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Abstract. The aim of this paper is to present a spectral analysis of several block precon-
ditioners : line SSOR (LSSOR), INV and MINV, for model elliptic problems in two dimensions.
We use the Fourier analysis developed in [4] for point preconditioners corresponding to constant
coefficient problems with periodic boundary conditions. This technique allows us to derive an-
alytical expressions for the eigenvalues of the preconditioned system, from which varicus useful
information can be obtained, such as the asymptotic behavior of the condition number K, the
distribution of the eigenvalues and the estimation of optimal parameters. In particular, we prove
that K = O(h~2%) for INV and K = O(h~!) for MINV and LSSOR with appropriate choices of
the parameters in the methods, where h is the mesh spacing. The Fourier analysis also identifies a
MINV condition”, which characterizes the condition under which modifications of INV {of which
MINV is just one possibility) give K = O(h™!). We then provide extensive numerical results which
show that the predictions from the Fourier analysis agree extremely well with the results for the
corresponding problem with Dirichlet boundary conditions.

1. Introduction
In this paper we are primarily interested in considering the model problem

—Au=f inQ=]0,1x]0,1]

with Dirichlet boundary conditions
u|an =0

1

Using the standard five point finite difference stencil with a stepsize h = this gives a symmetric

','1"'_|':i'}
linear system of order n?,
AD:B ES b,
with
Ip -1 4 1
-1 Tp ~I -1 4 -1
Ap = and Tp = . .,
-I Tp -I -1 4 -1
-I Tp -1 4

We are solving this problem either with a descent method or with the conjugate gradient
method (CG). It is well known [2,7] that the rate of convergence of both methods depends on
the condition number of the matrix k(Ap) = Amas/Amin, Where Aue (r€Sp. Amin) is the largest
(resp. smallest) eigenvalue of Ap. Moreover, the CG convergence rate is dependent on the eigen-
value distribution. This is why these methods are usually applied, not directly to the linear system
to be sclved, but to the symmetric form of the following preconditioned system

MplApz = Mgth.

The matrix Mp is called the preconditioner and is in general chosen heuristically to get a condition
number k(M  Ap) smaller than x(Ap) and a clustering of the eigenvalues around 1.
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While there are some theoretical results for bounding the condition number of the precon-
ditioned system as a function of n, very few theoretical results are known for the eigenvalue
distributions, even for problems as simple as the model problem. Therefore, it is interesting to try
to gain some insights in this area; this could help in understanding the convergence properties and
determining the optimal values of parameters which appear in some methods.

Our main goal is to analyze some block preconditioners which have been proposed during
the last several years [1,5,6]. We derive the eigenvalue distributions using the Fourier analysis
technique developed in [4]. In particular, we prove that K = O(h~?) for INV and K = O(h™1) for
MINV and LSSOR, with appropriate choices of the parameters in the methods. We note that these
bounds on the condition numbers and the eigenvalue distributions were not previously known.
The Fourier analysis also leads us to a » MINV condition”, which characterizes the condition under
which modifications of INV (of which MINV is just one possibility) give K = O(h™%). Finally, we
provide extensive numerical results which show that the predictions from the Fourier analysis agree
extremely well with the results for the corresponding problem with Dirichlet boundary conditions.

The outline of the paper is as follows. Section 2 introduces the Fourier analysis technique,
As a first example, in Section 3 we consider the LSSOR. preconditioner, giving an “optimal” value
for the w parameter. Section 4 and 5 derive results for two very efficient preconditioners INV
and MINV which have been heavily used recently (for Dirichlet boundary conditions). Finally, in
Section 6, we present numerical results which show the Fourier resulfs agree extremely well with
the corresponding results for the problem with Dirichlet boundary conditions. Technical proofs
are given in Appendices A~-D.

2. Fourier Analysis Framework

Fourier analysis has been used guite extensively in the past to analyze the performance of
discrete numerical methods. The main idea is to compute the effect of a discrete difference operator
on the Fourier modes (i.e. to compute its symbol) If the difference operator is periodic and has
constant coefficients, then its eigenfunctions are often precisely these Fourier modes and its symbol
can be easily computed and analyzed algebraically. Examples are the classical von Neumann
stability analysis for difference schemes for time dependent PDEs [8] and the smoothing rate
analysis in multigrid methods [3].

