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The linear stability of the sheet pinch is examined for a rapidly rotating fluid, The sheet
pinch is a horizontal layer of uniform, incompressible, inviscid fluid of density p, electrical
conductivity o, magnetic permeability i, confined between two perfectly conducting planes
z = 0, d, where z is height. The prevailing magnetic field, By(z), is horizontal; at each
height it is unidirectional, but that direction turns continuously (in one sense only) as z
increases; the system is in magnetostatic equilibrium. The layer rotates about the vertical
with an angular velocity, €2, that is large: £ > Va/d, where V4 = By /+/(pp) is the Alfvén
velocity. The dimensionless number measuring o is the Elsasser number A = ¢BZ/20p.

The principal example studied here is force-free (By = constant);the direction of By
rotates uniformly with height (V x By = —¢By/d, where ¢ is a constant), turning through
g radians between z = O and z = d.

The growth rate, s, of small perturbations of horizontal wave vector k, is determined
in a number of cases. It 1s found that instabilities do not occur if By makes less than
one quarter turn between the boundaries. For ¢ > %w, stability is lost when A exceeds
a critical value, A, the instability being direct (i.e. the largest Rs is real, and this s is
zero for A = A.); as ¢ increases, A, decreases and s increases for any A. As A increases
beyond A, s attains a maximum and then decreases monotonically to zero as A — oo.

The asymptotic form of the eigenmodes in the limit A — oo is analysed in detail for
general By, especially their structure within the critical layers [of thickness O(A~1/4d)]
surrounding the critical levels, at which k is orthogonal to By. The equilibrium is found
to be more unstable when Jo x Bo/Jo.By is antiparallel to £ than when it is parallel,
Jo = V xBg/u being the (horizontal) electric current density generating Bo. It is
shown that, provided this critical level is not asymptotically within one of the boundary
layers [thickness O(dA™1/2)] at a wall, s = O(Al/‘*T,}_l), i.e. the instability develops
more rapidly than the rate 7,° 1 (= 1/pod?) at which By evolves through ohmic diffusion.
Numerical evidence is presented, however, which indicates that, for the mode of maximum
instability, the critical level moves into a boundary layer as A — oo.

KEY WORDS: resistive instability, tearing mode, sheet pinch, rotating magnetohydrody-
NAIiCs.
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owes its existence to the finiteness of o; it would be absent in a perfectly conducting fluid.
It is theoretically perhaps the most fascinating and most important of the resistive modes,
the so-called “tearing mode” (Furth, Killeen and Rosenbluth, 1963). When ¢ = oo, the
topology of the magnetic field lines cannot be altered by fluid motions; they are “frozen”
to the conductor (Alfvén’s theorem). When o is finite, the field lines can diffuse relative
to the fluid and can reconnect in topologically new ways. If these result in highly bent
field lines, there is a possibility that, by straightening up and carrying the (almost) frozen
fluid with them as they do so, they can transform the magnetic energy of the equilibrium
state into kinetic energy, i.e. create an instability that could not arise without the change
in topology.

An instability of this type exists in the sheet pinch, the configuration studied in this pa-
per. A uniform, electrically conducting, invisid, incompressible fluid occupies the “horizon-
tal” layer 0 < z < d, bounded by impermeable walls that are perfect electrical conductors.
A horizontal field, By, is present given by

Bo = By (2)% + Boy(2)¥ , (1.1)

where % and § are the unit vectors in the coordinate directions. It is supposed that ¢'(z)
is nowhere zero in [0, d], where

¢(z) = tan™" (Boy/Bo) (1.2)

is the angle between By and the z-axis. The field (1.1) then turns continuously about the
“yertical” in one sense as z increases. The example of (1.1) on which we shall principally
concentrate is the constant strength field,

By = B[k cos gz/d + ¥singz/d], (1.3)
for which By and ¢ are nonzero constants, and
¢ =qz/d.
Associated with Bg is a horizontal electric current, Jo, given by
pJo =VxBy = -DBoy%+ DBy, ¥, (1.4)
whereD = d/dz. The Lorentz force, Jo X By, is balanced by the gradient of the pressure
Py(z) = constant — B3 /24 (1.5)

Hydrostatic equilibrium prevails; the velocity V of the fluid is everywhere zero. The field
(1.3) is in fact “force-free”; since

Jo = (¢Bo/ud){X cos qz/d + ¥ singz/d] = ¢By/pd, (1.6)

we have Jg x Bg = 0.



The differences between the MHD of non-rotating and rapidly rotating fluids are so
substantial as to invite us to re-examine the tearing mode when Coriolis forces are large
and the layer is rotating about the vertical: @ = 0z. Experts in MHD will correctly
surmise that one of the more significant differences is that of timescales. In the “classical
theory” (as we shall call the study of tearing in a non-rotating fluid) the two timescales of
interest are the hydromagnetic (or Alfvén) timescale, 74, and the electromagnetic decay
time, 7,, where

2
wVEA, qu%, : (1.7, 1.8)
where H is the horizontal scale of the instability (say the wavelength of the normal mode
under study). The instability is studied in the conceptually simplest limit, A — oo, where
A is the “Lundquist number,” i.e. the ratio of timescales (1.8) and (1.7):

TA

AT BVa (1.9)
TA n

In a rapidly rotating fluid (@ > Va4/H) the role of the Alfvén wave is divided between
the slow® and fast waves, with which are associated the timescales
2QH? 1
Tg == , =—,
V2 EAT?

(1.10, 1.11)

the former of which replaces 74 as the important non-dissipative timescale. The limit of
greatest interest is A — oo, where A is now the “Elsasser number”, i.e. the ratio of the
two timescales (1.8) and (1.10):

Ty V_j o B2

A== e
T, 20n  2Qp’

which is scale independent. Coriolis forces dominate inertial forces, and take over their
role in the resistive modes of classical theory. The Elsasser number replaces the Lundquist
number as the key non-dimensional parameter measuring electrical conductivity.

Unless A is large it is hard to visualize resistive modes in the terms we chose above,
for when A = O(1) the picture of field lines frozen to the conductor is seriously marred.
Moreover, when A = O(1), the growth rate of the instability (if any) can only be O(r H,
the very same rate at which the field By is itself diffusively evolving. The development of By
in time and its resistive instability would then, in general, be inextricably mixed, a serious
theoretical handicap. The only exception to this statement would be if By had already
completed its diffusive evolution to an electrodynamically steady state consistent with the
boundary conditions applied. But, if that configuration were of minimum magnetic energy,
no resistive instability could ensue; this is also true for such a By even when A is large
(Barston, 1969).

