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Abstract

The rank revealing QR factorization of a rectangular matrix can sometimes be used
as a reliable and efficient computational alternative to the singular value decomposition
for problems that involve rank determination. We illustrate this by showing how the
rank revealing QR factorization can be used to compute solutions to rank deficient
least squares problems, to perform subset selection, to compute matrix approximations
of given rank, and to solve total least squares problems.
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1 Introduction

One of the more intricate problems in numerical linear algebra is to find the numerical rank
of a matrix. This computational problem is the heart of many numerical methods such as
subset selection, total least squares, regularization, and matrix approximation. The sin-
gular value decomposition (SVD) is undoubtedly the most reliable method for computing
the numerical rank. A big disadvantage of the SVD is, however, the high computational
complexity of the standard SVD algorithm, as compared to a QR factorization for exam-
ple {12, p. 248]. The same is true for SVD algorithms based on Jacobi iteration. SVD
algorithms for sparse or structured matrices based on Lanczos iteration are faster, but
they have problems with computation of the smallest singular values and, therefore, are
not reliable for numerical rank determination.

A number of alternative, less computationally demanding methods have been proposed.
Most of these are based on a QR factorization with column pivoting [4, 18, 19], but the
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numerical rank computed by these methods is not entirely reliable, see [12, §5.5.7) and 1,
Section 7], and none of these methods are suited for sparse matrices because of the column
pivoting. Similar QR-based methods specially designed for sparse matrices {16, 21], based
solely on detecting small elements on the diagonal of the triangular matrix, are not reliable,
either. Another alternative method, the partial SVD (PSVD) (25}, is as reliable as the
SVD, However, a complete reduction to bidiagonal form is required, so its complexity is
still higher than that of a QR factorization, and it is not well suited for general sparse
matrices.

The most promising alternative to the SVD is the rank revealing QR factorization
(RRQR factorization) defined by Chan [6, 7] (we note that similar ideas were proposed
independently by Foster {10]). An important existence proof of RRQR factorizations
is given in {17). The RRQR factorization will reveal the numericai rank of any matrix,
because it is guaranteed to capture all the small singular values of the matrix by producing
reasonably tight upper and lower bounds for these singular values. In addition, the RRQR
algorithm produces a set of linearly independent vectors that span a good approximation
to the numerical null-space of the matrix. This information is sufficient to solve many
problems in numerical linear algebra.

The computational complexity of the RRQR algorithm is only slightly larger than that
of the standard QR algorithm, as long as the nullity is small compared to the dimensions of
the matrix. A Fortran implementation of the algorithm is now available from ACM TOMS
[22]. Moreover, the RRQR factorization of a sparse matrix can be computed efficiently
without destroying the sparsity pattern of the matrix, and Bischof & Hansen [1] have
demonstrated how to implement the RRQR factorization algorithm with a minimum of
column interchanges. Thus, we feel that the time is ripe for using the RRQR factorization
in numerical linear algebra.

Chan & Hansen [8] showed how truncated SVD solutions can be computed efficiently
by means of the RRQR factorization, and Hansen et al. {15) use RRQR factorizations to
regularize discrete ill-posed problems. Comon & Golub [9] use RRQR factorizations in
conjunction with Lanczos block-bidiagonalization. Bischoi & Shroff {2j have shown how
to use the null-space information from an RRQR factorization in conjunction with the
‘signal subspace’ approach to parameter estimation in signal processing. In this paper,
we illustrate several other important applications of the RRQR factorization in numerical
linear algebra.

Stewart [23] has recently proposed a related factorization, namely a rank-revealing
complete orthogonal decomposition, which is particularly suited for ‘subspace tracking’ in
signal processing. This factorization is computationally more expensive than the RRQR
factorization, but updating of the null-space from Stewart’s factorization is cheaper than
updating the null-space from an RRQR factorization.

QOur paper is organized as follows. In Section 2, we summarize the most important
properties of the RRQR factorization. Then, we show how the RRQR factorization can
be used in rank deficient least squares problems (Section 3}, in subset selection problems
(Section 4) and in matrix approximations (Section 5). Finally we demonstrate in Section
6 how the RRQR factorization can be used to solve total least squares problems with
full-rank as well as rank-deficient coefficient matrices.