Rather surprisingly, the use of Fourier analysis for the study of iterative methods for elliptic
problems has not been wide-spread, especially for the analysis of preconditioners. Part of this
reason is that many preconditioners (such as the incomplete factorization methods [2]) for non-
periodic problems do not have constant coefficients. However, as is well-known the coefficient often
approach constant values in the interior of the domain away from the boundaries. These asymp-
totic values can often be computed easily by considering the corresponding periodic problem. It is
thus natural to expect the Fourier analysis to produce meaningful results for these preconditioners
ag well. In i4], this approach is applied to many of the point incomplete factorization precondi-
tioners (such as ILU, MILU, RILU, SSOR and ADDKR), as well as to the classical stationary
iterative methods (such as Jacobi, Gauss Seidel, SOR and SSOR). In all of these cases, the Fourier
analysis reproduces the classical convergence results. Moreover, it reveals much more details (such
as the eigenvalue distribution) about these methods than was known before. In this paper, we
apply the Fourier analysis to study several block preconditioners. For some of these, even classical
convergence theory is lacking and therefore the Fourier analysis allow us for the first time to under-
stand their performance, especially in terms of the distribution of eigenvalues of the preconditioned
system and the determination of optimal parameters.

We now illustrate the Fourier technique by applying it to several basic difference operators
which we shall emiploy later. Consider the unit square in 2D and a uniform grid with n interior
grid points in both the z and y directions, The Fourier modes on this grid are grid functions u{**%
whose (f, k)-th component is given by:

(u(alt))j,k = eijﬂl e‘lk'ﬁt
where #, = —E{;—_‘-“f and ¢ = 3—_’1’_‘;
Consider as an example the difference operator T (a, 8) defined by:

(Th(e, BYv); 5 = —BY; p1 + ¥ &~ BV; kg1
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The Fourier transform F(T}) (ie. its symbol} can be computed by applying 71 to the Fourier
mode 1% given earlier and we get:

Tt = ﬁeijs,(ei(k——l)m + ei(k+1)¢,) + eiifs gikt
which after some simplifications yields:
Tyul® = (o — 28) + 48 sin? ($u/2))u’®,
Thus,
F(Ty(e, B)) = (o ~ 28) + 48 sin*{; /2).

Similarly, the Fourier transform of the following operators:
(Taa, B, 7)v)ip = —Bvs,p-1 + o0k — B k41 = T0i+1ks

(Ta{e, B, 7))k = =BV p-1 + @ik = PUjk+1 — TVi-Lks

are given by: )
F(To(er, 8,7)) = (o — 26) + 4B sin($/2) — ve'*".

F(Ts(o,8,7)) = (@ —28) + 4ﬂSin2(¢t/2) _ 'fe‘“',

Finally, the Fourier transform of the standard 5-peint discrete Laplacian Ap is given by:
F{Ap) = 4(sin%(8,/2) + sin?(¢+/2)).

We also note the Fourier transform of a product (composition) of operators is the product
of the transforms of the individual factors and the transform of the inverse of an operator is the
inverse of the transform.

A good way to view the Fourier technique is to think of the difference operators as constant
coefficient operators with periodic boundary conditions, which are diagonalizable by the Fourier
transform. In matrix form, these difference operators are represented by order (n + 1)? block
circulant matrices. For example,

T I —1 4 -1 ~1
I T -I 1 4 -1
Ap = , with T= R
-1 T ~I 1 4 -t
I I T -1 1 4

For further reference, we will denocte

0 -T

-I 0
and by Dp the block diagonal of Ap. The matrix Ap is singular, as the solution of the problem

with periodic boundary conditions is only defined up to a constani. Following the approach in [4],
we will ignore the zero eigenvalue for our purposes.

3. LSSOR
The first block preconditioner we consider is the LSSOR. method [1]. The preconditioning
matrix M for this method is given by

— 1 -1 T
M—m(A"‘WLP)A (A+UJLP),



with

T

w being a parameter between 1 and 2.
In terms of the difference operators defined in Section 2,

1 —1
M= oo T L) (4 DT3(4, Lw)

Using the techniques of Section 2, we can compute the eigenvalues g of M~ Ap as:
fhay = Ld(2 — w)F(T;(é, 1))F(Ap)
0T P (T4, 1L,w))F(Ta(4, 1,0))

_ 4w(2 — w)(sin®(8,/2) + sin®(¢:/2))(4sin*(8,/2) + 2)
T (4sin®(8,/2) + 2 — weit)(4sin® (8, /2) + 2 — wei¢)

which “simplifies” to

o dw(2- w)(sin?(6, /2) + sin®($,/2))(4sin*(8,/2) + 2)

Mot = :
"7 (@sin®(8,/2) +2)° + w? — 2w cos(de)(4sin®(6,/2) + 2)
where 1
B, =2msh,s=1,...,n; d=2mth,t=1,...,n; h:m; w € [1,2).

