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Abstract A layer of stagnant water and ice containing sources of heat is thermally insulated
at one end, and is maintained at a subzero temperature at the other. The evolution of an arbitrary
initial state to the final eqﬁilibrium state, in which one side of the layer is water (or in some
circumstances ice) and the other side is (necessarily) ice, is studied in the limit of large Stefan
number. It is shown that, depending on the degree of heating and the initial state of the system,
the system may pass through a transient phase in which an internal region is filled with mush,
j.e. is & mixture of both ice and water. The manner in which this slushy region is born, evolves

and eventually dies is studied both numerically and analytically.



1. Introduction.

It is well known that melting/freezing processes in alloys and aqueous solu-
tions will sometimes produce an interface between the solid and liquid phases
which is so thin that it is usually modelled as a sharp transition surface. Seem-
ingly equally possible is a state in which the two phases may be separated by
a finite region of mixed phase, often termed a mush or mushy zone. Which
of these two situations actually arises in practice depends upon material pa-
rameter ranges and delicate thermal balances. For pure substances such as
an ice-water system the sharp interface is much more prevalent, so much so
that there is perhaps the feeling that it is the only possibility. We shall show,
however, that sharp interfaces are not inevitable in this case either.

To illustrate we consider in this paper the melting evolution of an ice-water
system contained in a one-dimensional finite region which is being warmed
by volumetric heating. For definiteness, we assume that one boundary of the
system is maintained at constant temperature while the other is thermally
isolated. This is, of course, a Stefan problem and the case when the associated
Stefan number is large was previously considered by Ockendon (1975). His
initial state was one in which the system was originally all ice. Here we shall
include more general initial data.

The analysis of this paper confirms that, for a certain range of positions of
the initial phase interface, a sharp surface will persist throughout the whole
evolution of the two-phase system: on one side of the interface the ice temper-
ature is sub-zero (on the Centigrade scale) while on the other, the liquid has
a positive temperature distribution. More interesting is the range of positions
of the initial interface for which this does not happen for all time. For these
cases it is possible to find a mathematical solution in which, after a certain
onset-time, the temperature of the ice rises above the melting temperature
without any release of latent heat (see Ockendon (1975), Lacey and Shillor
(1983)). It is sometimes said that the ice has taken up a quasi-equilibrium
state being superheated.

Statistical mechanics offers a compelling explanation for the existence of
quasi-equilibrium states such as supercooled water, and provides methods (in
terms of the “escape over a barrier” from the quasi-equilibrium state to the
nearby state of complete thermodynamic equilibrium) by which the lifetime of
a quasi-equilibrium state can be estimated. Supercooled water occurs because
the surface energy required to nucleate a grain of ice increases with the radius,
R, of the grain. Only if R exceeds some critical radius, R., will the grain
increase in size and solidification occur; otherwise the grain will dissolve back
into the fluid to be replaced by other grains that attempt to escape back
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over the barrier in turn. The top of the barrier itself is defined by the energy
required to produce a single grain of radius R, and this is so large that escape
over the barrier is a statistical rarity, thereby explaining the longevity of the
supercooled state.

There is a complete theoretical symmetry between nucleation of a small
ice grain in supercooled water and the nucleation of a small water cavity in
superheated ice, both being quasi-equilibrium states that owe their existences
to interfacial energy between phases. The practical difficulties in creating su-
perheated ice appear to be the greater (see, for instance, Landau and Lifshitz,
1969, §150), although there have been reports that such states have been
observed even existing long enough to be experimentally studied (Chalmers,
1964; Woodruff, 1980). In the context of the present one-dimensional problem,
neither supercooled water nor superheated ice are possible states, since hoth
rely on nonzero surface energies between phases, and these are conspicuously
absent when those interfaces are planar!

Thus, instead of the appearance of superheated ice we show that a more
physically acceptable solution has a transitory region of mixed phase. An
earlier treatment of a mushy zone has been presented by Atthey (1974). Here
we are particularly concerned with the manner in which the mush is born
and the fashion of its eventual demise. There can be no question that it
persists for all time: the continual warming by volumetric heating would
systematically deplete the mass fraction of the solid phase in the mush in
contradiction to the assumption that the solution was steady. Thus the system
ultimately moves to a configuration with a sharp interface in which the heat
being supplied by volumetric sources is in balance with the heat flux out of
the non-insulated end. Governing the evolution to this final state there are
two intrinsic time scales, one associated with latent heat and the other with
thermal diffusion processes. The assumption of large latent heat (and hence
large Stefan number) means that its associated time scale is so slow that the
diffusion time is much shorter.