It is now apparent that theoretically the clearest case arises when A 3> 1, and when Tijgtab
the timescale of the instability is short compared with ,, for it is only when mysap <

3Because 7 & Ty, we earlier described 1, a5 a “fast” timescale; since T ; & 15, We here call 7. “slow”.
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T, that one can ignore the diffusive evolution of Bo over the time during which it is
destroyed by the instability. One may then, as we did in (1.1} or (1.2), select any By
that is magnetostatic in the sense of ideal MHD (o = oco0). One is left wondering however
whether such a rapidly growing instability exists. It is clear that, to develop so quickly,
the instability must operate in a region [which in the case of the field (1.1) is a horizontal
“critical layer”] having a dimension, §, small compared with H. The velocity, Vans:, with
which lines of force can drift relative to the conductor and reconnect is of order Vs, = n/é

(e.g. see Roberts, 1967, p. 55). One can therefore expect the growth rate of the instability
to be J >
= =2, 1.12
Tinstab Vo 7 ( )

The process is nevertheless slow compared with that of ideal wave propagation. Confining
attention to the highly rotating case, Vanne € Vs (= d/7s), so that

Ts & Tinstah K Ty - (113)

To determine &, and to learn more about the structure of the critical layer of reconnec-
tion, consider a “normal mode” of instability, in which the perturbation field,

b=B -8By, (1.14)
is proportional to
expli(ks2 + kyy) + st], (1.15)
where
ky =k cos 8, ky="Fksin @, (1.16)

are the horizontal wavenumbers of the mode and s is its growth rate. The phase fronts
make an angle of # — ¢ with By so that, at a “critical level”, at which § = ¢ & % m, the
slow wave propagates in the direction perpendicular to that in which the instability moves.
Within a critical layer of width, §, surrounding the critical level, the effective strength of By
is therefore effectively reduced by a factor of order §/H, i.e. to Byé/H. The fluid motions
v (required in the critical layer, to balance by electromagnetic induction the rate, nb/ 82,
at which field diffuses and reconnects) is therefore correspondingly larger. Thus nb/é? is
not of order vBg/d but is O(vByé/Hd), which implies that v = O(nHdb/By8*). This is
true also for the classical tearing mode. The dynamical balances in the non-rotating and
highly rotating layers are, however, very different. In the former, Lorentz force is balanced
by inertial forces; in the latter, it is balanced by Coriolis force. Because of the effective
reduction in By in the critical layer, the Lorentz force is not of order Bpj = O(Bgb/ud), but
is of order Bybd/uHd. When this is set against a Coriolis force that is O(2{}pv), we obtain
b = O(2QupHdv/By6). Combining this with our earlier estimate, v = O(nHdb/By6%),
we see that

§ = O(HV2A2A-UY4) | gy = O [(d/H)3/2 T;/‘*Tg/‘*} . (1.17, 1.18)
The latter follows from (1.12); obviously (1.13) is satisfied.
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2. Basic EQUATIONS AND BounNDARY CONDITIONS
We study the motion of a uniform, invisid, incompressible fluid in the so-called “magne-
tostrophic approximation”, in which inertial forces are neglected:

-*'zx‘\/'m—V“+lp§xB, (2.1)
B

%? =Vx(VxB)+,7V’B, (2.2)
V.-V=0, V-B=0. (2.3, 2.4)

Here P is the reduced pressure (pressure divided by the constant density p and including
centrifugal forces), and J = 7'V x B is the electric current density.

The field (1.1) satisfies the hydrostatic form of (2.1):
V(}EO, 0=—VP0'§“£J0XB(}, (25)
p

but not (2.2). As explained in Section 1 we suppose that A > 1 so that the diffusive
evolution of By is too slow to be a factor. We study the linear stability of field (1.1} by
writing

B=By+b, I=Js+j, V=Vo+v, P=F+p, (2.6)

substituting into (2.1)-(2.4), simplifying with the help of (2.5), and linearizing in the usual
way. We obtain

2%V =~Vp+By-Vb+b-VB, (2.7)

b 1 _,

E_XVb-'_BO.VV—V.VBO’ (28)
V.v=0, V-b=0. (2.9)

We have here absorbed the perturbed magnetic pressure Bg - b/u into p, and have made
the equation dimensionless by the transformation

x—dx, toTd, v—(dfrts) v,
(2.10)
B — BB, b—Bb, p— (20d*/7,)p,
where B is a typical scale for By and from now onward
20 upd? d* T
Ts - BZ ’ T’? = ?, A = -T—: . (211)
After eliminating p, we find that (2.7)-(2.9) require that
Dv,=%-DBygxVb, — (By-V)j., (2.12)
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Duw, = (By - V)V?b, — (D*By) + Vb, (2.13)

(% B "zli'v2) b = (Bo - Vo, (2.14)
79 1y
(E MXV2)‘7Z= (B()'V)wz‘*“i‘DBOXVUZ) (215)

wherew (= Vxv) and j (= Vxb) are the dimensionless vorticity and perturbed current
density; D = d/dz.
We seek normal mode solution of (2.12)-(2.15) of the form (1.15) so that

Dy, = ~i(Fj, + Fb,), (2.16)
Dw, = i[F(D? — k*)b, — (D*F)b,], (2.17)
[A7(D? — k%) — s]b, = —iFv,, (2.18)
[A“YD? - k%) — s]j, = —i(Fw, — Fv,), (2.19)
where B
F =k.By, + k,Boy, F=D(k;Byoy — kyBos). (2.20)

We must solve the sixth order system (2.16)-(2.19) subject to three conditions at each
of # = 0 and z = 1. We shall suppose that these boundaries are impermeable, perfectly
conducting walls, so that

v,=b,=Dy,=0, z=10,1. (2.21)

3. THE LIMIT A — oo. CRITICAL LAYER ANALYSIS
If we formally set A = oo in (2.16)-(2.20), that sixth order system system collapses to the
second order problem of finding s3 such that

1 )
EO\F

KO(0) = b0 (1) =0, (3.2)
possesses a nontrivial solution. Here s; is the growth rate to leading order in A.

