be important in the solution of the Rayleigh-
Taykr snd Kelvin-Helmholtz problems.

For Osher's scheme

fiwow = Jr@ +ren- 11 1L @i aq #20)
L

where the integral is taken along successive paths parallel to the right eigenvectors of %&

The construction here is simplified by requiring that the Riemann invariants be constant along
each path. This leads 10 a single equation for 2 single unknown for an intersection point. It can be

shown that Newton's method globally converges for this, (details elsewhere).

Roe’s scheme can be written as

Fr.a) = 21 @) + f@n - 5 1A i@ - ) CE)
where A=A (q.,qz) is & matrix satisfying

flq) - flan) = Ax(a - Q2) “422)

It tumns out that for ¥ law gas dynamics, Azx can be chosen to be the Jacobian matrix evalusted at
some intermediate state gz known as the *“Roe average of g qz". This cannot be done for the
system here. Bowever in [35) a Roc matrix for two component flow was constructed which is very
close 1o the Jacobian at the Roe average. The expression is
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0 1 0 0
ik e 41 X
oF 2
— }
% |_af. ;‘ Sk A-(-Da® §a ak
<y ) 0 @
\ F,

where the averaged state §=(5.pi £ H7 )7 is defined by:

_ PL‘J;’:“' PraPr

= ")
R Y

“L‘Jiz"‘l‘n Pxr

(@ = LPLT AP,
oo+ Ar

Hyp. + Hyalpx
oL + ox

YL‘J‘-):"’YIJ;;
o + Apx

B
Y=

where § = ¥(§) and

2 < SuCeltri - 1T
YC, + (1-Y)C,,

with

T, + Taalpr
i+ o

T=

(4.23)

(424)

(4.25)

(4.26)

(4.27)

(4.28)

429

The matrix A defined by the sbove is then diagonalizable: its eigenvalves are -2, &, @+¢,

where &2 = (§-1XH-&%2). snd its eigenvectors are given by expressions which are analogous to

Eqo. (4.17)

‘This expression has an analogue in ow immiscibie case. We describe this and our nomerical

method in the next section.
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V. Approximation to Equations of Motion

ThesysunisdisaeﬁzedinmbyawwndadamerNO)xlwmcmdmmnebya

two-stage TVD Runge-Kutta scheme which is second order accurate in time. We follow the

spproach described in {62] and stop at the second order accurale level.

Brieﬂy.wcsunpaauni-ﬂimwmmodoﬂhmwmimﬁmtotbcsystemwrinenas

q = L(g)
The TVD operator L(q) approximates L(q) w0 2* order
L{g=L(g) + O(h?
for smooth q, whcr.c k is the maximum mesh size. The Euler forward version
g =q' +a L@@

is assumed to be total variation stabie for

-1

Ar s % (max (lu I/Ax + fvi/Ay + c41/m=+1my2)
A second order TVD Runge-Kutta time discretization is just Heun's method:
q' = qu + A(L[q']
n+l=}_ ] e _éf_ *
q 2@}Q)+2Lh]
which is stable under the same CFL condition as the Euler forward version.
Next we describe the space discretization

L(@=L*q) + L7iqHH (@

(5.1)

(52)

(5.3)

(54)

(5.5)

(5.6)

Buc.dmL'mmim-F,,L,W-G,ﬁﬂ(q)kﬂwmmmdlﬂq)l

the grid point.
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The most intricate part of the discretization involves L* and L?, We describe L* here; L7 is

defined analogously.
L* will be 8 conservation form finite difference scheme
] - -
L= “x (inn=Jjan L)
whueﬂwnunaicalﬂux.fhmisamnda'dermmﬂmaﬁmmﬂq)athcmdpoim

of a cell
{5.8)

Ij = {I!Ij,]nsx SI,‘MQ}
and q(s;,1*) is obtained at all time levels, for x;=-(5jv1n+ -1, the cell center.
First we determine the Roe decomposition. The average Jacobian A, for our system is

analogous to the two component flow Roe matrix in [35]:

& )
0 ) 0 0o 0
W2(@-DE-2-9X G- -8 (G-D X
Ap = 4 -i? v i 0 0 (5.9
~G[A-12(3-1)a%+ 39X ) A~§-1a® -F-1)ad qa  ax
il ¥ 0 0 4
\ /
The averaged states are defined by
6 = Jbc b (510
i= J;:“L Palip (S.I 1)
PL + NP2
with ¥, 5, and ¢ defined in the same way as &. The condition that remains is;
o _ @rp 8- Dioa/(e=1)-p1 Nt ~)] $12)