Using these values, it can be seen, for instance, that forw = 1, k(M1 Ap) > O(h~2), but we have:

Theorem 3.1 There exists an “optimal” value w* = 2 — 24/27h + O(h?) of w for which
(M~ 1Ap) < O(h™H).

Proof : This result is proven in Appendix A. &

In Figures 3.1, 3.2 we plot the eigenvalues ji,; as a function of 8, and ¢y forw =l and w = 1.74
respectively, both for n = 40. Figure 3.3 gives the condition number (M ™! Ap) as a function of
w from which it can be seen that the optimal value of w is close to 1.74. From Figure 3.4, it is
verified that & grows linearly with n for the optimal w and like n? for other values of w as predicted
by the theory.

4. INV

The motivation behind this preconditioner comes, for Dirichlet boundary conditions, from the
complete block Choleski decomposition [5].

Here, with periodic boundary conditions, Ap can be decomposed as

Ap =(A 4+ Lp) A1 (A+ Lg),

with
=

bH

and the diagonal blocks X are defined by the following equation:
L=T-%"N
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The matrix ¥ is in general dense. The main idea of the INV preconditioner is to approximate
the inverse that appear in the formula above by sparse matrices to get an incomplete decompo-
sition. In the special case we consider, we will use tridiagonal circulant matrices. To derive this
approximation, we need a few preliminary results.

Theorem 4.1 et ~ ~ 2 and

v -1 -1
-1 v -1
S _ ‘ ;
-1 ~ -1
-1 -1 ¥

be a symmetric tridiagonal circulant matrix. Then
a)
S =Lg D' LT,

where
d d -1

with d = 21
b) §~1 is a symmetric circulant matrix.
dr+1

¢) The elements of the main diagonal of S~! are x = 3-;'1_—1 [ﬁ] .

The second diagonal of S~1 is given by £ = %('yx —-1)= dzl_l {1 + 'y-&;‘i_—f] .
Proof : see Appendix B, &

From these results we can get the desired approximation.

Definition 4.2

x ¢
& x &
Twid(sy=| o |
& x ¢
£ £ x
with the values of y and ¢ given m Theorem 4.1. &
This definition can be extended by scaling to a more general ridiagonal circulant matrix.
Let
o —f —f
-8 o -f
S(ﬂf, ﬁ) = " i
—# a -p
- -f a
with o« > 28.

Definition 4.3 Define the operator T'trid, which approximates the inverse of a circulant
tridiagonal matrix S(a, ) by a circulant tridiagonal matrix S(x, £}, by:

Ttrid(S™ (e, £)) = S(x, ),

where

_d [dr+1
= e ]

b



1 a d
ézmﬁmwb+ﬁw—J’

d= a+Ja? — 432
- 27 ’

and where

&

Now we can define the INV preconditioner as :
M=(A+Lp) A~ (A+ LD,

with
A

A

and A is a tridiagonal circulant matrix satisfying the following equation :
A=T-Ttrid(A™1).
With the definition of Ttrid, this equation can be solved for A.
Theorem 4.2 The INV preconditioner is given by
M =(A+Lp) A7 (A +LE) = Ts(e, 6, 1)1 e, B)To(a, B, 1),

where A = S(w, §), with
a=4

d dr+1
T A@ ) dﬂ—l}’

1 a d
=1 gy [ )

et /TP
—2he

and where

¢

Using the Fourier technique of Section 2, we can compute the eigenvalues py: of M~1Ap as a
function of « and 3.

Theorem 4.3 The eigenvalues of INV are given by:

48(sin?(0,/2) + sin® (/) (4sin®(0,/2) + )
(BlAsin®(8,/2) + (] — &%) (FlAsin®(6,/2) + ] — e—90)

with { = a/f — 2, which simplifies to:

#st =

_ 4n(sin2(¢9,, /2)+ sinz(qﬁt/Q))
” 7 + 1~ 2ncos(¢:)

where n = B(4sin®(8,/2) + ¢). &

It can be shown (cf. Appendix C) that 4 > & > 28 > 2. This means that as n — co (i.e.
h—0), &/ = O(1).

From this, we can deduce :




Theorem 4.4 For the INV preconditioner,
E(M_lAp) > O(h"2)
Proof: Consider first p,; for 8, = ¢; = =, then n = f(4 -+ {) = O(1);

Ui

#at:——'——“““‘n2+2n+1

= 0(1).
Hence, Amaz > O(1). Now, conmsider §, = ¢; = 2rxh, then n = O(1), cos(¢:) = O(1) and
st = O(h?). Therefore Apin < O(h*). This implies E(M_lAp) > O(h™2). &

This result was first observed in numerical results for Dirichlet boundary conditions in [5].