For the cases when a mush does occur its life cycle is intimately bound up
with these characteristic rates. There are two main scenarios. For definite-
ness let us assume that ice lies to the left (smaller ). The mush is always
formed by an ice/mush interface appearing and moving left on the fast time
scale towards a critical position that is a function of the rate of volumetric
heating. As this edge moves across it effectively lays down a distribution of
solid and liquid phase in the mush behind it. The morphology of the mush
continually changes: the volumetric heating works to diminish the proportion
of solid present. Although the leading edge initially moves quickly, it actually
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approaches the critical position with increasing lethargy. Ultimately the mush
vanishes by the trailing (mush/liquid) edge overhauling the leading edge in
an exponentially small neighbourhood of the critical position. The essential
difference between the scenarios lies in the way in which the trailing edge fol-
lows across. When the initial configuration is an ice-water system, the trailing
edge immediately follows across but only on the slow time scale. Since the
leading edge approaches the critical position moving slower and slower, there
will come a time when it is moving as slow as the trailing edge. Thereafter
the mush/liquid interface is actually the faster moving and so the width of the
mush must decrease and eventually vanish. The other type of mush evoluton
occurs when the initial phase configuration has only ice present. In this case
the Stefan condition that applies at phase interfaces at first dictates that the
trailing edge does not move at all. It has to remain motionless until all the
solid at the right hand end of the mush has melted. Since the solid in the
mush is eroded at a constant rate and the extreme right hand end is born
first, it must be obliterated first due to the heating. Once this happens the
trailing edge becomes free to move but, in contrast to the case above, it does
so on the fast time scale. This again follows from the Stefan COIldltIOIl and
reflects the fact that, in the period of time required to melt all the solid at
the stationary trailing edge, the solid fraction becomes very small elsewhere
(of the order of the reciprocal of the Stefan number) and an O(1) velocity for
the mush/liquid interface is needed in order to satisfy the Stefan condition.

The mathematical definition of the problem discussed above is stated in
Section 2. In particular we show why a mush is born and in the following two
sections discuss aspects of the mush evolution for the first of the cases above.
Section 5 is concerned with the evolution of a system that is initially all ice
and so is pertinent to the second scenario.



2. Ockendon’s Problem.

The domain 0 < z < 1 (dimensionless units) is filled with HyO either in
its liquid phase (water) or its solid phase (ice) and the pressure is everywhere
maintained constant. Uniformly distributed heat sources would cause the
temperature, u(z,t), to rise uniformly everywhere at the rate r(> 0), were
it not for heat conduction which removes heat from the plane x = § which
is maintained at temperature u = —1, the zero of u being the melting tem-
perature; the plane & = 1 is a thermal insulator. The thermal diffusivity is
everywhere 1 and the Stefan number is denoted by A = L/cpT where L is
the latent heat, c, the specific heat and Ty, a reference temperature on the
absolute scale. The difference in the densities of ice and water is ignored so
that questions of volume preservation do not arise. Given the initial u and
the initial distribution of the phases, it is required to determine these at all
subsequent times.

In mathematical terms, this one dimensional Stefan problem may, in the
first instance, be stated as follows. Solve

U — Upp + T, (2.1)
subject to
w(0,8) = =1,  ug(1,t) =0, (2.2,3)
and at any zero, = = s(t), of u,
N = 2, 24

Here a superposed dot denotes time differentiation, uy = du/0t, v, = Ou/dz
and fu,] denotes the discontinuity in u. in the limit * — s from the two
sides. Implicit in this first approach is the assumption that u vanishes only
at isolated x, and not over intervals of z, in [0,1]. This is assumed also to be
true of the initial distribution,

uo(z) = u(x,0), (2.5)

which is otherwise arbitrary.

Depending on the choice of g, there may be many distinct regions of ice
(v < 0) and water (u > 0) in [0,1], but in the final steady state defined by
(2.1)-(2.3), there is at most one region of each. We have

Uoo(T) = u(z,00) = =1 + 1z — Lra’. (2.6)



Thus, if 7 < 2 the material is ultimately solid everywhere. We shall confine
attention to the case r > 2, and will write (2.6) as

Yoo = =37 (T — 500) (2 — §oo) : (2.7)

where s, <1, §oo > 1 and

;:}214:(1-2)%, (2.8)

We see from (2.7) that ice ultimately fills £ < s, and water fills z > 5o, and
that 5o = ${(00).