X
$(¥a—v)

Note that p =274 = §(§~10H-12i*+9*)4. Let Aa = ap —a for some quantity g, and define ap
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by a=Ap/(pAvy). and a; by a;=A(p/(-1))/(pAy). Then Egn. 5.11 becomes

A = a1 - a,-17
It is not possible o iind a function y(y) satisfying Eqn. (5.13) with boundary conditions
Y(y.) = ¥.. Therefore we choose

. (V=L + (Va1 (5.14)
Ve — VL

)

and let $=y(§). Now the condition given in Egn. (4.22) is not satisfied consistently, but can be used

1 computz §(y) or X. Thus, we have obiained a matrix A which is almost equal 10 A(W), except

-

for X.
{ 3
1 1 0 0
. i 0o o0 G+
Ap=4 V v 1 0 va o} (5.15)
H-it 12@%0%) o -XN3-1) H+as
'] v 0 1 v
\ Y,

whereas the left dénvectors I can be taken as the rows of T-!. The left eigenvectors obey the fol-
lowing relations:
Fe ("1’2(7")(*"’+"’215’+¢f 1E34-1)ie .(9—1)ﬁfe’.-ffe=) (5.16)
P = (-,0,1,0,0)
F= (%0000
P+ 1% = (1,0000)0-F
P -P= @2 Ve 000

The eigenvalues are the diagonal elements of

A = diag{ii—¢ ja Ju ji ji+¢) (5.17)
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The Roc-type mairix above has terms which are almost infinite (that is, behave like le_)'
because of Eqn. (5.13). This mirrors the deita function occurring in the Jacobian when y changes

sign. In spite of this, no stability problems were found in our calculations below.

Algorithm (TVD-Roe),

Given the siates q; = q(x;), where the x; are grid points, we compute the fluxes f; = f(q)).

To determine the numerical flux f js1, We transform o characteristic (Riemann invariant-like) vari-

. ables. We denote the left eigenvectors (computed in Eqn. (5.15)), the right eigenvectors, and the
eigenvalues of A, 12 = Agx (see Egn. 5.15), (Jeft state q;=q;, right state q,=q;.1) by [¥s, rfiin.

Afn. v=1,2,3,4,5. Computation shows that

’ P
?—j‘lla = Ujn T Cian = dian— (M) (5.18)
Pj+12

AARn=ARln=An=wan (5.19)
ARn = ¥jnr - Cun (5.20)
Also,
1 if vt '
¥ - rfln=84= {0 ifvau} (521)
We may decompose
ves
fr=3 1Mo -G, k=j-l,.j+2 22)
wn)
where
G =1l fi (523)

The next step is just second order accurate ENO integration on G, namely
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G = G + 12aM

G = Gf) - 17288

a}"l = G}') - Gm bf‘" = G_,‘If - G}‘"

af if lafisipMI

AWM =

’ b otherwise
Upwind differencing is now applied to the Seld

( G if Af}1n20
v =
Gji-}ﬂ. = G i,,, 1 .
Finally, we transform back by leming

fisn= i rfln -GSl

vm]

(524)

(525)

(526}

527

(528)

(529)

There is & (slightly nonstandard) version of a second aorder accurate TVD Roe-based scheme, see

{62]. As such, it is known t0 admit stationary expansion shocks. An entropy fix due to Harten {24]

is obtained through

Gjan =172 [62+ GI” - 05l (647 - 627) ]

(530)
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r.ﬂ'gn(x) if 1x12¢, )

2+t f
if ixi
Zlﬁj (}( X 1< } (531)

8(!}=‘

4
AL SN e}
%7}

\ /

We choose € = 0.1¢,,12. This entropy fix suppresses unphysical expansion shocks, and is only
mplicd for the charcierisic Seld v=l if (u—c);<O<(u—);n, and for Beld v=5 if
(u+c);<0<(u+¢ ).
Finally, we consider the case for computations where y is not in conservative form. The term
sy, is approximated via
(s, = w7 (1) + 1208w)) - D1+ 12089011 + (5.328)

w7 (19301~ V2B - by~ 1289),)

u} = max(u;,0) 4} = min(x;,0) (5.32b)

(Ay); = smaller in absolute value of(w; .1~ V¥, . ¥, = V¥;-1) (5.3%)

The other tarm wy, is approximated analogously.