We shall almost entirely use 2-norms, so we use the abbreviation || - || for || - {}2. The
range {column space) of a matrix is denoted by R(:). Throughout this paper, in addition



to our new resulis we include a few results already published in other manuscripts. We feel
that the present constellation of this material will provide new insight into the applications
and practical use of the RRQR factorization.

2 RRQR factorizations

Throughout the paper, we assume that the matrix A has been properly scaled, for example
such that the uncertainties in its elements are roughly of the same size [23]. The numerical
rank, or €-rank, of A with the respect to the tolerance ¢ is defined by
k=k(A,e)= “Az_nilax‘lmra.nk(ﬂ). (1)
In other words, the e-rank of A is equal to the number of columns in A that are guaranteed
to be linearly independent for any perturbation of A with norm less than or equal to the
tolerance €. As a guide to choosing this tolerance, it is customary to let € reflect the
uncertainties in A4 [23). See also [11] and [12, §2.5.4] for more details.
The most reliable way of computing the e-rank of A is via its SVD. Assume for
simplicity that A € £™*" with m > n. Then the SVD of 4 is

L3
A=UsvT = E u; oy V?, (2)

=1

where U = {[uy,...,u,] and V = [vq,...,v,] are matrices with orthonormal columns,
and T = diag(e,...,0q) is an m X n diagonal matrix whose diagonal entries, the singula-
values of A, are ordered such that o; > g3 > +++ 2 0, 2 0. From the orthonormality of th«
columns of U and V it follows that ||Avi|| = oy, t = 1,...,n. It is straightforward to show
that if k is the number of singular values strictly greater than ¢, i.e. o > € 2 og41, then
k is the e-rank of A as defined in (1). For every singular value ¢; < ¢, the corresponding
right singular vector v, is a numerical null-vector of A in the sense that {|Av;ll < e It
is therefore natural to define the numerical null-space of A as the space spanned by the
vectors vy through vy:

Nk(A) E span{vk+1,...,v,,}. (3)

We can now define a rank revealing QR factorization of A as a special QR factorizatior
ATl = QR which is guaranteed to reveal the e-rank & of A in displaying elements in ths
lower portion of R with magnitude of the order 044 or less. An RRQR factorization thus
has the form

AII:QR=Q(R011 g;z) (4)

where Il is a permutation matrix, @ has orthonormal columns, R, is 2 k X k matrix
with condition number approximately equal to o;/o, [[Rez|| is of the order o441, and k
is the e-rank of A. Such an RRQR factorization of A is not unique, and different RRQR
algorithms may produce different factorizations, The key idea in all RRQR algorithms is,
however, the same: first compute any QR factorization of A and then construct II and ¢
by building up Rz, one row at a time, starting from the bottom. Assume that a trailing
(n— 1) x (n — i) submatrix with small norm has already been generated. In the next step,
the RRQR algorithm then proceeds as follows:
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1. Compute the smallest singular value §; and the corresponding right null-vector wl¥) ¢
R’ of the leading § x i submatrix R() of R, such that

=1, ROWO =6 <o ®)

The inequality 6; < o; follows immediately from the interlacing inequality for singu-
lar values {12, Corollary 8.3.3].

2. Find the permutation which permutes the largest element in absolute value of wii)
to the bottom.

3. Apply this permutation to R(*) and compute a new QR factorization of this matrix.
4. The bottom element of the updated RU) is now of the order §;.