As we are mainly interested in Dirichlet boundary conditions, it is useful to consider the
asymptotic case, when n -+ 0o, as this reflects what happens inside the domain, far enough from
the boundaries. Then, the values for « and  we obtain are the same as for Dirichlet boundary
conditions. The limiting values of @ and # are solution of the equations

d
a:é—————~—-—-~ﬁ(d2_1),

1
ﬁzl-{—m.

Numerically, it can be computed that o = 3.6539 and 3 = 1.1138.

In Figure 4.1, we plot the eigenvalues p,; as a function of 8, and ¢; for n = 40. Figure 4.2
gives the condition number k(M ~! Ap) as a function of n from which it can be seen that & grows
like n? as predicted by the theory.

5. MINV

The MINV preconditioner has been introduced in [5] for Dirichlet boundary conditions. Here,
we derive it for periodie boundary conditions.

It is expressed in the same way as for INV; the only difference being that the values of diagonal
elements of M are modified such that the sum of the elements of each row is equal to the sum of
the elements of the corresponding row of Ap (plus possibly an O(h?) term). Hence, to be able to
define the MINV preconditioner, we must first compute the row sums of S™*(a, 8} where S(a, 8)
has been defined in the previous section.

Lemma 5.1 Let r(S~1) be the vector of row sums of S~ and e = (1,1,..., 1)”. Then

HS7 (@) = =55 ¢
Proof : It is obvious that #(S71) = 57! ¢; but
Se=(a-20) e,
and hence 1
S7le = oY e.
¢

Now we can define the preconditioner as for INV; except now we must compute A such that:
(i) A is an approximation of the corresponding matrix in the complete decomposition and (ii) our
row sum criterion is satisfied.

First, we compute the remainder Ep, defined by:

M= Ap + Rp.
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By direct computation,
M=A+Lp+ILL+LpA ' LY = A—Dp+ LpA~1LE + Ap.

Tt is easy to see that LpA~*LT is a block diagonal matrix with all the blocks equal to A™'; hence
Rp 18 also block diagonal with blocks R whose value is

R=A-T+AL

Let A = S{a, 8) and Mtrid{A~") be the circulant tridiagonal approximation we are going to use
for A=*. Analogous to INV, A is defined by

A =T — Mtrid(A™Y),

and therefore we have
R= A1 — Mtrid(A™1).

The row sum condition we require is

r(R) = ch?,
where ¢ 18 a constant independent of k. This implies that:
1
crea 1Ny _ L A—1y a2 Y
r(Mirid(A™")) = (A7) —ch =y ch®.

Therefore, using the approximation Ttrid of A~! in Definition 4.3 and modifying its diagonal to
satisfy the row sum condition above, we arrive at the following approximation of the inverse of a
circulant tridiagonal matrix.

Definition 5.2 Define the operator Mirid, which approximates the inverse of the circulant
tridiagonal matrix S{a, 8) by a circulant tridiagonal matrix S(yx, ), by:

Mtrid(S~a, B)) = S(x,€)

with . 0 y
_ _ @_ & | _.p2
e s T R
1 o d
52&¥—nb*ﬁw—J’
and
J_ a+ T
_mm""““'ﬁbm”_'—.
&

The condition A = 1" — Mtrid(A~!) now gives a set of nonlinear equations for « and g.

Theorem 5.3 The MINV preconditioner is given by
M =(A+Lp)A YA+ LF) = Ta(e, 8, DITH (o, £)To(a, B, 1)

where A = S{a, #) and o and £ are the solutions of the following equations:

o=4+ —|—ch2,

2 [l a d ] 1
@D | TFF -1 =-28

1 a d
P=1+ g |+ ]

8



where

o+ /aT I

d= ——.
28

o

As before the limiting values of « and # when n — oo can be found numencally; for example,
e = 3.3431 and f = 1.1715 when e = 0. However, even without knowledge of the actual values of
a and 7, we can deduce the following:

Theorem 5.4 For any n, the « and # computed by the MINV preconditioner satisfy the
“MINV condition”:
(o — 26 — 1)* = (a — 20)ch?.

Proof : From Theorem 5.3, we have

a—28=2— + ch?,

1
a—23
Define v = a — 28, then

P2 2+ chz)u -1
and therefore
(=1 =% — 2+ 1= (24 ch?v — 2v = vch®.
¢

It should be emphasized that this “MINV condition” arises independently of the approximation
we choose for A~! | as long as the row sum criterion is satisfied.