The spatial discretization of the remaining four equations is as described above, and the time

discretization is just Heun's method, once again.




V1. Results

A. Rayleigh-Taylor Instability

The numerical experiments were performed on a rectangular domain with walls on the lower
and upper side, and periodic boundaries in the horizontal direction. Gravity acts in the upward

direction. The borizontal size of the domain is chosen as wnit length. An initial sine permrbation

has a wavelength A of the same xize. As initial conditions, we use the solution of the linearized

equations given in [21]. This solution refers to the air-air case. The relevant parameters are the ini-
tial density ratio D=p,/p, and M %=g)%c?. The subscript @ refers W the gas just above the inter-
face, the subscript & to gas just below the interface. The sound speed just below the interface ¢,
is set 10 1, as is the density (c,=1, py=1). The constant of gravity follows from M2, The adiabatic
exponent ¥,~Y,=1.40,

Figure 1 shows contours of y at values of —1/32, 0, and 1/32, for times 0, 1, ...., 6. The grids-
have size 64x128 and 192x384, respectively. Symmetry is forced: the computations have been car-
ried out on & grid with half the size in the horizontal direction. The initial density ratio D is 2, the
amplitude of the initial perturbation is 0.015, and M %=0.5.

In Figure la, we see that & small sinusoidal perturbation grows into the expected mushroom-
sheped object and develops side rolls. However, tripling the mesh size, shown in Figure 1b, does
not produce a refined picture. Instead, pronounced oscillations develop, and smaller rolls appear on
the surface of the basic stucture. This suggests that the solution does not converge under

refinement. As a test, we compute the relative exror in w defined by

ENy) = Ly =2y 1L ©.1)
where the superscript A denotes the cell size of the uniform grid, and 2k the grid size afier cosrsen-

ing. In order to compare the two, we apply the resiriction operator /2 10 the solution of the fine

mesh and volume average to produce values for comperison with the coarse mesh size, The initial



data obey E2 = 0 (h?), implying sccond-order accuracy. For short time, the error decreases as A is
refined. However, for larger times T>4, the error increases as the mesh is refined. In Table 1, we
show these results for the inviscid (u=0) case.

This indicates that the problem is physically unstable. To obtain a stable solution, we add
physical viscosity. The Navier-Stokes equations without beat conduction are used. Following Stokes
bypothesis, the mecond coeflicient of viscosity 3-=—--§-u- The first coefficient of viscosity i is

chosen 10 be constant The spatial discretization is based on the usual central differences. The

timestep is chosen as
A x )7
- 1 2 62
a [cn_, * CFL,] €2)
where
Ayemax(iul + vl + cNZyh, A=A B _1 63)
' 3 &2 min(p)

Here the maximum and minimum are computed over the grid. We use CFL,=2/3 and CFLy=1.
The addition of physical viscosity stablizes the problem. We performed runs with grid size of
32, 48, 64, 96, 128 and 192 mesh points across the horizontal width, with twice as many points in
the vertical direction. The results indicate thai convergence improves with larger values of the
viscosity ji.. Table 1a shows the relative errors E2* in v, computed from a grid refinement sequence
with A~! equal © 32, 48, 64, 96, 128, and 192. The number of points in the vertical direction is
twice that smoumt.
mlbmum-dmp.wwawm-mmb
log EZ\(y)mbgtplog h, wsing A2 as weight The grids used have 64, 96, 128, 192, 256, and 384
points in the vertical direction, and half that number in the horizontal direction (actally 1/4, with

the forced symmetry). This provides 4 data points for each least-squares fit. It is clear that without

viimﬁty.ﬁemmm:dayidmmmemme.mmminmmﬁm




larger values of the viscosity U.

Figure 2a shows y at time 6, for various choices of y. Figure 2b shows the deasity p for the
same perameiers, Since there is no feedback mechanism from the front to the fluid, the density of
the foid is a good indicator of the front position. Comparison of the two figures reveals the
cosmetic character of .