By multiplying (3.1) by bS,”)* /F, integrating by parts and applying (3.2), it is easily seen
that, if F' has no zero in [0, 1], i.e. if there is no critical level, then

1 2 (0)
2, So bz
/ (F+F2)iD(F)

It follows that s2 is real and negative, i.e. there is no instability. Supposing sp # 0, it is
conceivable that this oscillation, which is purely sinusoidal for A = co, might be growing

st D + F(D? = )0 — (D2F) 6" = 0, (3.1)

together with

2

+ k2|bg°)12} dz=0. (3.3)
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slowly for A 3> 1, i.e. s might have a positive real part of order A™! for A — co. We
have been unable to establish this; nor have we been able to show that the principle of the
exchange of stabilities holds for the system (2.16)—(2.20), although our numerical work (see
Section 5) in no case located a growing overstable mode. From now on we shall assume
that s¢ 1s zero, so that

F(D* — B — (D*F)K® = 0. (3.4)

More precisely, we suppose that s < O(1), so that it does not appear in the leading order
equation (3.4). We shall regard (3.4) as governing the “outer solution” away from the
boundaries at 2 = 0 and z = 1, and away also from critical levels.

There may be more than one critical level, but for simplicity we shall here suppose that
there is only one, and that it is situated at z = z., where 0 < 2z, < 1. We then have

F(z) =10, ' (3.5)
and, in a sufficiently small neighborhood of z = z,
F(z) = Fi(s - 22), (3.6)

where F! = F'(z,) # 0. In this neighborhood, the solution of (3.4) we require may be
written as a linear combination of the two solutions

D=1, Y =z—2z, (3.7)

e, b is proportional to 1 + A{z — 2;). As for the classical tearing mode, A changes
discontinuously at z = z, i.e.

W = { DA (3.8)

1+ A_(z—z.), Z o 2o

It is to this discontinuity that tearing modes owe their instability.
To determine the discontinuity Ay — A_ in Db, at z = 2z, or more precisely to find

Dbgﬂ) ] Zet

A= —bgﬂ)

, (3.9)

Z -

it i3 necessary to analyse the structure of the critical layer. This will occupy the remainder
of this Section.
It follows from (2.16)—(2.19) by elimination that

o[-l - )

o[t oo (B)ow ()of] 0 wne

-



In the critical layer we may replace F' by (3.6) and use the stretched coordinate ( in place
of z, where

z= 2.+ (6. (3.11)
Understanding D now to be d/d(, we find that, in the leading order,

D H:-C}ED {CZD (213- D)QCZ} + (62 + i—f)ﬂl} (b?)
olgwop(s). o

p = sA8? (3.13)

where

is the scaled growth rate; p < 1, by the arguments of Section 1. The boundary layer
thickness is

1

5 = W 3 (3'14)
and _ 1 B
Fc i' gX 4]

In our model (1.3), a = 0, and in what follows we shall suppose not only that p < 1 but
also that o < 1. We shall therefore replace (3.12) by

o[anfen(an) e} ()

G (I

and regard the right-hand side as a perturbation.
The homogeneous equation,

pEo)en(an)se] ()0 o

obtained by setting the right-hand side of (3.16) zero, admits the solutions
wy =1, we = (. (3.18)

In fact w, is also an exact solution of (3.16) and (3.12). It corresponds to the solution
bff;) given in (3.7), and demonstrates that this solution passes through the critical layer
unaffected, i.e. it is only the difference, A, between A, and A_ that is significant in (3.8).
We may therefore take Ay = —A._(= A, say) without loss of generality, so that in the

critical layer

b.(—() = 8:(¢), (3.19)
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and

b, ~ Al(], ¢ — oo, (3.20)
where A = 3 A §; see (3.8), (3.9) and (3.11). The objective is to determine A(p, @).

Since we are interested only in even b,, we need consider only two of the remaining four
solutions of (3.17), namely

=S (=1)n(¢/20/2)n
D Dy ey e s ey ey B (3.21)

R (=1)((/23/%)Bnt6
LD Dl o gy I R P Y e (.22

It may be noted that these are entire functions, and that the series converge for all complex
(. Also, if k£ is an integer,

wi(CeF ) = ws(¢),  wa(CeFTH) = 2FH 0w (). (3.23)
They therefore satisfy (3.19); k = 4. We shall therefore confine attention to the sector
larg (| < 1. (3.24)

We may write wa and wy as contour integrals:

i 1 / ((;/23/2)8317 cosecms ds (3.25)
=5 o, AT DTG Gr DD
1 (¢/23/2)85+8x cosecrs ds
- . 3.26
We = 5o ./6'4 F(s+l)1‘(s+%)r(3+%)1‘(s_§_%)(3+%) ( )

Here Cy4 passes from s = 0o + 07 to 8 = oo — 0%, to the left of s = 0 but to the right of
s = —2; Cjs is similar but is distorted to avoid surrounding s = 1. See Figures 1. Both
contours surround the poles of the integrands at s = n, where n is a non-negative integer;
because of the I'(s + 1) factors, the negative integers are not poles of the integrands. Both
integrands have saddle points near

s =} (%eFm/t, (3.27)

and, by standard applications of the method of steepest descent, it is found that, to leading
order as { — oo in sector (3.24),

1 8\ . ¢ 3n

wgy ~ W (F) EC /2‘/2 CO8 (m - 1_6) ) (328)
1 8\ 3/ 2 15x

g (@) e (E %) 02
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We now return to the inhomogeneous equation (3.16), and write its solution as

b, =14 pb,y — ab.q, (3.30)
where, to leading order in p and «,
1 Al ‘ 11 T2
1 1 8
pr)en(in)icfion-g om

The right-hand sides are obtained by setting b, = 1, the dominant part of (3.30), into the
right-hand side of (3.16). Particular solutions satisfying (3.19) are

P_ N\ (=1)n(¢/23/2)Em e
e LT DTG DT e DTG e O

nz=={

P °e (_1)n(c/23/2)8n+4
e DT DT T ey O

=7 () () 59
- 83i71r1(7r/8) : (%) ' (3.36)