To avoid the complications of following the evolution and demise of many
regions of ice and water, we shall concentrate on simple initial states that have
at most one of each. Typical of such an initial state is

ui(z) = -1 4 2az — az’. (2.9)
If a < 1, ice is initially present everywhere. If a > 1, we may write (2.9) as
U; = —a(a: — 3,‘)(:13 — 5,;), ' (2.10)

where s; <1,5; > 1 and

1
8 _ 1y2
5, } =1%F (1 — Z{) : (2.11)

Then ice initially fills 0 < = < s; and water fills 5; < z < 1, where s; = s(0).
We should emphasize that the picture that emerges from (2.9) is robust, i.e.
other simple choices of u;, that have one or no zeros, evolve in a way similar
to (2.9). Ockendon (1975) focussed on an initial state for which » < 0 and
s; = 1; this can be simulated by taking a =1 in (2.9).

One other ‘critical’ value of z will be significant in what follows, namely

T = s., where
sc=+/2/r. (2.12)

In the cases 7 > 2 of greatest interest, s. falls within [0,1]. It is clear that
Se > 8oo



Suppose that, for all ¢ during the evolution of u, from (2.9) to (2.6), there
exists a single interface ¢ = s(t) between ice in [0,s) and water in (s,1].
Denote u in these intervals by u; and uy respectively and write (2.4) as

As(t) = u1.(s,t) — uga(s,t). (2.13)

Ockendon (1975) noted that Stefan problems of the present type are easily
solved in the limit A — oo. There are then two timescales, the “fast” O(1)
timescale of thermal diffusion and the “slow” O()) timescale of latent heat
processes. According to (2.13) the interface moves on the slow timescale, and
during this time heat conduction processes are effectively instantaneous, t.e.
on the slow timescale, (2.1) gives, to leading order

0=tps+7, 7=2/s. (2.14)

Let us attempt to solve Ockendon’s problem in the limit A — oco. By (2.2),
(2.3) and (2.14) we have, to leading order,

uy = —(z — s)(xs — s2)/ss2, uy=(z—s)(2-z—s)/s: (2.15,16)
Tt may be noted that, even taking s = s;, (2.15) and (2.16) do not coincide
with (2.9). This is because there is a fast initial phase, O(1) in duration,
during which (2.9) evolves to (2.15) and (2.16) by heat conduction; this initial
phase cannot be monitored by the slow timescale approximation (2.14} of
(2.1).
Using (2.15) and (2.16), we see that the interface condition (2.13) is

A$ = (85— 800)(5 — 500 )/852. (2.17)

Thus, if $; < 5o, then s increases until ultimately s = soo; if 5; > 800, then
$ < 0 and s decreases monotonically to so.. Equation (2.17) may be integrated

to give
g A fs o S=Tt) (T 2.18
B (goo - 300) = So0 — Si = 8; — Seo ’ ( . )

so that

(S0 — 5c0)

o t] , ast— 0o, (2.19)

§~ Soo + (85 — Soo ) €XP [—
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This analysis provides a physically uncontentious solution if s; < s.. When
however s; > s., the second zero, z = § where § = s2/s, of (2.15) falls within
the interval 0 < = < s in which (2.15) is supposed to hold. It remains in
that interval until s has decreased to s.; thereafter it exceeds s., i.e. it is
then irrelevant. Thus, during the time in which s > s, the temperature in
5(t) < = < s(t) exceeds zero but, since the latent heat condition (2.4) is not
obeyed at x = § (u, is in fact continuous there), it does not reflect a change
of phase. It is for this reason that the material in such a region has been
called “superheated ice” (Ockendon (1975); Lacey and Shillor (1983); Lacey
and Tayler (1983)). For the physical reasons adumbrated in the introduction
we prefer to investigate the appearance of a mushy region between the pure
phases.



3. The mush: overview of a life cycle and details of the birth.

In this and the following section we develop a new solution in which a mushy
zone makes a temporary appearance. The initial position of the (sharp) phase
interface, £ = s;, occurs at an interior point of [0,1] and this corresponds to
a > 1in (2.9). The case o < 1is considered in detail in Section 5. The
morphology of the mixed phase region is characterized by the mass (or volume)
fraction, ¢(x,t), of ice at point z at time 2. On the microscope level, ¢ can
only be 1 (within an ice grain) or 0 (in the water surrounding the grains). In
the description of the mush used here, we assume that an average over many
grains surrounding x at time ¢ has been taken to obtain a smoothly varying
¢(x,t) that can take any value in [0,1], i.e. we describe the mush using the
approach of mixture theory. '

Before becoming enmeshed in the details of the phase evolution we first give
an outline of the life cycle for the case o > 1. Four distinct stages can be
identified in our solution.

(1) The gestation and birth of the mush (described in this section).
During 0 < t < t; = O(1), the initial state (2.9) evolves until at

t=1 (say)
’ ulm(s,tl) = 0, (31)

for the first time. Because t; = O(1) and A > 1, we have s(t;) = s,
to leading order. To the same accuracy, we may replace s in (3.1) by s;.

(2) Growth of the mush (Section §).