The above cakulations consider a conservative differencing of v, initialized as the signed dis-
tance 1o the initial front, as given in Eqn. (2.2). We now consider aliematives to this approach. To
begin, other researchers have tracked fronts by following the evolution of a "colar™ function, which
is -1 on one side of the front and +1 on the other. A sophisticated variant of this idea using 2 ver-
sion of SLIC to gain subcell resolution was employed in [13] w0 performed detailed calculations and
comparison with experiment of a shock wave hitting a gas interface. We may incorporale a color
function into our code by initializing ¥ to 1. Figure 3a displays the result of a computation identi-
cal 1o the one in Fig. 1a, but using the color function instead of w. Comparison shows that the color
function suggests a faster evolution of .lhe instability than . This is highlighted in Fig. 3b, which
shows part of vertical cross-section through the middle of Fig. 3a

Next, we consider non<onservative differencing, as discussed in Section mA. Here, the stan-
dard fom-wuipormt hyperbolic system is solved, and those velocities are then used in a second
oder accurate upwind fashion to advect y using Eqn. (3.7), as described in the text. In Figure 3b,
we campare the results of conservative and non-conservative differencing of both the initialized dis-
tance function for w and the color function. Our results here seem to indicate that the non-
conservative differencing of y uzing the level set initial distance function is most desirable.

The motion of the front becomes significantly more complicaed when we aliow feedback
between the front location and the fluid mechanics. Consider an sir-helium boundary. Here, the bot-
fom gas is air with y,=140 (Air), and the top gas is helium with ¥,=1.63 (He). As initial condition,
we again use the linearized solution. Using the molecular weights ji,=28.964 and i =4.00260, we

st =1 and p,=1, and find a density ratio by assuming constant semperatire and pressure across
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the interface, This implies that the density Tatio D =p,/p,=Hy/I) and that cd=ci(a/%)D .
lnﬁgmn,we:mdciﬂﬁspnblunnsingmnmﬁvcdiﬂ'mscingofﬂwlevc!ﬁlgas
dynamic five component hyperbolic system and the original distance function ¥ inidalization. Cal-
celations are performed on & 32x56 grid. The small initial bubble grows upwards into a long plume.
We show contours of v at —1/32,0, 1732, In Figure 4b, we perform the same cakulation using non-
conservative differencing for . For comparison, in Figure 4c we show results using y initialized as
a piecewise constant color function, namely -1 oo one side and +1 on the other side of the inter-
face. Finally, the results of a different computation with the effective adiabatic exponent based on
the éoncmuation Y, as in [35], is shown in Fig. 4d. We have included y in this computation as

well, as a passive scalar, Contours of y arc presented in Fig. 4e.

Computations based on the concentration ¥ mode! different physics. Still, the plot of the pas-
sive ¥ corresponds fairly closely to the one in Fig. 4a. A comparison between Figs. 4¢ and 4d

shows that it is not 50 easy 10 determine the position of the (smeared) front from the concentration.

B. Kelvin-Helmhoitz Instability

Next, we perform calculations of the Kelvin-Helmholtz instability. As initial conditions, we
take constant pressure and (emperature above and below the interface, with zero vertical velocity.
The initial shape is a sine perturbation. Above the interface, the gas moves towards the left with
welocity =—ug, below the interface, the horizontal velocity is #=wuo. For the air-air case, we set the
density and the sound speed 10 1 everywhere. Again we have periodic boundaries in the horizontal
direction, and walls at the botom and top. Gravity is ot included.

In Figure 5a, we show the evolution of an initial perturbation with amplitude a=0.1 and
Ne.gas- We use 2 128x256 grid. We study sn air-air interaction, so that the level function v is pas-
sively advecied. We plot values of y at —1/32,0,1/32. The results show the rollup of & variex stni-

ture as it progresses through several turns. The small oscillations in the shape seem o indicate, once
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again, that the problem is physically anstable. We check this by analyzing the computed solution at
time =6 for various values of A. In Figure Sb, we show the results of a calculation on & 32x32,
64x64, 96x96, and 128x128 grid. The refinement in mesh size at fixed time indicates that the results

are not stable.

Next, we add physical viscosity to the system. In Table 2a and 2b, we show the exror EM(y)
measured in the ; norm as a function of the grid size and viscosity p at various times. The intro-
duction. of physical viscosity stablizes the problem. In Figure 5¢, we show zero coniours of v at
time ¢=6, with viscosity =0, 107 107 .5x107% going from left 10 right. As expected, the introduc-
' tion of physical viscosity slows the rollup.

Figure 6a shows the evolution for the air-helium case. The gas below the interface is belium.
The initial conditions are: ¢,=1, Pp=1, D=p)/p,=Ms/ly, c3=¢ZDYs/%, u=2u,, v=0. This
corresponds 10 constant initial pressure and temperature. We let ug=0.5. The initial sinc perturbation

has an amplitude a=0.1. The roll-up can no longer be resolved after a time between 4 and 5.