After forming integral representations similar to (3.25) and (3.26) we find from a steepest
descent analysis of the saddle points near (3.27) that, as { — oo in sector (3.24},

where

3/4 2

P,_% (38 ¢* /22 &I

b2 )7 (C2) e cos 22 16/ (3.37)
3/4 2

p  _ Ca f_ ¢ /22 ¢ _ 11w

b, —-(271_)3/2 (42) e cos 22 16 ) (3.38)

Evidently the particular integrals (3.33) and (3.34) do not match to (3. 20) but by adding
appropriate multiples of w; and w, we can ehmlna.te the ex;)onentmﬂy increasing terms
(3.37) and (3.38). We therefore replace bZ, and b P by

bay = L — 21/2cpw3 ~ cpwy, (3.39)
bza = bfot — Culy — 21/26‘a’w4 . (340)

Returning to the series representation (3.21), (3.22), (3.33) and (3.34) we find the more
convenient forms

— % *

by = = (W ), (3.41)
— _Ca r3infs ~3im/aTir*

bra \/2 fe W+e W1, (3.42)
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where

oo (_l)m(€-2e~—wi/4/8)m
W = . 3.43
DI e R R CEa Tt R
It may be shown (see Appendix) that '
8(27(')1/2 Twif8
W o~ { — oo. (3.44)
NONOHER
It follows from (3.20), (3.30), (3.41) and (3.42) that
A=Ap+ Ao, (3.45)
where i ;
p =217 — (Z)IP(E')B 5= 1.5032..., (3.46)
rrE G
2
Al = 11053, (3.47)

© TETG)
These results, which are valid only for |p| € 1 and |a| € 1, were verified numerically by

using a specially constructed program for critical layer integration (see Appendix B). It
was found that, for larger values of a, (3.45) is replaced by

A=A, (a)p+ Asla), (3.48)

where A, (o) and A, (o) took the values shown in Table 1for —10 < & < 10. The numerical
value of A’(0) was 1.1056, which should be compared with (3.47).

Unlike classical tearing, for which the growth rate for given k is determined when A > 1
not by By, and By, individually but only in the combination, F, the rate of tearing in a
highly rotating fluid is affected by the ma,gnetlc helicity at each crltlcal level, as measured
by @. Let us compare tearing for k; = k, in the field (1.3) for ¢ = — w, 1.e.

Bgl) = X cos g wz+ ¥ sin g— Tz, (3.49)
with tearing in the field
B(z) =% | cos §Wz + coswz | +¥ | sin : = [Y — —— COSTZ (3.50)
2\/2 2 2\/2 ' '

Since F is the same for each, marginal stability is decided by the same value of A = %A&
at the single critical point 2, = % By (3.15) we have o) =0, o = a. For o > 0 we see
from (3.45) or (3.48) that p is larger in case (3.49) than in case (3.50), as therefore is the
growth rate, s, of the instability.

12



4, THE LIMIT A = oo. EXAMPLES _
The principal form for By studied in this paper is (1.3) for which [see also (1.16)]

F = kcos(8 — ¢2), F=—gF. (4.1, 4.2)
Clearly F is unchanged under the transformation
z—1~z, f—qg—80, (4.35)
while its sign is reversed if
z—1—-2z, f—onwt+qg—80. (4.3A)

In either case (3.10) is unaltered. At first sight it might seem that, once one has obtained a
solution for one choice of k, we could obtain a second by one of the transformations (4.35)
or (4.3A), and that in this new solution

bi(z) = by(1 —z). (4.4)

This hope is, however, frustrated by the boundary conditions on b, implied by (2.21). This
may also be seen directly from (2.16)-(2.19): the symmetries

bz_”bz, Vy >V, Wy — —Wg, jz'_’_jz, (458)

and )
bz“‘"""‘“bz, Uy = — Uz, Wz;—W;z, jz_’jz, (45A)

expected from (4.35) and (4.3A) are destroyed by the F terms in (2.16) and (2.19). There

are however exceptional choices of k, namely

1 1 1

for which F is symmetric or antisymmetric when m is an integer. In these cases solutions
satisfying symmetries (4.5S) or (4.5A) exist. Moreover, even for general ¢, the effectiveness
of the F' terms in (2.16) and (2.19) diminishes continually as A increases and, to leading
order in the limit A — oo, (4.35) are (4.3A) do imply new solutions obtained respectively
from (4.55) and (4.5A).

According to (4.1), if nx < ¢ < (n+ 1)m where n(> 0) is an integer, there may be either
n or n+ 1 critical levels in (0,1), depending on the choice of 8. The existence of a critical
level does not guarantee that an instability exists in the limit A — oo, as the case n = 0
described below will show. In general the greater the number of critical levels, the more
magnetic energy will become available to an instability, and the greater the growth rate,
s

From now onwards, suppose that

0< ¢ < 2m. ' (4.7)
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There is only one critical level (at z = z, say) if either
(1)0 <¢qg £ m,or
(i)m < ¢ < 2randl—7n/g < 2z < 7/q.

There are two critical levels (at z = z.1, 22, say) if
(iil)7 < ¢ < 27m,and 0 < 24 < 1—7/g;

then z.g = 2.1 + 7/g, so that /¢ < zo < L.

In all these cases

a=0, |F)=kgq. (4.8, 4.9)

We shall now find, in the limit A — oo, the unstable modes in cases (i}-(iii). Away

from critical points and boundary layers, the solution to leading order obeys (3.4), which
reduces for field (1.3) to
D?b® = (k? — ¢*)b®. (4.10)

First consider cases (1) and (ii).

(A) Suppose that k > ¢ and let 8 = (k? — ¢2)1/2. Then, by (3.2),

5O — sinh Bz/sinh fz., if 2 <z (411)
* 7 | sinh B(1 —z)/sinh B(1 = 2,), ifz> =z, '
so that
Dby
A= —b(o—)w = —Blcoth Bz, + coth B{1 — z.)]; (4.12)
see (3.9). But according to the critical layer analysis of Section 3, we must have
A >0, for instability. (4.13)

It follows that disturbances of short wavelength are always stable.
(B) Suppose next that k < ¢ and let v = (¢* — k?)Y/2. In place of (4.11) and (4.12) we
have

5O — { sin yz/sin vz, if 2z <z (4.14)
z sin 4(1 —z)/sin y(1 — 2.), ifz2> 2z, '
7y sin-y
A=— . 4.15
sin vz, sin y(1 — 2.) (4.15)
Since v < ¢, we have
0<yze<qze <, 0<y(l—2)<q(l —2ze) <. (4.16)

The denominator of (4.15) is therefore necessarily positive. Thus instability can arise only
if 7 < 4 < 27. Since v < ¢, this means that an instability cannot occur in case (i), but
may arise in case (ii).