The expression for the eigenvalues py; of M~ Ap is exactly the same as for INV, the only
difference being the actual values of & and 3. So we have:

_ 4n(sin®(8, /2) + sin’(¢:/2))
© i+ 1-2ncos(ge)

Hst

= Bdsin®(8,/2) +¢), (= % ~2.

The main result of this section is:

Theorem 5.5 Let the MINV preconditioner be as defined in Theorem 5.3, with @, # being
any values that satisfy the "MINV condition”

(@—28—1)" = (a — 2B)ch?,

then
fc(M_iAp) < O(h"l).

Proof ;. The proof is given in Appendix D. $

We note that the bound on the condition number holds for any value of ¢ > 0, which is
different than the analogous situation with MILU whose behaviour depends on whether ¢ = 0 or
¢ > (. The important condition is the “MINV” condition, not the value of ¢, nor the values of «
and .

In Figures 5.1, 5.2 we plot the eigenvalues i, as a function of 6; and ¢; for ¢ =0 and ¢ = 30
(close to the optimal value) respectively, both for n = 41. Figure 4.3 gives the condition number
w(M~! Ap) as a function of ¢ from which it can be seen that the optimal value of ¢ is close to 30.
From Figure 5.4, it is verified that & grows linearly with n for ¢ = 0 as predicted by the theory.

In closing this section, we would like to explain why, with the same expression for the eigenval-
ues, the result for MINV is so much different from the one for INV. The O(h~?) behaviour for INV
comes from the numerator of p,:, as the denominator is O(1). In MINV, because of the “MINV
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condition”, there is a cancellation in the denominator, which gives the O(h™!) condition number.
1t should be stressed that the proof of Theorem 5.5 is independent of the actual values of o and
B and only uses the “MINV condition”; this means we can use other approximations for « and 3
and still retains the O{h~!) condition number, although the eigenvalue distribution is dependent
on o and 8.

6. Comparison with the Dirichlet Problem

In this section, we compare the Fourier results with the actual numerical results for the
Dirichlet problem. To do this, we follow [4] and use the Fourier eigenvalues with h, = hy/2 (or
equivalently n, = 2ng 4 1) to predict the corresponding eigenvalues of the Dirichlet problem with
grid size hy. While this correspondence is exact for only a few simple cases, it has proven to be a
very good heuristic and excellent agreements were obtained for the problems treated in [4].

We consider the Dirichlet problem with the right hand side of the discrete problem chosen
such that the exact solution of the discrete problem is given by:

u = ay(l —z)(1 —y)e™

on a uniformly spaced ng by ng grid. We solve the discrete problem by the conjugate gradient
method preconditioned by the Dirichlet versions of the three block preconditioners using zero as
initial guess. The largest and smallest eigenvalues of the preconditioned system are estimated by
information collected during the conjugate gradient iteration using the well-known correspondence
between CG and the Lanczos process [7]. The CG iterations are stopped when these estimates
have converged.

We first present results for the LSSOR preconditioner. In Fig. 6.1 and 6.2, we compare the
condition number (M ™! A4) and the maximum and minimum eigenvalues of the preconditioned
system for the Dirichlef problem and the corresponding values predicted by the Fourier analysis,
for w = 1 and for a range of values of n. In Fig. 6.3 and 6.4, similar comparisons are presented for
the optimal value of w, given by the formula wf,jj% = 2 — /2rhy, which corresponds to the formula
given in Theorem 3.1, but with k there replaced by %i for the Dirichlet problem. In Fig. 6.5 and
6.6, similar results are presented with w varying and n4 = 20 {corresponding to n, = 41.}) We note
in all cases the agreements are quite good. In general, the quality of agreement is not sensitive
to n, but more sensitive when w is near its optimal value, where disageement in the maximum
eigenvalue becomes noticeable,

We next present results for the INV preconditioner. In Figs. 6.7 and 6.8, we compare the
condition number x(M~1A4) and the maximum and minimum eigenvalues of the preconditioned
system for the Dirichlet problem and the corresponding values predicted by the Fourier analysis,
for a range of values of n. The agreement is excellent.