Piscossion

In this paper, we have discussed the coupling of the level set farmulation of interface motion
to the equations of compressible gas dynamics. We have considered two spproaches. In one
lmwh,dnhvelnteqmﬁonisposedinmlﬁveﬁxm.mdcwpledmuwfm-
component system, Aliematively, we have shown that a conservative version of the level set func-
tion y can be directly incorporated as 8 five-component system of hyperbolic conscrvation laws
using standard shock technology. In both conservative and non-conservative seitings, we have
examined the distance function initialization of the level set function w and a degenerate initializa-

tion nsing the color function.

The efficiency of these various techniques depends on the particular problem under study. In
the Rayleigh-Taylor problem we considered, the normal velocity varies continvously across the
interface, unlike the density p, which undergoes a jump. In this case, the non-conservative formula-
tion for W uses a smooth u, and our results indicate that this spproach is preferable to direct incor-
poration of y into the conservative sysiem because of the discontinuity in py. It seems reasonable
to expect that for problems in which » jumps across the interface, the conservative approach will be
preferable.

In the problems considered here, the front velocity does not depend on the geometry of the
interface. All that is needed is a rough kocation of the front 10 determine the selected region for the
gas oomtam."!‘hus, the ability of the Hamilton-Jacobi leve! set formulation to accurately cakulate
curvature and normal direction is untapped in this simple calculation. For such simple problems, the
color function is an adequate initialization, and leads 10 only slightly worse performance; bowever,
we point that it is no chesper than our original level set approach. Furthermare, in more sophisti-
cated problems, see, for example, [60], the color function idea is insufficient and the full capabilities
of the level set approach are utilized.
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Finally, we have computed the solution 10 two complex physical phenomena. To what degree
are these solutions accurate? First, we point out that in the zero viscosity limit, both of the problems
are physically unstable. Our cakulations in this case do not converge with respect 0 mesh
refinement. We believe the following is 2 plausible scenario. Owr schemes introduce artificial
viscosity which decreases with decreasing mesh size. For a coarse enough mesh, the numerical
viscosity stabilizes instabilities that occur in the zero viscosity limit, and the solution is smooth.
‘This can be seen in the calculations with coarse grids given in Figure Ic. As the mesh size is
refined, and the anificial viscosity lessens, small physical instabilities are not suppressed and instead
grow, as secn in the finer grid calculations of Figure Ic.

In order 1o justify this hypothesis, we should be able to demonstrate that, given some amount
of physical viscosity, we can compute on a fine enough grid so that the physical viscosity dom-
inales the numerical viscosity on the results are unchanged with respect to further grid refinement,
This is the experiment indicated in Tables 1 and 2. On the basis of this, we believe that our tech-
mique is capturing a reasonable portrait of the solution in the viscous cases, and refiects the physical
instability of the problem in the zero viscous limit case. Of course, the particular unstable solution
:howuﬁuwcascu=0mmﬁnje; only the gross features are of significance.

In future work, we hope 1o use the notion of subcell resolution {25] together with the level set

formulation 10 account more accurately for the small scale geometry of the front
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Appendix: Color Versus Smooth y

Consider the one-dimensional motion of a contact discontinuity. Let its speed be uy. Then our

sysiem reduces o

LW =P (A1)
a g =0 ‘”’[w)

A first-order discretization of this system introduces numerical viscosity, which can be modeled by

the equivalent equation

w,, dw_ P
2 4w = e (A2)

Transforming to moving coordinates x'=x - ufo, '=¢ produces the heat equation
W, = €Wy (A3)

where the primes have been dropped. The solution is

wix ) = _IK(xa)w(.v oy (Ad)
where the kemel
K@xy)= -%-(w Y 2exp [_%ﬁ] (AS)
o=t o) s
the solution is
wid) =+ D) Sea)= 3 [1 . af(ﬁ;)] A

Let the color function be denoted by w€, and the smooth version by w*. Their initial data are
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-1 x<0
el

v 0=x (A9}

respectively. The initial density distribution is p(x 0)=p, for negative and p(x 0)=pp for positive

x. 'The solutions are

c = PP +PL)S (x 1) AlD
v PLHPr—PLIS (x 1) (AL0)
and
_ Pr-pL) o« " _x ' Al

Ve S PG ) (n] “p[ w) (1D

At x=0, we find
v 04) = g% (A12)

12

v‘(o.:)=%f-:%i=- %) (A13)

Let A=(py—p. ¥(pr+p.). Then the point where w° (x 1)=0 is, for small A,
x5 A Vrer (A14)
whereas for the initially smooth w¥¢#) we find
o =a it ix (A15)

Both are wrong: we should have xg=0. The smooth function w*“+#) is better than the color function
¢4 in monitoring the position of the. front, but only by & factor 2/x=0.64.