During t; < t < t2 = O(1), s1(t) moves towards s, and the mush
spreads quickly from s;, and fills s1(t) < & < s2(t), where 5, and s; are
to be determined. The solution now consists of three distinct regions:

(i) ice. In 0 < = < 5,(t) we have
u=u{z,t) <0, ¢=1;
(ii) mush. In s;(t) < & < s2(t) we have
u=us(z,t) =0, 0<¢=ds(z,t) <1
(iii) water. In s3(t) < <1 we have
u=uy(z,t) >0, ¢=0.
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We may not assume, a priori, that ¢ is continuous at s; and s», and
we define

$1 = w_l_{lf+ ¢3,  ¢2= lim ¢y,
to be the values of ¢ at the edges of the mush. Since domain (ii) is
everywhere in phase equilibrium, uz = 0, so that (2.13) is replaced by
the demands

A(l - (}51)3'1 = Uiy (81, t), (32)

Aq&zéz = —‘U;gw(Sz,t). (33)

Because t; = O(1) and A 3> 1, the latter shows that sz(t2) = s; to
leading order. The rapid motion of s; occurs, despite the enormous
size of ), because the system satisfies (3.2) by [cf. (3.1)]

¢1 = 1? ulm(slat) = 03 (34,5)

(3) Death of the mush (Section /).

During t; < t < t3 = O()), the mush contracts slowly in the follow-
ing manner. While s; continues to approach s. it does so ever more
slowly. The trailing edge, s2, has meanwhile been moving towards s
on the slow time scale. Eventually there comes a time, ¢, when s; in
approaching s. is travelling as slowly as, and later even more slowly
than, s;. In a very definite sense, stage 2 is a part of stage 3, rather
than being anterior to it.

(4) Post—mush evolution (Section {).
During the final phase t > t3, the solution at last evolves to the state
(2.6) on the O()) timescale and s becomes so,. The solution essentially
coincides with that obtained in Section 2 for s; < s..

In the remainder of this section we develop the solution for stage (1), that
is, we solve (2.1) — (2.3) subject to (2.5) and (2.9). Since A >> 1, we replace
(2.13) by |

§ = 8i,

so that for this period of the evolution, to leading order, the interface remains
at the initial position. We are therefore effectively seeking the temperature dis-
tribution on a fixed interval and this can be obtained using standard Laplace
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transforms. Since s; < 1 an appropriate representation is

— g — 2 /e,
R m(;; /s
' : 2.2
+A32T _r sin(w) exp {_(2n+1) Wt‘{,
+ 1) \ §i L 5 d
0<z<s;, (3.7)
un(z,£) = (x —$:)(2— 85 — x)

32

(=1 (2n+ (1l — ) (2n + 1)*#%t
+4A(1 - si) Z ACTES R ( 21 = 57) ) exp {" i1 =) ] )

s; <z <l

(3.8)

where A = 8(as? — 1)/n%s2. This solution holds until (3.1) is obeyed for the
first time at ¢ = #;. This onset time for the appearance of the mush can be
easily found from (3.7) to be the solution of

i' 1 _(2n 4 1)1t
ZaEnr 1) 52

1

n?(s} — s¢)
832(1

: 3.9
as?) (3:9)
In Table I we list onset times obtained by numerical solution of (3.9) for
various ranges of r and « and in Figure 1 we show stages of a temperature
distribution evolution up to the onset time ;.

a=1+4p
T p=1/64 pP=1/16 pP=1/4 p=1/2 p=1

5 | 5.6566e-03 | 2.5264e-02 | NO MUSH | NO MUSH | NO MUSH

10 | 7.8499¢-04 | 3.3640e-03 | 1.7533e-02 | NO MUSH | NO MUSH

15 | 2.9632e-64 | 1.2585e-03 | 6.2832¢-03 | 1.6094e-02 | NO MUSH

20 | 1.5429¢-04 | 6.5291e-04 | 3.2057e-03 | 8.1630e-03 | NO MUSH

50 | 2.1480e-05 | 9.0927e-05 | 4.3511¢-04 | 1.0666e-03 | 2.9699e-03

100 | 4.9584e-06 | 2.1836e-05 | 1.0324e-04 | 2.5040e-04 | 6.8176e-04

150 | 2.0172¢-06 | 9.3877¢-06 | 4.5076e-05 | 1.0902e-04 | 2.9477e-04
Table I. Non-dimensional onset times for the appearance of a

mushy zone for various values of the volumetric heatm% r, and the
parameter o, that characterises the initial state of the emperature

field [see (2.9)].
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4. Growth and death of the mush.