Finally, we present similar comparisons for the MINV preconditioner. In Fig. 6.9 and 6.10,
we compare the condition number (M ~1A) and the maximum and minimum eigenvalues of the
preconditioned system for the Dirichlet problem and the corresponding values predicted by the
Fourier analysis, for ¢ = 0 and for a range of values of n. In Fig. 6.11 and 6.12, similar comparisons
are presented for the optimal value of ¢y = 7. In Fig. 6.13 and 6.14, similar results are presented
with ¢ varying and ng = 20 {corresponding to n, = 41.) We note in all cases the agreements
are quite good, but less well for the case ¢ = 0, where disagreement in the maximum eigenvalue
and the condition number becomes very noticeable. Fven with this disagreement, the optimal
value of ¢ as predicted by the Fourier analysis is rather close to the optimal value for the Dirichlet
problem. This situation is similar to that for the MILU preconditioner [4]. Again, the important
difference is that for MINV both the Fourier analysis and the actual performance indicates that

r(M~tA)y= O(h™1) for e = 0.
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Appendix A: Proof of Theorem 3.1
‘We derive upper and lower bounds for the eigenvalues of the LSSOR preconditioned matrix.
This allows us to compute an “optimal” value of w which minimizes an upper bound of the condition
number.
The LSSOR eigenvalues are :

4(2 — w)(sin®(8, /2) + sin®($:/2)(4sin®(6,/2) + 2)

st = :
T (4sin(0,/2) +2)° + w? — 2w cos(dy) (4sin?(6,/2) + 2)
with 1
0, = 2msh,s=1,...,n;, ¢;=2mth,t=1,...,n; hmm; we L2

Let 2 = sin?(8,/2), y = sin?(¢,/2). Clearly = and y take values in [sin®(7h), sinZ(ﬁ%—ﬁ)], but for

convenience, we will sometimes consider z,y € [0, 1], excluding the zero eigenvalue.

‘We have
40(2 = (& + )42 +2)

(4 + 2)° + w? — w4z + 2)(1 — 2y}

Hst = iz, y) =

Our aim is to find lower and upper bounds for p(a,y).

Lemma A.1 For a fixed value of z, (2, y) is either increasing or decreasing as a function of
¥, 50 the minimum and maximum of ¢ are located on the boundaries with constant y in the z,y
plane.

Proof : Let D = (42 + 2)® + w? — 2w(4a 4 2)(1 — 2y). A little algebra shows that, for fixed z,

5‘_,{1. _ 4(2 — w4z -+ 2)

[(4 + 2)° +w? — 2w(dz + 2)(1 + 22)].

Oy D2
So the sign of %5- is the same as that of (4 4+ 2 — w)2 — 4wz which is independent of y. Therefore,
to find an upper bound for g, it is enough to look at values for y =0 and y = 1. &
Lemma A.2
ple, 1) < 1,
#(=,0) < 1.

Proof : At y =1, we have:

dw(2 —w)(1 + 2)(4x + 2) .

x 1) =
Ko 1) (42 + 2+ w)”

Asw € [L, 2], w(2 — w) is a decreasing function of w and 42 4- 2 + w is an increasing function of w;
and so p(x,1) is a decreasing function of w with » fixed. Therefore,

41+ 2)(4+2)

plz,1) < iz + 3

Now, at y = 0, we have;
4w(2 — w)z(4z + 2)
(4 + 2 — w)*

pu(z, 0) =

and P ( )
o Bw(2 —w

— |ymom — =4l —w)z + (2 —w)|.

But, 42 + 2 — w > 0, so the sign of g—% ly=0 is the same as that of 4(1 —w)z + (2 — w).

12



Ifw=1, § },—0> 0 and so pu(z,0) is increasing and

2qw(2 —w) 24

= =<1
(6-w)® 25

p(ﬂ:,(}) <

If w 5 1, there is a zero of %ﬁ ly=o for 2 = & = -(2—“-"—“-7 Since at & = 0, ‘gm ly=0> 0, the zero of the
derivative corresponds to a maximum as long as & € [0,1] i.e. for w > £.

For w €]1, 5], the same argument as before applies; the mammum zs glven forz=landp<1.

For the remaining case, the maximum occurs for ¢ = m and the minimum oceurs at the
boundaries.

Since 4(1 —w)Z + 2 —w = 0, we have 4% + 2 = w(4Z + 1). Therefore, since w > %, we have:

4w?(2 — w)E(47 + 1)
(4w _)2

_(2-w)
= 3w )_4(2 w) <L

HE,0) = = 2- w) {4z + 1)

It should be noted that there are values of z and w for which u is equal to 1 or at least p = O(1).
<

Now, we are interested in finding lower bounds of p for z,y, € [sinz(vrh),sinz(%f%l)}.
Lemma A.3 u(z,1) is an increasing function of .
Proof : A little algebra shows that:

Op(z,1)  dw(2-—
dz de+24w

w) Blw — 1)z + 6w — 4.