Figure 7 illustrares what happens for the second-order ENO/ROE scheme. Two contacts are
moving on a one-dimensional periodic grid. The density and color function are smeared, due ©
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namerical viscosity. Although the numerical viscosity is smaller than for the first-order scheme, the
zero-crossings of w© and w® appear to display the effect described above. Non-conservative
differencing for both v° and y€ are also shown. The non-conservative scheme for y* seems to be

i best choice.
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(2h)~1, BT time Y 5 10-4 110-3 5 10-%
32,64 0 115-5 1.15-5 1155 115-5
2 4034 3224 513 -4 3.46 ~4

4 7373 479-3 3.70-3 1.08-3

6 279 -2 2.47 -2 2.02 -2 5673

48,96 0 511-6 511-6 5.11-6 511—6
2 279 —4 1.80 -4 2.46— 4 162 -4

4 6.40 -3 342-3 227-3 548 — 4

6 2.88 — 2 1.80 -2 1.39 -2 3.19-3

64,128 0 287—6 287—6 2876 2876
2 2.34—4 121 -4 1.55 — 4 971 -5

4 590-3 258 -3 158 -3 3.46—4

6 3572 122 -2 9.59 — 3 2.10-3

96,192 0 1.28— 6 128 — 6 128—6 1286
2 171 -4 6.85 -5 8.04 -5 5.05—5

4 571-3 152-3 8.42 - 4 1.92 -4

6 6.20 -2 8.64-3 514-3 1.16 -3

Table 1a. Relative error E}*(y)} measured in the ¢, norm, as a function of grid size and
viscosity u at times 0, 2, 4, and 6, for the Raykigh Taylor problem.

M morm t=0 t=2 i=4 i=6
0 £ 2.00 1.04 0.16 =0.93
Ly 1.95 0.01 -0.41 —0.81

510~* 4 2.00 1.62 1.22 1.42
2 1.95 0.83 0.98 0.78

110-3 4 2.00 1.63 1.46 1.43
L 1.95 0.78 1.29 0.97

5103 4 2.00 1.67 1.51 1.46
Ly 1.95 0.61 0.84 1.32

Table 1b. Order of accuracy, estimated from the relative error in ¢ measured

in the ¢, and £, norm, as a function of the viscosity u at various time, for the
Rayleigh Taylor problem.



(2h)"%, A7 | time =0 110~ 510~ 11073 510-3
32,64 0 394—-5 | 894~5 | 304-5 | 384-5 | 394-5
2 664-3 | 647-3 | 545-3 | 473-3 | 279-3

4 126-2 | 120-2 | 906-3 | 820-3 | 444-3

6 164-2 | 164-2 | 125-2 | 104-2 | 533-3

8 1.04-2 | 121-2 | 136-2 | 1.14-2 | 555-3

48,96 0 1.76-5 | 1.16-5 | 1.76-5 | 116-5 | 1.76-5
2 564-3 | 518-3 | 371-3 | 289-3 | 157-3

i 134—-2 [ 1324-3 | 747-3 | 509-3 | 254-3

6 1.77-2 | 180-2 | 119-2 | 807-3 | 320-3

8 1.86-2 | 162-2 | 986-3 | 927-3 | 342-3

64,128 0 993-6 | 993-6 | 983-6 | 993-6 | 993-6
2 511-3 | 433-3 | 268-3 | 195-3 | 1.02-3

4 1.20-2 | 113-2 | 616-3 | 369-3 | 160-3

8 180-2 | 174-2 | 103-2 | 648-3 | 216-3

8 185-2 | 182-2 | 861-3 | 806-3 | 239-3

Table 2a. Relative error E}*(y)) measured in the £, norm, as a function of grid size and viscosity
4 at times 0, 2, 4, and 6, for the Kelvin-Helmboltz problem.