To find the growth rate of the instability in case (ii), it is merely a matter of equating
A is {4.15) to the expression 24 /6 implied by (3.20), A being given by (3.45), (3.46) and
(4.8). We obtain, using also (3.14) and (4.9),

~ 7|sin v A1/4
3.0065(kq)'/2 sin vz, siny(1 — z,)

p ., A— oo, (4.17)

- 14



or by (3.13)

: 1/2
. 7lsinyi(ka) ATt Ao oo, (4.18)
3.0065 sinyz.siny(l — z) _
As an example, suppose that
g=3%n, ky=k,=1. (4.19)
Then z. = 3, and we obtain from (4.17) and (4.18)
0.93057 6.2016
For A = 10° these give
p = 0.029427, 5= 1.9611 1074, (4.22, 4.23)

the latter of which should be compared with the numerically determined value of s =
1.6549 1074,

Despite the small value (4.22) of p, the error (4.23) is a surprisingly large 20%. There
are three reasons for this. First, our expansion is in powers of §, i.e. in powers of A4,
see (3.14). Tt is A™/%) and not A~?, that measures the approach to the asymptotic limit
A — oco. For A = 10% A~1/* is only about 0.032. Second, {3.45) gives only the first
term in the expansion of the critical layer solution of (3.12) is powers of p. This particular
source of error could be remedied by solving (3.12) numerically for arbitrary p. This would,
however, be pointless because of the third, and most serious, source of error. Equation
(3.12) is derived from the full equation (3.10) by retaining only the first nonzero term in
the expansion (3.6) of F. An error of relative order § in s enters instantly. A numerical
study of the present case (4.19) has shown that, in the next order, (4.21} is replaced by

6.2016  30.58
= T TR (4.24)
and this gives s = 1.6553 10~* for A = 10%, which is in much better agreement with the
numerically determined value s = 1.6549 10™%, The basis for (4.25) is shown in Table 2.

The development of a critical layer structure around z = z, = 1 is clearly seen in Figures
2-5 in which b;,j,, —iv,, —iw, are shown for A = 108, 10, 10° and 10°. Figures 5, for w,,
are particularly striking. Also to be discerned in several of these figures are the boundary
layers, of thickness Q(A~1/?), adjacent to z = 0 and z = 1, but which affect s and the
instability only passively, i.e. in no essential way.

Figures 6-9 show further comparisons between the solutions for A = 10* of the full
equations (2.16)-(2.19), and the asymptotic theory. In panels (a) and (b) in each of these
figures, the numerical solutions are compared with the mainstream solutions, which for

b is given by (4.14) and which for the remaining functions are given by the A = oo forms
of (2.16)-(2.19), namely

(0) po 4 3 bg’-ﬂ) . (0) bgo) () s? bg})
i =+ gD\ | v =-s| ), iy = - D ) (425)
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Although the similaritics between panels (b) and (c¢) are striking in each case, a detailed
comparison is impossible for two reasons. First, it should not be forgotten that, according
to the analysis of Section 3, the solutions of the critical layer equations are non-unique;
an arbitrary multiple of wy = ¢ can be added to b,. The addition of A§¢ [where A =

P [ Py

2\A+ -r'f:l.__), see (o O}J leaves Wy and Jz unaitered to 1t:d.u1115 order in the critical ] 1aYer, but
adds zApF’52 to v,, i.e. it displaces the zero of —iv, at { = 0 by —sA/F; see (4.25),.
Since A is almost zero in the present, almost symmetric case, this displacement is not
apparent in panel 8(b)*. Second, in the critical layer scaling (3.11) — see also (B9) later
— b, = O(1) but j, = O(67') to leading order. In the next approximation, correction
terms are added that are O(§) and O(1), respectively. The fact that j, is unaffected to
leading order by the addition of A§{ to b, means that j, is in error by O(1), rather than
by O(6™1). But this error cannot be derived from the analysis of Section 3, although its
existence is clearly seen when panels 7(a) and (b) are compared with panel 7(c).

We now turn to the case (iii) of two critical points. In place of (4.15) we now have, for
some A1 /A2,

Apsin yz/sin yze, for 0 <z < 24
B0 = ¢ Apsin y(1 — 2)/sin y(1 — z2), for ze <2< 1; (4.26)
[A1sin y(zc2 — 2) + Az sin y(2 — za1)]/ sin y(ze2 — 2c1), for za <z < 22

From each critical point we get one expression for A, namely

Dy ] A2
o = ')“\“;COSEC'Y(Zc2 — 2e1) — coty(ze2 — za1) — COtyZa | , (4.27)y
[ Db ] M

©) =7 [Tcosec’y(zcz ze1) — coty{zea — 21 ) — coty(l — zcz)} .
SRR ’ (4.27),

Since § is the same for each boundary layer by (3.14) and (4.10), these two expression must
both equal 24/6, and therefore must be equal to each other, so that

ﬁ B :\_2 _ sin(yw/q)siny(za + 22 — 1)
)\2 )q sin YZe1 sin ")/(1 — Zcz)

— Y

) sin(ym/q) sin yze1 siny(1 — ze2)

; (4.28)

1/2
. { [(sin("y'lr/q) siny(ze1 + 22 — 1))2 + (2sinyze siny(1 — ch))2

+ cos ¥ — cos(y7/g) cos y(ze1 — zc2 — 1)} : (4.29)

Equating this to 24/6 = 3.0065p/6 = 3.0065sA8 with § = (gk)"1/2A~/% we obtain p and
§ as before.

#See, however, the displacement of v, away from zero at the z = % critical point in Figures 13(c) and
13{d) below.
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For example, if
g=3m, ko=—-k,=1, (4.30)

then z,4 = % and ze = %. By (4.28) and (4.29), Ay = A; and

2~ sin & i
i i AL R VTN (4.31)

) N
s1n 'é”)’ 51N g’)/

A=

since v =~ 4.4952. So we obtain

7.3624 49.065
pN—I\_l_/ll_’ SNW’ A“““*OO. (432,433)
For A = 10° these give
p = 0.23282, s =1.5516 1073, (4.34, 4.35)

the latter of which should be compared with the numerically determined value of s =
1.1013 10~3. The agreement is not as good as in the case of one critical layer; the error is
about 40%. This may be attributed to the reasons given below (4.23) combined with the
fact that p given by (4.34) is larger than the p for the earlier case (4.22).