As w > 1, p(x,1) is an increasing function. &

To summarize at this point, we a.lready know that:

(1) for 1 <w < §, p(z,0) is an increasing function

(i) for § <w < 2, p(z, 0) is increasing and then decreasing.

As the partial denvatlves are continuous functions of y, the same is true (for small enough k)
for y = sin®(rh) and y = sin®(Z Tar) = 1= O(R?).

In all cases, we only have three points in the 2,y plane to look for the minimum of y :

2 +1)

Lemma A.4 Let z = 4% = 51n2(7rh) and w} = (/B2 + 2 — 9) = 2 —+/2xh + O(h?).
If w < wd, p(8%,y) is an increasing function of y, the minimum of u(6?,y) occurs for y =
2
sin”(wh).
If w > wé, p(6%,y) is a decreasing function of y, the minimum of u(#%,y) occurs for y =
sin2(-§-ﬁT) and a lower bound is obtained for y = 1.

(sin?(7h), sin(7h)), (sing(-;-r-ni 1),sin2(7rh)) and (51n2(7rh),

Proof : As we have seen before, the sign of the derivative is the sign of
(467 + 2 — w)® — 4w0® = (407 + 2 — w — 20/E)(46% + 2 — w + 20/@).
So, it is also the sign of 46% +2 —w —20./w. Let @ = 1/, we look for the sign of 407 + 2 —w? — 26,

Therefore, if w < wd, the derivative is positive and it is negative elsewhere. &

Let us now distinguish between @ = sin®(7h) and = = sin®(§ )

13



Lemma A.5 For sufficiently small h,

p(sin®(wh), sin®(7h)) < p(sin® (%n z 1) ,sin?(wh)).

Proof : A Taylor expansion of sin{xh) and sin(F ;57) shows that the left hand side tends to
0 as h — 0; as the right hand side is equal to

6 — 4r*h* + O(hY) _ 24w(2 —w)

W~ ) L S5 — R O e T 00) — oy T O

o

Hence, only two points remains as candidates for the minimum: z = sinz(ﬂfrh) and either
y = sin®(wh) or y = gin® 5:07)

As the maximmum value is bounded by 1, our final goal is to find a value of w which maximizes
the lower bound.

Lemma A.6 The lower bound of pi,;, is maximized at w = w* = wi.

Proof : We know that

(i) for w < u?,

2sin®(wh)(4sin®(7R) + 2)
4sin*(7h)/2 + dwsin®(xk)’

Piin = 4w(2 — w)
(1) for w > wé,

w) {1+ sinz('rrh))(4 sinz('frh) +2)

Pmin = 4‘-‘)(2 - 5
(4sin®(wh) + 2 + w)
=4w(2—w) 2+20(h2)
(2 +w)” + O(R?)

For the latter, the lower bound for pipmin is a decreasing function of w; so, its maximal value
is given for w = wi. For w < wi, the lower bound for fi, is also a decreasing function whose
maximum value (for w = 1) tends to 0 as k2 — 0; so, the value that maximizes the lower bound is
w* = wi,

w* = 2~ 2rh + O(h?),

Then the lower bound is equal to

2+ O(h?) _ 32/3nh + O(R?) - o(h).

42— \/i‘?l’h)g\/ﬁ"rh(il ” 2'\/§ﬂ'h)2 + O(h?) T 16— 8v/2mh + 0(h?) -

14



Appendix B: Proof of Theorem 4.1

a) Since
d+% -1 -1
-1 d+i -1
S=1ILs D3t LT = ,
-1 d+% -1
-1 -1 d+12
d satisfies the equation: )
d+ d =7
or
d? —vd+1=0,
the positive root of which is:
g Ytvri—4
5 .

b) It is well known that the inverse of a symmetrie circulant matrix is also symmetric circulant.

c) Now we must determine some elements of S, The easiest way is to first compute L3',
where

d -1

-1 d

Lg= . ‘
-1 d
Let us solve Lgae = (1,0,... ,G)T to compute the first column of Lgl.
It is easily seen that z, = z1/d""!; as dz; ~ 2, = 1, we have
dn—1 an—i
ml:dn—l and mjz'a;‘-—:—l'j—_—'2,...,n.