As indicated in Section 3, at the onset time ¢;, the leading edge of the mush
z = 5;(¢) moves to the left towards = = s.. The position of this solid~mush
interface and the temperature distriburion in the solid phase are determined
by solving on (z,t) € [0,51(t)] x [t1,1)

U = Uiz +r, r= 2/33, (41)
subject to
ul((},t) = -1, ul(slat) =0, ula(slat) = 0. (4'23334)
The initial data, uy(z,1), is given by (3.7) and, according to (3.2) and (4.4},
These equations have been solved for r = 15, o = 1.25 (which is the standard
case of this section). Standard numerical techniques were used. In Figure 2
we illustrate the manner in which the interface moves across and show the
development of the temperature field. .

The rate at which s; approaches s. decreases with s; — s.. If s; were not
eventually overtaken by the trailing edge, x = s3(t) at time t3 (say) with the
concomitant loss of the mush, the evolution of s; to s. of the solution would
take an infinite time to complete. To investigate this point, we develop the

solution to (4.1)—(4.4) for small s; — s. and small §;. The solution we seek is
asymptotic to the steady solution that exists when s, = s, namely

u(z) = —(1—2/s.)°. (4.6)
For small s; — 5., we seek solutions of the form
2 —kt
u(z,t) = —(1- zfs.)” —v(z)e™" 7, (4.7)

where k and v are to be determined and v is of order s; — s.. Substituting
(4.7) into (4.1) and (4.2), we obtain (' = d/dx)

" + kv =0, (4.8)
v(0) = 0. (4.9)
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We expand conditions (4.3) and (4.4) about s; = s, to obtain

0= ul(slat) - ul(scut) + (31 - sé)ulm(scat)a
0= ulm(sl,t) B um(sc,t) -+ (81 — sc)ulm(sc,t),

with O(s; — s.)? errors. After substitution from (4.7) we find, to the same
accuracy

v{s.) =0, (4.10)
51 — Sc = —%sgv'(sc)e_kzt. (4.11)

By (4.8)-(4.10) we have
v(z) = Asinke, k=mn/sc, (4.12, 13)

for some constant A, so that by (4.11)
51— S = -;-ﬂ'scAe"(”/")zt. (4.14)

In short, we now have

i (e, t) = — (1 - fﬁ-)z ~ 2 sin (E) (51 — ), (4.15)

S¢ T8 S¢

i = —(1/s¢) (81 — 8¢), (4.16)

both expressions being in error at order (s; — sc)?. For the illustrative case
r = 15, a = 1.25, if we determine for s; — s, = 0.0l the constant A by
matching the asymptotic solution, s14, of (4.14) with the numerical solution,
s, then the error satisfies ||(s1q — 51)/51|| = 107*. Matching near s. gives
concomitantly improved errors.

In the mush itself, that is for s;(t} < < s2(t), there is no heat conduction,
as uz = 0, so the heat sources act only to melt the ice. Thus

se = —1/A = —2/Xs;, (4.17)

which gives

P3(z,t) = go(z) — 2t/As2. (4.18)
Here ¢o(x) must be such that ¢3(s1(t),t) = 1 for all relevant ¢, i.e. such that
(4.5) is obeyed. We therefore introduce the function, T(s,) say, that is the
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inverse of s1(t), so that s1(T(z)) = x. (We note that s; is a monotonically
decreasing function of t for ¢ > t; so that the inverse exists.) The statement
that ¢3(s1(t),t) = 1 for all relevant ¢ can then be restated as ¢3(z, T(z)) =1
for all relevant . Then, by (4.18),

do(z) =14 2T(z)/As. (4.19)

Since by (4.18) and (4.19) T(z) is monotonically decreasing for s, <z < sy,
¢ and ¢3 are also monotonically decreasing functions of x, and

és(z,t) =1 - 2[t — T(z)]/As2. (4.20)

In Figure 3, for r = 15, oo = 1.25, we graph ¢; versus z for various times.
Finally, in this section we consider the trailing edge of the mush, that is
the mush/liquid interface at & = s2(t). Throughout it moves slowly much in
the manner of the persistent, sharp interface of the case s; < s¢ discussed
in Section 2. The explanation of this follows from (3.3): both ug,(s2,t) and
@2 are non-zero so that s = O(A~!). Compared with this slow evolution,
diffusion processes are effectively instantaneous and it follows that (cf. (2.16))

ug(z,t) = (¢ — 52)(2 —z — 32)/'s§, (4.21)

By (3.3) we have
Adase = —2(1 — 52)/52, (4.22)

and from (4.20) we have
A{1-2t- T(s2)]/As2} 62 = —2(1 - s3)/82. (4.23)

The numerical solution of (4.23) for the illustrative case used in this paper is
represented in Figure 4 and shows that ¢3 = 0.534.