This process continues until §; > ¢ and then the e-rank k of A, given by Eq. (1), is equal to

i. The vectors w(¥) are padded with zeroes and gathered in a matrix W = Wx in such a
2

way that Wy € R(n—k)x(n=k) ig ypper triangular. The resulting column permutation matrix
Il seeks to make Wy produced by the RRQR algorithm as well-conditioned as possible (a
priori upper bounds for ||W; ]|, which depend on the particular RRQR algorithm, can
be found in [1, 8, 10]). It is very important that the submatrix W, is well-conditioned,
for then we are guaranteed to obtain tight bounds for the singular values of A due to the
following theorem:

Theorem 1 Let Rg? and WZ('I) denote the lower right (n —i4 1) x (n — i + 1) submatrices
of Ry and Wy, respectively. Also, let §; denote the smallest singular value of the leading
principal § X i submatrices of R. Then fori=k+1,...,n:

i {4) : {i}y-1
- < b6 <o <|[R34| € givn — 1+ 1|[(W, | 6
= <A S I oA @
Proof. See [T, Corollary 4.1]. a

Theorem 1 shows that the quantities §; and ||R£‘3|| provide easily computed lower and
upper bounds for the singular values ;. Moreover, the outermost bounds in (6} show that
if ][(Wé'))“‘" is not large, then & and [|RS)|l are guaranteed to be tight bounds for a;.
Therefore, the e-rank of A will always be revealed from inspection of the upper and lower
bounds for o; produced by the RRQR algorithm. In addition, Theorem 1 guarantees that
[ R22]| is indeed of the order og41.

The matrix W produced during the RRQR algorithm is such an integral part of the
RRQR that one may almost consider it being a part of the factorization, the reason being
that R(IIW) is a good approximation to the numerical null-space Ay (A). In fact, as shown
in [8, Theorem 4.1], the larger the gap between o and 0441, the smaller the subspace
angle between R(IW) and Ai(A), i.e. the better R(IIW) approximates the numerical
null-space. If & more accurate basis for Mi(A) is required, the columns of W can always
be improved by a few inverse iterations as shown in [8].



3 Rank deficient least squares problems
In this section we consider algorithms for solving the linear least squares problem

min [Ax-bf, Ae€R™*", 1)

3 + + A s Hi Aiés A Ml i H
where the matrix 4 is very ill-conditioned. The usual least squares solution, formally given

by x = HR™*Q7b, is then of no use because it is extremely sensitive to perturbations of
b and it is usually dominated by highly oscillating contributions from the errors in the
right-hand side b. A standard approach to computing a least squares solution which is
less sensitive to perturbations is to transform (7) into a nearby problem which is better
conditioned. In practice, this process usually corresponds to damping or filtering the
contributions to the least squares solution corresponding to the emallest singular values
of A [13, 14]. One such approach is the truncated SVD (TSVD) method, in which one
completely filters out all the small singular values below the e-rank k. The TSVD solution
xrsvp is thus defined as

XTsvD E u—;—vi, k=k(A,¢). (8)

=1 !

The TSVD solution can always be computed from the complete SVD of A, but this is
computationally expensive because a great deal of the information provided by the SVD
is not used. In fact, only the e-rank and information about the numerical null-space is
required. Therefore, the TSVD solution can be computed efficiently be means of the
RRQR factorization of 4 as shown in [8].

Instead of using the RRQR to compute xrsvp, one may define a least squares solu-
tion in terms of the RRQR factorization itsell. Here, we shall analyze and compare this
approach to the TSVD method. Let the RRQR factorization of A be given by (4). The
standard approach [12, §5.5} is to neglect the submatrix Rpy (which is guaranteed to have
a norm of the order ¢4 due to Theorem 1) and then solve the such modified problem. In
analogy with the TSVD solution, it is natural to define the truncated QR (TQR) solution
XTQR as the minimum 2-norm least squares solution to the modified problem. To compute
Ry Ry

0 0
thogonal transformation P to annihilate Ry, by means of Ryy, ie. (Ryy, Ry2)P = (RH,O).
Then the TQR solution is given by

XrQRr, Which involves the pseudoinverse of ( ), it is convenient to use a right or-

h—1
xror =1 P ( R&! g ) 0Tb. ©)

Alternatively, one can compute the basic solution xg, defined as the solution to another
modified least squares problem where both submatrices Ry9 and Ry, are neglected. The
basic solution is giver by

-1
xp =10 ( R&l g )QTb. (10)

We list in column one of Table 1 the dominating terms of the computational effort
required to compute the three solutions Xrsvp, Xxrgr and Xp, asuming that the RRQR
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excl. RRQR factorization inc. RRQR Tactorization
XTSVD (2¢(n~ k) + D)n* (2m - Zn + (£ 4 29)(n - k) + 1)n*

XTQR (2(n — k) + 1)n* (2m — &n + (n — k) 4 1)n*
XB n* (2m — £n+ 2(n— k) + 1)n?