It is noteworthy how much greater the growth rate (4.35) is than (4.23). This is be-
cause two critical layers are twice as effective as one in reconnecting field lines of By and
converting their magnetic energy into perturbation energy.

5. NUMERICAL RESULTS

We carried out extensive numerical integrations of the basic equations (2.16)-(2.20), both
for finite values of A and, in a suitably scaled form, for A = oo, i.e. for the critical layer
structure. We shall postpone until Appendix B the description of the numerical techniques
we employed and the tests of accuracy that we applied. Here we describe only our principal
findings.

For every choice of k, A and «, our programs located both the real and complex eigen-
values s. Although complex s were found, we discovered that in all cases the most unstable
mode (i.e. the one for which Re(s) is greatest) is direct. In our discussion below, we focus
on this real eigenvalue alone.

We always adopted (1.2) for B, We investigated three cases:

| &[]

q=%7r, g=3:m, qg=2m. (5.1)
In the first of these we were unsuccessful in locating any k or A for which s > 0. We
conjecture therefore that unstable modes do not exist when g = %7:'. This conclusion is
consistent with the results of the asymptotic analysis developed in Sections 3 and 4.

We subjected the case ¢ = 3  to special scrutiny. We searched for the maximum growth
rate, sc(A), over the range 0 < A < 4000, i.e. we sought, for a number of values of A, the
value of k(= k.(A), say) for which s(k,A) is a maximum, and for which therefore

(vks)c =0. (52)
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There were two such local maxima, which we call ‘mode 1’ and ‘mode 2’. As A is increased
from zero, ‘mode 17 is the first to become unstable, s, becoming positive at A = A, ~ 22.17.
As A is increased further, mode 2 becomes the more unstable; see Figure 10 where s.(A)
is plotted for both modes.

Of parﬁmﬂnr interest ie the fact Jf—"la.t, as A incresses, k. evolves in such a way that one

valowad A el Lwted LI Ly B LU TR FF-0 LR Raatea SRET,y SAp g0 i 5 R 2N S

of the two critical levels approaches a boundary, that critical layer eventually merging with
the boundary layer. At that stage, the asymptotic analysis of Section 3 becomes invalid,
and it is not even certain that s is proportional to A=3/%, as A — oo, though it clearly
cannot tend to zero more rapidly than that. In the case of mode 1, it is the critical layer
at z = z.o that moves into the boundary layer at 2 = 1; in the case of mode 2, it is the
critical layer at z = z, that moves to z = 0; see Table 3.

The evolution of the eigenfunction for k = k. is shown as A increases in Figures 11-14
for mode 1. The development of the critical layer at z = 2, near z = % 18 apparent, while
at the same time the approach of the critical layer at z = z, towards z = 1 is obvious.

When g = 27 there are always two critical layers in the interval. Because of the greater
shearing of By, the growth rate of the instability is always larger than when ¢ = 3 7. For
instance A is 16.78, instead of 22.17 for ¢ = § 7. The maximum attainable growth rate is
0.3435, instead of 0.1140 for ¢ = 7. When ¢ = 2%, mode 1 is always more unstable than

mode 2.

6. CONCLUSIONS

In this paper we have studied a classical phenomenon in plasma physics: resistive instabil-
ities. We have had in mind, however, geophysical and astrophysical systems which, though
in principle prone to such instabilities, are rotating rapidly, and in which therefore Coriolis
forces greatly exceed inertial forces. Such systems are generally geometrically complicated,
but we have felt that, in a first analysis, we should study the canonical example of tearing:
the magnetic instability of the sheet pinch.

We have found that the tearing mode is strongly suppressed by rotation; the growth
rate of the instability is only 0(7{3/47'3_1/4), where 7, = 2QupL?/B? is the relevant
dynamical timescale and 7, = poL? is the diffusive timescale for a field of strength B
and characteristic scale L. This may be compared with the O(r, 3/ 57’;2/ 5) growth rate of
classical theory, where T4 = L/Vj, is the appropriate dynamical timescale when inertial
forces dominate Coriolis forces; V4 is the Alfvén velocity. The ratio of these two growth
rates is A~3/20(V,/QL)?/® where QL > V4 when rotation is large. Instability can then
only arise if the conductivity of the fluid is sufficiently high, i.e. if the Elsasser number,
A = oB?/20pis O(1). It follows that when tearing occurs in a rapidly rotating fluid, the
instability grows much more slowly than it would in a non-rotating fluid.

We have found that, when A — o0, the structure of the tearing mode consists
of “exterior” regions in which the solution satisfies, to a first approximation, the equa-
tions governing an ideal (perfectly conducting) fluid, and “interior” regions of two types:
boundary layers of thickness O(LA™/?) at the walls, and critical layers of thickness
O(LA'U 4) surrounding critical levels (if any), at which the perturbation is of interchange
type (kB = 0). We have studied in detail the case in which the critical layers and bound-
ary layers do not overlap. In this case, the boundary layers are completely passive (i.e.
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do not influence the growth rate to leading order); the instability draws its energy from
reconnection within the critical layers. We have presented numerical evidence, however,
that energy is extracted with slightly greater efficiency when a boundary lies asymptoti-
cally within a critical layer, for in this case the growth rate is slightly larger, so that the
the mode of maximum instability occurs when a critical level is at a wall,

We have also shown that the sheet pinch is more unstable when Jox By /J¢.Bg is an-
tiparallel to € in the equilibrium state than when it is parallel.
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APPENDIX A: BEHAVIOR OF b, AT THE EDGE OF THE CRITICAL LAYER.