The mush having disappeared at ¢ = t3, the subsequent evolution from
s = s, is given by the marginal case s; = s. of the s; < s. theory developed
in Section 2. The relevant solution to (2.17) is now, instead of (2.18),

As2 _ Foo — § ‘ '$ — Seo
t=13+ (5o — 520) [sooln (gw — Sc) — Seoln (Sc — sm)] . (4.29)
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5. The casea < 1.

Suppose that water is absent initially, that is ug is everywhere negative, but
nevertheless still satisfies the endpoint conditions (2.2} and (2.3). A typical
example is provided by (2.9) with o < 1. Ha < 1, the first stage of the
evolution is again on the fast time scale with u increasing until, at time £ = ¢4,
u first becomes zero at © = 1. Thereafter a mush rapidly develops as in the
previous section but the third and fourth stages dealing with the diminution
and demise of the mush have marked differences.

The central observation is that, from (4.22), since sz is initially 1, $; =0
until ¢, the mass fraction of solid at « = 1, vanishes. Hence the trailing edge
must languish motionless until the volumetric heating has dissolved the ice at
x = 1. According to (4.20), since T(1) = t;, ¢2 will vanish at ¢ = t3, where

As?

to = £ + 26, (51)

and

bs(z,tz) = 2[T(x) — t1] /As. (5.2)

Since T(z) is monotonically decreasing and T'(1) = t;, it follows from (5.2)
that ¢35 > 0 at t = t,, within the mush and equality only occurring at © = 1.
Clearly, from (5.2), ¢3 = O(1/As?) at t = t; and the left-hand side of (3.3)
is, therefore, at most of order 235/ s2. This means that s; will evolve on the
fast time scale in contrast to the situation of the previous section, where s;
always moved on the slow scale. Because the evolution is rapid, we cannot
adopt the approximation (2.14) but must retain the up term in (2.1). Thus,
for t > t; we must solve

Uy = Ugge + T, T =2/52, (5.3)
u2(5235) =0, u2w(1a£) =0, (5455)
2 [T(Sz) - t1 - ﬂ 52/33 = “Ugw(32,£), (56)

where t = t, + . We observe that both sides of equation (5.6) vanish when
{ = 0. Consequently, some care will be needed to determine the manner in
which the solution starts. It is clear that if s, moves off at £ = 0 with a speed
that is less than or equal to the speed of sy initially, then s must exactly
mimic the journey of s, since ¢, will always then vanish at the trailing edge.
This is not the case and to illustrate we concentrate on the case a = 1 so
that stage 1 does not occur and the onset time, #;, is zero. To investigate
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the solution for 1 — s € 1, £ < 1, we assume the first few terms of a double
power series solution with

ug = 2a1t — az(1 — z)?, (5.7)

where a;, a; are constants to be determined. Condition (5.5) is identically
satisfied and (5.3,4,6) give '

2ay =7 — 243, 201t = az(1 — s3)?, [T(s2) — £] $2 = —s2az(1 — s2).
(5.8)
To make further progress, we need information regarding T'(z) which is related
to the motion of the leading edge. In the appendix to this paper A M Soward
has shown that when o = 1 it is possible to construct a similarity solution for
the leading edge by using a boundary layer analysis. hIS result shows that,
for s, — 1,

T(s5) ~ (1 — s2)% /412, (5.9)

where I is the solution of the transcendental equation
s2Terfc T + (1 — s2) [I‘erfc r - e_rz/ﬁ] = 0. (5.10)
From (5.8) we find that |
a = [(1+200% +41%)"/% — (1 + 2T%)| /81732, (5.11)
Equation (5.8); shows that
sa(t) ~ 1 — (2ast/ag)'/?. (5.12)
By comparing with the result (5.9), which implies that

s1(t) ~ 1 — 2TV, (5.13)

we see that, since a;/2asT? = 2s2a; + 1 > 1, the trailing edge starts out
faster than the leading edge did. The asymptotic results (5.7), (5.8), (5.11),
(5.12) can be used as an initial solution state to numerically solve the system
(5.3)~(5.6). In Figure 5 we illustrate the evolution of the edges of the mush
for r =15, a=1.

16



Acknowledgements.
The research of one of the authors (P. H. R.) is sponsored by the U. 5. Office
of Naval Research under contract N00014 86-K-0691 with the University of

California, Los Angeles.

17



References.

D. R. Atthey (1974). “A finite difference scheme for melting problems”, J.
Inst. Maths. Applics. 30, 353.

B. Chalmers (1964). Principles of solidification, John Wiley, New York.
A. A. Lacey and M. Shillor (1983). “The existence and stability of regions
with superheating in the densical two-phase one-dimensional Stefan problem

with heat sources”, I. M. A. J. Appl. Math. 30, 215.