Table 1: Dominating terms of the computational effort.

factorization of A has been computed and that Qb is computed simultaneously with
the factorization. The computational effort is measured in flops (a flop is either one
addition or one multiplication). The quantity g is the number of inverse iterations used to
compute accurate singular subspaces, and usually g is less than 4, The computational effort
to compute the RRQR factorization itself depends on the column permutations needed
during the computations, but it never exceeds (2m— £n+ (n - k))n? flops (provided that
the Linpack condition estimator is used in each step). This leads to the total amount of
computational effort given in column two. We note that more recent condition estimators
such as Incremental Condition Estimation and related algorithms may be much more
efficient in this context, see [1] for details.

In comparison, we can compute the complexity required by a similar technique for
computing Xrsvp based on the PSVD algorithm [25] with accumulation of Q¥b (PSVD
is not suited for computation of xrgr or xg). The R-bidiagonalization of 4 = U Bng"
requires 2(m + n)n? flops. Computation of the n — k smallest singular values and the
corresponding left and right singular vectors, using on average two ‘chases’ per singular
value, Tequires 24(n — k)n® flops. Backsubstitution with B and orthogonalization with
respect to the left and right null spaces requires O(n) flops. Coordinate transformatior
with Vg requires 2n? flops. Thus the total is (2m +2n +24(n — k) +2)n? flops. Therefore,
the RRQR algorithms is always less computationally demanding than the PSVD-based
algorithm.

For our numerical comparison, it is convenient to define the residual vectors corre-
sponding to the three solutions:

r;=Ax;—-b, t=TSVD, TQR, B. (11)
Then we have the foliowing results.
Theorem 2 The TSVD and TQR solutions are related by

Ixrsvo - xrorl < IRaal 1R (2 xzsvol + 22220 (12)

and the TQR and basic solutions are related by
1+v6

Ixrqr = x5l £ =5 &7 {I* | Rzl [ib]. (13)
The three residual vectors satisfy
lezsvo ~ rroal < I1Raal (Ixrsvol + 1222221) (19)
and
lirrqr — 8!l € [ Reall 1Rl IIb]]- (15)



Proof. The TQR solution xrgg is identical to a truncated SVD solution to the problem

Q(Rn Rﬂ)HTx—b (A_Q(g RO;:Q)HT)x_bl

0 0
Thus, we can consider XygR a perturbation of X7syvp, with the perturbed matrix given

< - _fR11 R1')\._'.ﬂ; - = = . - % L N o P . 1
by A=¢ k’ Tl ) 1% (which has rank k) and with the perturbation matrix given by

min

.

I:m.in

0

E=0Q (g R"n) TI7. Note in particular that | E|| = [{Rzal), that | A*{ = R} < || B

and that the (k + 1)’th singular value of 4 is zero. In {13, §3] Hansen derived general
perturbation bounds for TSVD problems. For this special case, these bounds become
somewhat simpler:

lxrsvp — xrqrll < |AT| (1B} IxTsvpl| + sin 6k irrsvoll) + sin bk [Ixzsvol|

lirrsvo — rrorll < | E|| Ixrsvpl| + sin 6k [jrrsypll,

where sin 8; < || E|[/os. Inserting this bound into the above expressions, and using thut
o7l < &1 = [[Riyll, we obtain (12} and (14). The difference between x7gr and xp

satisfies
Ru Ri\* R;y 0Nt b
0 0 - 0 0 ” ”

. 0 R12 . Rll 0
Here, we can consider ( 0 0 ) a perturbation of ( 0 0

perturbed pseudoinverses [3, Theorem 5.3}, [|[(A+E)t-A*|| < l‘%‘@ AT HICA+HE)T &
then yields (13). Finally, to prove (15) we have

flxrqr—xB|l <

), and a standard result for

0 0
r5 ~rrQr = A(XTQR~XB) =( ( RyPa Ry} 0 ) e

where P,; is the bottom left (r — k) x k submatrix of the orthogonal matrix P. Taking
norms and using [| Byl < | R, we obtain (15). . o