§ norm 1=0 1=2 1=4 t=6 1=8
0 A 1.99 0.36 0.04 -0.21 ~0.48
Lo 1.31 -0.18 ~0.58 | -1.02 -1.11

110°4 ¢ 1.99 0.60 0.18 -0.08 ~0.51
L 1.31 0.02 -0.51 ~0.90 -1.33

510°4 4 1.99 1.07 0.60 0.36 0.58
Lo 1.31 0.81 0.45 -0.07 0.33

1102 4 1.99 1.31 1.14 0.72 0.49
Lo 1.31 1.24 0.92 0.29 0.18

5 10~9 4 1.99 1.47 1.41 1.30 1.23
Lo 1.31 1.00 1.60 1.00 0.82

Table 2b. Order of accuracy, estimated from the relative error in ¥ measured
in the £; and &, porm, as a function of the viscosity u at various time, for the
Kelvin-Helmboltr instability.




Figure captions

Fig. 1a. Contours of y at values of —1/32, 0, and 1/32, for a 64x128 grid. The computation has
been carried out on a 32x)28 grid, with forced symmetry.

Fig. 1b. As Fig. 1a, but for a 192384 grid.

Fig. 1c. Grid refinement sequence at time 6. We have h~'=32, 48, 64, 96, 128, and 192, from left
%0 right, top to bottom.

Fig. 2a. Contours of y at values of —1/32, 0, and /32, for the computations described in Tablk I at
time 6. The viscosity i has values 0, 51074, 1-107%, 51073, and increases from left 10 right.

Fig. 2b. As Fig. 2a, but now the density is ploted. Contours are 0.1 apart.

Fig. 3a. Coniours of the color function at -0.5, 0.0, and 0.5 for a 64x128 grid. The computation has
been carried out on a 32x128 grid, with forced symmetry.

Fig. 3b. Vertical cross section halfway Fig. 3a at time 6. Shown are p {drawn line), ¥ (dashed),
and the color function (dots). Also shown are runs for non-conservative differencing.

Fig. 4a. Contowrs of y at valves of ~1/32, 0, and 1/32, for 8 32x256 grid, in the Helium-Air case.
Fig. 4b Same parameters and initialization with non-conservative differencing.

Fig. 4c. As Fig. 4a, but now w has been initialized as -1 and +1, representing a color function.
Countours are at 0.5, 0.0, and 0.5.

Fig. 4d. As Fig. 4a, but using the concentration ¥ to determine the effective value of y. Contours
are drawn at 025, 0.50, and 0.75.

Fig. 4e. The (passive) function y at values -1/32, 0, and 1/32, for the same computation as in Fig.
44.

Fig. Sa. Kelvin-Helmholtz instability. Shown are contours of the (passive) function y at values
=1732, 0, and 1/32. The grid has 128x256 points.

Fig. 5b. Grid refinement sequence at time 6, for h~1=32, 48, 64, 96, and 128,

Fig. Sc. Zero conours of w for the computations described in Table 2 at time 6. The viscosity p
kas values 0, 11074, 5107,1-107%, 5.107%, and incyeases from left to right.

Fi. 6. Kelvin-Helmholtz instability for air (sbove the interface) and belium (below the interface),
on a 128256 grid.

Fig. 7. Propagation of two contact discontinuities on a periodic grid. The velocity ug=0.5, the initial
density is 1.0 ar 0.2. Shown is the result & time 2, using second-order ENO/ROE. In the absence of
mumerical viscosity, the resulis wounld be identical 10 the initial data. The jumps in density (drawn
line) occur at x=0 and x=0.5, The dashed line represents the function y¥**), initialized with
~sin(2xx ), whereas the dotted line displays the colar function <), initialized with ~1 if p=1.0
and +1 if p=02. Also shown are the cases with non-conservative differencing.
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Fig. la. Cosonrs of y &t velmm of ~-1/732, 0, ead 1732, for a 64x128 grid. The computation
been carried oot on & 32x128 prid, with forced gymmerry. e -

X002: D= 2.000, M**2= 0.500, 8= 0.015000{ 64x 128}(2,2) igrid=2, icurva1, K= 0.00000, d, 0.03125
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Fig. 1b. As Fig. 1a, but for & 192384 grid.