A. A. Lacey and A. B. Tayler (1983). “A mushy region in a Stefan problem”,
I M. A.J Appl Math. 30, 303.

L. D. Landau and E. M. Lifshitz (1969). Statisitcal Physics, Vol. 5 Course of
Theoretical Physics, (2nd edition), Pergamon Press, Oxford.

J. R. Ockendon (1975). “Techniques of analysis” in Moving boundary prob-
lems in heat flow and diffusion, (ed. J. R. Ockendon and W. R. Hodgkins),
Clarendon Press, Oxford.

D. P. Woodruff (1980). The Solid-Liquid Interface, C.U.P. Cambridge.

18



Figure captions.

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

The evolution of the temperature distribution u(z,t) for r = 15,
o = 1.25, from an initial state to just prior to the onset of a
mush at t = t; (= 6.62832e-03). Since A >> 1, the position of the
ice/water interface at = s; (= 0.5528) does not move to leading
order and at onset ty, ui.{s;,t;1) = 0.

(a) The evolution of the leading edge = = s1(t) of the mushy zone
for the case r = 15, a = 1.25, showing that the edge approaches
the critical position z = s. (= 0.3652) increasingly slowly; see
(4.14). ‘

(b) The temperature distribution w;(z,t) within the solid for
r = 15, @ = 1.25 showing how the solid/mush interface moves
towards the critical position z = s, (= 0.3652) for times 7 =t — 1,
subsequent to the onset time ;.

The distribution of the mass fraction of the solid, ¢3(z,t), in the
two-phase mush at various times 7 =t — ¢; (> 0), where ¢, is the
onset time.

The evolution of the position of the edges of the mushy region for
the case r = 15, o = 1.25. The region quickly forms at time t; by
the leading edge = = s;(,t) moving across towards x = s. and the
trailing edge moves across on the slow time scale with the mush
disappearing at ¢ = t3. Thereafter the system has a sharp phase

boundary that moves towards the equilibrium position z = s
(= 0.06905).

The evolution of the position of the edges of the mushy region for
the case r = 15, @ = 1. For this case the onset time ¢; = 0 and
the region forms by the leading edge = = s;(z,t) moving across
towards £ = s.. In order to satisfy the Stefan condition (4.22),
the trailing edge must remain motionless at £ = 1 until the solid
fraction there has been melted by volumetric heating. Thereafter
the trailing edge = = s2(t) moves on the fast time scale.
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Appendix. Early time solution for o = 1.

This appendix aims to re-inforce the analysis of the case @ = 1 described in §5, but
only minor modifications are required to make the analysis applicable also to the more
general case @ > 1 considered in §§2-4.

According to (2.9) for & = 1, the initial state,

ui(e) = ~(1 - 2)% (Al)
is one in which ice is present everywhere, but in which melting is about fo be initiated at
z = 1.

By writing _
'U}(:L‘, t) = u,(m) + U($$ t)a (Az)

we introduce the departure, v(z, t), of the temperature from (A2) at later times; evidently
v(z, 0) = 0. (A3)

By (4.1) and the boundary conditions (4.2 ~ 4.4), v must be the solution of
v = v + 20, 0 < z < s1(2)) (A4)

that satisfies, for ¢t > 0,

v(0,%) = 0, (AS5)
v(s1,t) = (1 - 51)2, (A6)
vx(sl, t) = ——2(1 - 31), - (A7)
where ) 5

For sufficiently small times, the solution in the interior of the region 0 < z < s1(t)
away from the end points is

v = V() = 2Qt. (A9)

This does not satisfy the boundary conditions at £ = 0 and ¢ = s(t), and in their
immediate neighbourhoods boundary layers form, whose widths are of order 11/2 and in
which solution (A9) adjusts to conditions (A5) — (A7). So at @ = 0, for example, the
solution takes the similarity form

v = V()1 — %(£)], (A10)
where £ = z/2t'/2. By (A4), ¢(¢£) satisfies

'+ 26y — 4 =0, (Al1)



where the prime denotes differentiation with respect to . Condition (A4) and matching
to (A9) require

¥(0) = 1, (A12)
P(§) — 0, as § — oo. (A13)

The solution to (All) - (A13) is

B(E) = (1 + 2)ertcl — —mbe, (A14)

where erfc denotes the complementary error function:

erfc{ = 2 / e % dz.

71/2 ¢

Of greater interest is the nature of the boundary layer at the moving end point, z =
51(t). To understand the structure of this layer, it is helpful to consider the comparison
problem defined on the fized interval 0 < z < 1, and to solve (A4) subject to the
boundary condition (A5) with an evolving value for v(1, t). That value is determined by
the demand that the resulting solution obeys the two conditions (A6) and (A7) at the
interior point £ = s;1(%).