Due to Theorem 1 we are guaranteed that [|Baz|l € ox41v7n — k |Wy !|| when R is com-
puted via a RRQR factorization. Hence, as long as 044y is small, Theorem 2 guarante«-
that TSVD and TQR will produce approximately the same solutions as well as residual..
These two methods are therefore in many circumstances equally well suited for solving
rank deficient least squares problems with well-determined e-rank (unless, of course, the
exact TSVD solution is required), and xzqr is cheaper to compute than x7svp.

The RRQR also leads to a basic solution xp with approximately the same residual
vector as both rrqr and rrsvp, because Ry, is guaranteed to be well-conditioned. The
basic solution itself, on the other hand, may be very different from both xrsvp and xrgr.
This is so because the basic solution xp has a (possibly large) component in the nsumerical
null-space of A.

To illustrate the different properties of all the abovementioned solutions, we have
carried out a series of experiments using Pro-Matlab {20]. The dimensions were m =
n = 100, the ratio ¢y/o; (where k is the e-rank) was 10® for all the matrices, and the
right-hand side b was generated such that the TSVD residual vector satisfies {[rrsvp| =
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- Legend for each entry below
lxrsvp — xrqrll lIrrsvp - rrqrl/libll

|xrqr — x5ll firrqr — rall/lb]|
= k= 50 k=75 k=90
10° || 451-10° 1.55.10"10{6.76-10-0 2.19.-10-0 | 2.14.10°1° 8.04.10° 11
2.52 1.22.1077 1.70 9.50.10-8 1.51 5.05.10"8
10° || 4.34-1077 1.34-1077 | 7.31-1077 2.26-10-7 | 1.93.-107" 17.20-107%
3.53 1.04- 104 1.70 9.35.10~5 1.51 3.11.10°5
10 1.80-10~° 3.80-10"% | 2.00.-10°% 5.73-10-% | 2.20.10~° 17.03.10°°
3.52 9.52.10-3 1.70 9.10.10-3 1.51 2.62- 1073

Table 2: Typical numerical results for rank deficient least squares problems with m = n =
100, oy /oy = 103,

10™3||A x7svp||. Typical numerical results are shown in Table 2 for three different values
of the e-rank k and three different ratios ox/ok41. These results clearly illustrate how
the similarity of xrsvp and xTgR, as well as the similarity of all the residual vectors,
depends on the size of the gap between o} and oy41, but not on the erank k. Table 2
also illustrates that the solutions xrgr and xp generally are very different.

4 Subset selection problems

Subset selection is the problem of determining the most linearly independent columns of
the matrix A. To be precise, if k is the e-rank of A4, then the aim is to find a column
permutation II such that the submatrix consisting of the first k columns of AII are as
well-conditioned as possible. The RRQR factorization of A obviously produces such a
permutation II. The basic solution xp discussed in the previous section is in fact the
least squares solution derived from this strategy by forcing to zero those elements of
xp that correspond to the linearly dependent columne of A. Such a solution may in
some applications be preferred to the TSVD and TQR solutions. Subset selection is also
interesting in its own right.

It is therefore interesting to compare the RRQR-based subset selection algorithm with
the standard SVD-based algorithm proposed by Golub, Klema & Stewart [11], [12, §12.2].
Their algorithm constructs a permutation matrix IIgsyp such that the bottom right (n —
k) x(n—k) submatrix Va; of I, ,V is well-conditioned, and then the first n—k columns of
Allgyp are guaranteed to form a well-conditioned matrix. In other words, these columns
form a linearly independent set of the columns of A.