We have seen in Section 3 that the solution at the edge of the crltlcal layer is determined
by the behavior as ( — +o0 of

B o0 (_l)m (CZe—z'fr/ti/S)m
W D TETDTE TGS E D

(Al)

The leading term in its asymptotic expansion is K, where K is to be found. To this end
we write

dw < &EW . © g »
K = <—-) = —----—-d(j=~—2\/2e"“/4f0 P0~—% = —2/2¢ 74 M (Py; 1),

d¢ o d(? z"
(A2)
where M(Fy; s} is the Mellin transform of
o0 _1\Ma—tmm /4 mf4
(—1)™e z (A3)

P, = — — .
L FETDTE+ DTG+ DTE T D)

The evaluation of M(P;; s) rests on the result that, if £L(P, ) is the Laplace transform of
a function P(z), then

M {E (z”"lP(z), t); 8] = D(s)M[P(z); v — s]; (A4)
e.g. see the result (o') on p3 of Oberhettinger (1974). Evidently
_ _l)me—i‘rrm/ti I\(ﬂ + V)
Lz IP (Z m( ™ Py ‘rln )
Y - L TETDTE TR ITETD o
(A3)
a series that converges for all [{| > 0. Taking the Mellin transform of (A5), we obtain
ML ("7 Py(2), 1); 8] = M[Pi(2); v — ], (A6)
where /4 m/4
o0 __1 ml'\ m + v e——nrm zm
PI:ZI‘m(l)m(41)m 5I1m 7y (A7)
F+DTE+DT(E+HT(F+35)
Thus, by (A4)
M(Py; s)
Pa: P el B A8
M(Pyi ) = Foti (A8)
By choosing v = %, the first of the gamma functions that appears in Py is eliminated

from the denominator of (A7).
Continue this process three times more, eliminating all gamma functions from the de-
nominator of series (A3), so obtaining
M(Py; s)

M(FPo; 8) = (A9)

T~ 9IG ~ LG - G = o)
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where
oo . 1
_ m_—inrmfd4 m/f4
Po= 3 (-)meT M = e (A10)

m=20

M(Py; s) = Tt = 4me'™* 4 (A1l
(Py; s) = T i owAan T e’ cosec 'R'S.A )

By (A9) and (All), we now have

4mre*™cosecd s

T(§ — )05 = $)L(§ — s)T(5 — )

Returning to (A2), we finally obtain

M(Py; s) =

(A12)

1/2 —im/8
K o= S0 e . (A13)

rErEreE)

To make use of this result, we appeal to (3.20), (3.30), (3.41) and (3.42), and obtain

A = App + A, (A14)

where
A= —1ETEHTOTEE + K, (A1)
A= F@TTOTOTO K EPE] (A

On substituting from (A13), we obtain (3.46) and (3.47).
It may also be noted that if, as in our representations of series (3. 21) and (3.22) by
integrals (3.25) and (3.26), we express series (Al) as a contour 1ntegral using a contour of

the type shown in Figures 1 and 2, the residue at the pole s = —5 outside the contour is,
when multiplied by —2wi, equal to K¢, the minus sign arising because a distorted contour
would pass round s = —-% in a clockwise sense.
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APPENDIX B: NUMERICAL METHODS

Finite A
The eigenvalue problem for s posed by (2.16)-(2.19) and boundary conditions (2.21) was
solved by finite difference methods. On writing

(f17f27f3>f4) = (Uzawﬂ?:bz:ijz): (BI)
these become
Dfi + Ff3 4 Ff, =0, (B2)
—~AF?fi+Dfy+ (D2F — AsF)fs = (), (B3)
~Ffy + A™YD? = k) — $)fs =0, (B4)
Ffi—Ffa+ [A’_J‘(D2 — kz) - s]fs =0, (B5)
and
fi = fs = Dfy =0, at z = 0,1; (B6)
here D = d/d=.

The range [0,1] of integration was divided into N equal intervals of length o = 1/N,
and the derivatives in (B2)-(B6) were replaced by centered differences; the derivatives of
fs in (B6) were represented by right-hand and left-hand differences in the obvious way.
This gave 4N + 2 difference equations in 4N + 4 unknowns, namely the values of the four
functions f, at the N + 1 grid points. The system was closed by two further relations,
obtained from

Df, = 0, at z = 0,1, (B7)

which are obvious consequences of (B3) and (B6). The values of f, at the end points
z= 0,1 could then be eliminated and an algebraic eigenvalue problem, of the form

AX = sBX, (BS)

could be posed, where A and B are banded 4(N — 1) X 4(/N — 1) matrices and X is a
1 x 4(N —1) column vector consisting of the values of f, at all grid values except those at
z = 0, 1. As mentioned in Section 5, we did not presuppose that s is real, and performed
all calculations in complex arithmetic.

The matrix B is singular, and (B8) therefore poses a so-called generalized eigenvalue
problem, which can be solved by the QZ algorithm (Moler and Stewart, 1973). The ad-
vantage of this method is that it finds all nonsingular eigenvalues of (B6). It does not,
however, take advantage of the banded structures of A and B. Moreover, we are really
only interested in the eigenvalue, s1, that has the largest real part. We therefore nearly
always employed the inverse iteration method (e.g. Golub and van Loan, 1989). Provided
both s, and the initial guess, p, for 8; are real, and provided g is sufficiently large, inverse
iteration always converges to s;. Confirmation that the value of sy obtained was the one
having the largest real part could always be verified by an application of the Q7 algorithm.

23



The accuracy of the finite difference scheme leading to (B8) is O{h?). Convergence tests
were carried out with the results shown in Figures 15 and 16 and Table 4.

Infinite A
The critical layer equation (3.12), attacked by analytic methods in Section 3, was also
studied numerically. We did this by rescaling (B2)-(B3) by

(f11f2:f3af4) - (Fé‘st}FéfZafSaﬁi/‘s), (BQ)
and then taking the limit A — o0, so obtaining
Df1 — afS + Cf‘i = 83 (BIO)
~(2fi+Df2 — p(f =0, (B11)
~Chi+ (D* — p)fs =0, (B12)
—afi— Ch+ (D* - p)fa =0. (B13)

Here D = d/d(, where { is z scaled as in (3.11), the critical level itself being ¢ = 0; pis
the scaled growth rate (3.13), and «, the magnetic helicity at the critical level, is defined
by (38.15). Solutions to (B10)-(B13) must satisfy boundary conditions that follow from
(3.18)~(3.10):

fl(o) = 01 f3(0) - 13 f4(0) = 07 Df3(0) = OJ (B14)
f2(X) =0, Dfa(X) =0 (B15)