When

o(l,8) = VO - w) - (A15)

where y is a constant as yet unknown, a similarity solution of (A4) can again be constructed
which obeys (A15) and matches to (A9):

v = V() - pp(8)], (A16)

where 9 is again given by (A14) but now £ = (1 — z)/2t}/2. Fortuitously, (A16) can also
satisfy both (A6) and (A7) at an interior point

si(t) = 1 — 2Il/2, (A17)

where T is another constant to be determined. Specifically, (A6) and (A7) are met when
respectively

1 - (T = T, (A18)
—py'(T) = %F- (A19)
By (Al4) we therefore have
Q= W“l/ze‘I‘rirfc—FFerfcI" (A20)
b= = (A21)



The value of I' is obtained by solving {A20), and then g is derived from (A21).

We will examine the nature of the solution for the two extremes: (i) @ < 1 and (ii)
Q > 1. In both cases the results will be valid only during the time in which the boundary
layers at ¢ = 0 and ¢ = s; are non-interacting, which is the case when # is sufficiently
small:

t < 1 (A22)

(i). The Case @ < 1.
When @ is small, it follows that

0 <1—3s5 K1, (A23)
so that the initial state u;(z) is very close to the state (4.2) to which the temperature in

the ice tends during the growth of the mush, namely u; = (1 — z/s;)?. The solutions of
(A20) and (A21) are

1
D= 5Q + 0@, (A24)
2

p=1+-Q + 0(Q. (A25)
Since p is close to unity, the boundary layer at z = s;(t) is approximately the same as
that at the stationary boundary z = 0. Furthermore since I' is small the displacement,

1\ 1/2

of the mush-ice interface away from # = 1 is ever small compared with the boundary

layer thickness $1/2,

(ii). The Case Q > 1.
When @ is large, it follows that

0 < s < 1, (A27)

so that the ice-mush interface eventually moves to a location far from its initial pos1t10n
at £ = 1. The asymptotic solutions of (A20) and (A21) are

~ (3@ + 0(Q7), (A28)
b~ (3@ + 0(@77)] % (A29)

In contrast to the case of small @, the displacement,
1 — s ~ (2Q8)'72, (A30)
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of the mush/ice interface is large compared with the boundary layer thickness. Only the
large ¢ asymptotic behaviour is relevant to the interval 0 < z < s1(t), and that gives

v ~ V() [1_ —~ %e“:] i (A31)
where :
) 1/2
( = (-ﬂ) (s — ). - (A32)
Since the interface z = s;(t) moves very rapidly, the boundary layer in front of it is very

thin, of order (¢/@)'/? in width. Indeed, the location of the moving interface can be found
by ignoring the boundary layer entirely, and simply applying the boundary condition (A6)
directly to the mainstream, so obtaining

1 — s1)2 = V() (A33)

This gives the result (A30) directly. The boundary layer is passive, and is only required
so that condition (AT) on v,(s;, t) can be met.

Clearly the solution (A30) for s;(#) is valid only for the very short times for which @t
is small, At later times we can make further progress by ignoring the boundary layer
(A31) generated by the moving interface. Thus we apply condition (A6) directly to the
mainstream solution, as modified by the boundary layer at the stationary wall, z = 0. We
therefore substitute (A10) into (A6), set

sy = 2t/ r = 20, (A34, A35)
and solve for 7 in terms of 5, so obtaining

1/2
i (%) n+ [ = (A36)

When 7 is large (¥(7) < 1) and the moving interface z = s; has not penetrated the
boundary layer significantly, we recover solution (A33) in the form

1 9\ /2
= — 1= (a) 7 (A37)
valid provided that

Q%1 - 7) > 1 (A38)
An interesting feature of the result (A36) is that the advance of the rapidly moving
interface is arrested sharply in the tail of the boundary layer (A10), close to s3 = 27, 12

at time t, = 7./2@Q, where 7. is the solution of
nee = Q7% (ne > 1), (A39)



and 7. is the corresponding solution of (A36). To see how this is achieved, we note that
p(n) ~ 77, as o oo,

and set

n =1 + gp (A40)

The lowest order approximation of {A36) then becomes

1 1 1 -
Q" (717 - :r) = et GyE - ) ()

where, correct to leading order,

1 2\!/*
m-1=(5) (A12)

Te

as in (A37). The asymptotic solutions of (A41) for positive and negative p are given by

AR 1
27, )’ 2217(7'8“7(1’

2 T 1/2 T 1
269G ] e

This result highlights the nature of the transition that occurs at the timet = 1.

2(n — me) ~ (A43)
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