(D

X005: D= 2.000, M**2= 0.500, a= 0.015000[ 182x 384)(2,2) igrid=2, icurv=1, K= 0.00000, d, 0.03125
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Fig. Je. Grid refmcment soquence ¢ time 6. 'We have A-in32, 48, 64, 96, 128, and 192, from left
o rigix, 10p 10 botom. /e

W001: D= 2.000, M™*2= 0.500, 8= 0.015000] 32x 64)(2.2) igrid=2, icurve1, K= 0.00000, d, 0.03125




Fig. 2a. Contours of ¥ &t values of ~1/32, 0, and 1732, for the computations described in Table 1 at
time 6. The viscosity it has values 0, 5-10, 1-10°%, 5-107%, and increases from keft to right

2d

¥001: D= 2000, M**2= 0.500, &= 0.015000] 192x 384)(2,2) igrid=2, icurv=1, K= 0.00000, d, 0.03125



Fig. 2b. As Fig. 2a, but now the density is pioted. Contows are 0.1 apart

@

V0O1: D= 2.000, M**2= 0.500, a= 0.015000{ 192x 384)(2,2) igride2, icurve1, K= 0.00000, r, 0.10000
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been carried out on & 32x128 grid, with forced symmetry.
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XC02: D= 2.000, M**2« 0.500, a= 0.015000[ 64x 128](2,2) igrid=2, icurv=3, K= 0.00000, d, 0.50000
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Fig. 4a. Conours of w at valoes of ~-1/32, 0, snd 1732, for a 32x256 grid, in the Helium-Air case.
Ll

Y002: D= 7.236, M**2= 1.000, a= 0.015000[ 32x 256](2,2) igrid=2, icurv=1, K= 0.00000, d, 0.03125



0.000 1.000 2.000 3.000 4.000 $.000

Pig. 45 Same paramesers and initialization with aos-conservative differencing.
) Rl

TON?: Da 7236 M™2= 1.000. a= 0.0150001 32x 2561(2.2) ard.crv,pei2 1 1, K= 0.00000, d, 0.03125
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Pig. 4c. As Fig. 4a, but now w has been imitialized as -1 and +1, representing a color function.
Coontours are at -0.5, 0.0, and 0.5, -

4é,

£002: D= 7.236, M2« 1.000, a= 0.015000] 32x 256}(2,2) igrid=2, icurv=3, K= 0.00000, d, 0.50000 i
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Fig. 4d. Az Fig. 44, but wsing the concewurption ¥ © deermine the effective value of . Contours
e drxwn &t 025, 0.50, and 0.75. lfd

MO02: D= 7.236, M™2= 1.000, &= 0.015000] 32x 256}(2,2) igrids2, icurva1, K= 0.00000, y, 0.25000
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MO02: D= 7.236, M™*2= 1.000, a= 0.015000] 32x 256}(2,2) igrid=2, icurve1, K= 0.00000, d, 0.03125
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-1732, 0, and 1732, The grid has 128256 points. Sda

KHA4: D= 1.000, M™2= 0.250, &= 0.100000[ 128x 256)(2,2) igrid=1, icurve1, K= 0.00000, d, 0.03125
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Fig. 5. Grid refinement sequence at time 6, for & ~'=32, 48, 64, 96, and 128.
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<HGR: D= 1.000, M**2= 0.250, a= 0.100000] 32x 64](2,2) igrid=1, icurv=1, K= 0.00000, d, 0.00000
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Fig. 5. Zaro contours of ¥ for the compumtions described in Table 2 at time 6. The viscosity |
e values 0, 1-107, 5-107,1-107%, 5.1072, and increascs from left so right
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KHVO: D= 1.000, M™2= 0.250, a= 0.100000[ 128x 256)(2,2) igrid=1, icurv=1, K« 0.00000, d, 0.00000
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Pig. 6. Kelvin-Holmholer instability for air (sbove the imserface) and heliom (below the inserface), g
o & 128256 grid.

 KDO4: D= 7.236, M™2= 0.500, a= 0.100000] 128x 256)(2,2) igrid=1, icurv=1, K= 0.00000, d, 0.00000
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Fig. 7. Propagation of two contact discontinaities oo a periodic grid. The velocity ug0.5, the mitial

- dengity is 1.0 or 0.2. Shown is the resnlt st time 2, oxing second-arder ENOYROE. In the absence of
sumerical viscosity, the results would be identical 10 the initial date. The jumps in density (drawn
line) occur at x=0 and x=0.5. The dashed kine represents the function %), initalized with
~gin(2xx ), whereas the dotied line displays the color fonction w© &), imitiakized with ~1 if p=1.0
and +1 if pm0.2. Also shown are the cases with non-comservative differencing.