More generally, for the i-th column of Lgl, we solve

Lsz ={0,0,...,0,1,0,...,0)T,

where the 1 i3 in the ith position.
Asg before, it can be seen that

Lim] = an and @, = a;?a:,;,
80 i—1 = x;/d"L; as dz; — ®i_1 = 1, we have z;_; = 1/(d" — 1).
Therefore ] ]
dn—l dn—-g—l d.’r

B=gm 1 BHE T ST g1

Hence, we explicitly know the inverse of Lg,

dn-1t 1 d ... d*?
dn—2 dn—l 1 dn—3
- 1 -3 h—2 m—1 n—4
1 _ i
Ls =1 4 d. d. L d.
1 d ... at

From this, we can find the elements of L3 D5 L7 we need. For instance the (1,1) entry is

L ety gndy g pyae L Ao d d+]

(dr —1)? (dn—1)* d2-1 — d&-1dr -1

15



The (1,2) term is
S Ay )
(d» —1)° di—1 '

This can also be expressed as

1 B vd
¢=3n-=m3 [1+d"—1]'

16



Appendix C

Let
a —p -B
B o« -f
A= S ,
- a -
-3 -3 «a }

satisfies the following equation:
A =T—Tirid(A™1),

where Ttrid(A™') is defined in Definition 4.3. We have the following result :
Theorem The values of o and # defined by INV satisfy:

4>a>28>2

Proof : We want to prove that A is strictly diagonally dominant. Let us define the following
sequence

Ay =T,
Ay = T—Trid(A7Y), i=2,...
Since T is strictly diagonally dominant (sdd), so is A;. Using the same technique as in [5], it
can be proven by induction that A; is also sdd. We are therefore exactly in the hypothesis as for

Theorem 3 of [5] as for constructing Ttrid, we drop some elements of the true inverse. So, all A;’s
are sdd and by continuity the limit is also. Moreover, it is obvions that o < 4 and f > 1 as d > 1.

¢
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Appendix D: Proof of Theorem 5.5
We recall that the eigenvalues are

_ 4n(sin®(8,/2) + sin®($:/2))
7?2+ 1— 2ncos{ds)

7= p"(ﬁising(ﬁ"f_,f?‘) +¢{), (=

st

w2

@R

and that o and § satisfy the “MINV condition” : (& — 28 — 1)2 = (o — 2B)ch?.
Let z = sin®(8,/2), y = sin®($¢/2). Clearly, Goh? < & < 1, and Coh? < y < 1. (In this proof,
C; denotes a generic constant independent of h.) Now,
cos(gy) = 1 — 2sin*(¢,/2) =1 -2y and 7= P4+ () = 48z + Ci;

8O,

4z +y) 4z +¢) _ Hr+y)dBz+ Cy)

2+ 1-2(1-2)  (p—1)° +4py

But, because of the “MINV condition”
p—1=4fz+a—28—1=48z + Csyh.

ple,y) =

Therefore

A(z +y)(46z + C1)

(462 -+ Coh)” + dy(4Bz + C1)

Our aim is to find upper and lower bounds for p(z,y) in the range Cob? < z,y < 1.
For the lower bound, we have:

N(ws y) =

4C{z + y)
(4P + Cah)” + 4y(48 + C1)
Suppose that 48z > Cyh, then since 2% < z,, we have
4Ci(z + y) S 4C (2 + ) S 4Cy _
5 > > =
(88z)" +4y(48 + C1) ~ Csz -+ Cay — max(Cs,Cy)
Suppose now that 48z < Csh, then

I

B2 C.

401(m+y) > 4013]
K Gt ¥ Coy = Coh? + Coy’
The function on the right hand side is an increasing function of y. Since y = Cph?, this function
is bounded from below by a constant, we have
p=C.
That is to say, the eigenvalues are bounded away from zero when h — 0.
Next we find an upper bound for ¢ We first have:
Cr(x +y) z+y
L et B8 .
= Cez?+Coy — mwz-!-y

Let g(z,y) = 5%%,

dg *4+y-z~y e —

<0 as 2<1.

b @+’ (P
Hence, in the range Coh? < z,y < 1, we have
&+ Coh? 2a
< < .
10 S o S TTow

Let m(x) = ;~2ﬁ%”.—om,-, m has a maximum for # = Cyh; hence
9Weh 21
Cgh2 + Coh? o 002 +Co b’

g(z,y) <

Altogether these results implies that
s(M™YAp) < O(R7Y).
¢
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Fig. 3.1 LSSOR: Fourier Eigenvalues, n=41, w=1
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Fig. 5.1 MINV: Fourier Eigenvalues, n=41, c=0
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~ Fig. 6.9 MINV: Cond No vs n, Dir(+) vs Fourier{o), c=0
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