Here X is a numerical substitute for co; it is clear from the analysis of Section 3 that this
will introduce errors of order ¢~%/% exp(—(?/2+/2). These are negligible if, as we assumed,
X = 5. {In some cases we chose X = 10, and obtained the same results as in Table 1,
to the accuracy shown.) The prime objective is that of evaluating f3{oc0), or effectively

A = fi(X). | (B16)

Our finite difference scheme for (B10)-(B15) followed that described by Kreiss (1972}, a
paper in which the stability and consistency of the method is analyzed in detail.
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TABLE 1
Values of A,(a) and Ay(«)

a - 10 -5 -2 -1 0
Ay(a) - 1.8506 - 0.4067 0.7311 1.1193 1.5032
Aq(a) - 1.8118 - 5.2505 - 3.4337 - 1.9595 0.0
a 1 2 5 10
A,(a) 1.8784 2.2411 3.2245 44179
Aq(a) 2.47101 5.4768 17.893 50.666

TABLE 2

Numerical basis of (4.25)

Ax 1078 s x 104 6.2016A1/4 — sA
0.5 2.6885 30.485
1.0 1.6550 30.613
1.5 1.2424 30.675
2.0 0.8634 30.713
3.0 0.7578 30.759
4.0 0.6164 30.785
5.0 0.5249 30.801
6.0 0.4602 30.811
7.0 0.4117 30.817
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TABLE 3

The most unstable modes for ¢ = %ﬂ“
Mode 1
A T . 7 % 107 - ~
iy Nye Kye e A AU hel Sel
22.17 1.70987 -0.39001 0.10262 0.2857 0.9524
75.60 1.63151 -0.32520 0.11405 0.2916 0.9582
1000 1.45943 -0.21715 0.05059 0.3019 0.9686
2000 1.39553 -0.19984 0.03617 0.3032 0.9695
3000 1.35768 -0.19070 0.02942 0.3037 0.9704
4000 1.33079 -0.18578 0.02532 0.3039 0.9706
Mode 2
A [ kyc gc X 10¢ Ccl Cc2
41.5 1.51995 -1.50941 0.00557 0.1674 0.8341
125.2 1.23400 -1.41142 0.15455 0.1528 0.8191
1000 0.80384 -1.28158 0.07118 0.1189 0.7855
2000 0.67358 -1.25873 0.05001 0.1043 0.7709
3000 0.60495 -1.24294 0.04032 0.0961 0.7628
4000 0.56011 -1.22847 0.03452 0.0908 0.7574
TABLE 4
Numerical Convergence for some ¢ = 37 cases
Fixedk. k, = k, = 1, A = 10°
h 0.004 0.002 0.001
s 1.6573107*  1.6554107*  1.6549107*
Most Unstable Mode, A = 2000
h 0.004 0.002 0.001
ksc 1.39567 1.39550 1.39546
kyc —0.199827 —0.199846 —0.199852
3.616910~° 3.6163 1072

Se 3.6190 10~
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LEGENDS FOR FIGURES

Figure 1. The contours for the integral representation of solutions of the homogeneous
equation (3.17). @) The contour Cs for ws as given by (3.25), (b) the contour Cy for wy
as given by (3.26).

Figure 2. The function b, for the case k, = k, = 1 for (a) A = 103, (b) A = 104, (c)
A = 10% and (d) A = 10° showing the development of the asymptotic structure.

Figure 3. The function j, for the cases shown in Figure 2.
Figure 4. The function v, (multiplied by - ) for the cases shown in Figure 2.
Figure 5. The function w, (multiplied by - ¢) for the cases shown in Figure 2.

Figure 6. The function b, for the case k; = k, = 1 and A = 10%, (a) as computed
by integration of the full equations (2.16)-(2.19) (these points are marked with a +) and
compared with the mainstream from (4.20); (b) the same, but showing the critical region
on an enlarged scale; (c¢) the result of integration of the critical layer equations, { = 0
corresponding to the critical point itself.

Figure 7. The function j, for the same three cases as shown in Figure 6. Here the
mainstream form of j, is obtained from (4.26).

Figure 8. The function v, (multiplied by -¢) for the cases shown in Figure 7.
Figure 9. The function w, (multiplied by -7} for the cases shown in Figure 7.

Figure 10. The growth rate, s.(A), for the most unstable mode, i.e. the local maxima of
s(k,A) as a function of A, obtained by solving (5.2). Two such maxima exist in the case
g = £ 7 shown: mode 1 (M;) and mode 2 (M,).

Figure 11. The evolution of b, as A increases, shown for four values of A for mode 1 in
the case ¢ = $m: (a) A = A, = 22.17, close to the marginal state for the tearing mode,
kye = 1.7100, k,» = 0.3900; (b) A = 75.6, close to the maximum attainable growth rate for
the tearing mode, k. = 1.6315, ky. = —0.3252, o, = 0.1140; (c) A = 2,000, k,. = 1.3955,
kyo = —0.1998, o, = 0.03617; (d) A = 4,000, ky. = 1.3308, ky. = —0.1858, o, = 0.02532.

Figure 12. The evolution of j, as A increases, for the cases shown in Figure 11.
Figure 13. The evolution of v, as A increases, for the cases shown in Figure 11.
Figure 14. The evolution of w, as A increases, for the cases shown in Figure 11.

Figure 15. Convergence of b, as the step size, R, is reduced; A = 10%, k, = k, = 1,
g = % 7. Results for A = 0.005, 0.0025 and 0.00125 are marked by +, 0 and —, respectively.
In (a) the full range 0 < z < 1 is shown; in (b) only the vicinity of the critical point,
z, = %, is shown.

Figure 16. Convergence of j, as the step size, h, is reduced; the same cases as in Figure
15.
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FIGURE 11. The evolution of b, as A increases, shown for four values c;f A for mode I in
the case ¢ == -g-vr: (a) A = A, = 22.17, close to the marginal state for the tearing mode,
kze = 1.7100, k,. = 0.3900; (b) A = 75.6, close to the maximum attainable growth rate for
the tearing mode, ky. = 1.6315, ky = —0.3252, ¢, = 0.1140; (c) A = 2,000, k., = 1.3955,
kye = —0.1998, 0. = 0.03617; (d) A = 4,000, k. = 1.3308, ky. = —0.1858, o, = 0.02532.
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