The RRQR factorization also produces a permutation II such that the first n — &
columns of Al are linearly independent, but this II is constructed on the basis of infor-
mation in the matrix W. The difference between these two methods therefore basically lies
in the way that Il is computed. In general, we cannot guarantee that the two algorithms
give identical permutations, and this makes a comparison of the two solutions difficult.
On the other hand, it is more appropriate for subset selection problems to compare the
subspaces spanned by the first n — k columns of Allgyp and ATl



i k= 50 k=15 k=90
10° |[1.03-10-° 1.26-10-° |-1.58-10-° 1.74-10~° | 1.30.10~° 1.51.10-°
10° ][ 9.70-10-% 1.18-10-3 | 1.54-10-° 1.66-10-° | 1.30-10~° 1.51.10~°

10 938102 1.14-10-T ] 1.50-10"° 1.62-10~1{1.30-10"7 1.50-10"1

Table 3: Typical numerical results for the RRQR subset selection algorithm.
Each entry in the table shows the subspace angles sin6(R(U), R(Brrgr)) and
sin 8(R(Bsvp), R(Brrgr)). The dimensions are m = n = 100.

Theorem 3 Let R(Uy) denote the subspace span{u,,...,us}, and let Bsyp and Brrgn

denote the submatrices consisting of the first n — k columns of Algyp and AIl, respec-
tively. Then ;

sin 8(R(Ux), R(Bsvp)) € oknilVzz' o ! (16)

sin 6(R(Uk), R(BrrQR)) < ox1{|R1} || (17)

Proof. Qur proof follows that given by Golub & Van Loan for [12, Theorem 12.2.2].

In their proof they derive the upper bound sin &(R(Uy), R(Bsvp)) < or+1/0x(Bsvp),

where o;{Bgyp) denotes the smallest _singular value of Bgyp. They also show in 12,
Theorem 12.2.1) that ox(Bsvp) > o |Vsz |, which yields (16). Similarly, since Brrgr =

Q (R&I>, we obtain that

. Tk+1 — %k
sin 8(R(Ux), R(BRRQR)) £ i Brnon) ~ orlB)

which is (17). O

The submatrix Ry, in the RRQR factorization of A is gnaranteed to be well-conditioned
and {|R7}|| is of the order o5 . Theorem 3 therefore ensures that the sine of both subspace
angles is of the same order as oy41/0k. Moreover, if this ratio is small, then Theorem
3 ensures that both R(Bgyp) and R{Brrgr) will be close to the subspace R(U;), and
the subspace angle between R(Bsyvp) and R(Brrgr) is therefore also bound to be small,
Hence, if 441/04 is small, then SVD and RRQR yield approximately the same subspaces.
We illustrate this in Table 3, where we show typical values of sin 8(R{(Ui), R(BrroR))
and sin 8(R(Bsvp), R(Brror)). We see that both subspace angles are indeed of the
same order as the ratio o441/0x. The conclusion is that although the SVD and RRQR
subset selection algorithms do not necessarily produce the same column permutations and
thus the same subset of columns of A, the subspaces spanned by these two sets of columns
are still almost identical whenever o541 /o) is small.

5 Matrix approximation

It is well-known that the best rank-k approximation A; to the matrix A, in any unitarily
invariant norm, is the matrix obtained by truncating the SVD expansion in (2) after the
first k terms. That is, the matrix Ax given by

k
A=Y woivl, k<n (18)

i=1



. k= 50 k=15 k=80
10° |[3.05.10°7 2.90.10~7-] 2.55-10~7 2.48-1077 {2.63-1077 2.51.10~7
10° || 2.39-10~7 2.17-1077 | 2.51.1077 2.31-1077 | 5.68-10~" 5.60-10'

10 420107 4.08-1077 | 5.02.10~7 4.92-10°7 [ 6.98-10~7 6.91-10~7

Table 4: Typical numerical results for RRQR matrix approximations. Each entry shows
| A — Bil{ and || A — By|| for matrices with m = n = 100, 0, = 1, and op41 = |4 - Al =
1077,

solves the problem minguny(x)=k |4 — X|| (this is the Eckart- Young-Mirsky Theorem [12,

Theorem 2.5.2]). In particular, ||4 ~ Al = ok41 and [|[A ~ Apllr = (0f,, + -+ 02)%
As we shall demonstrate in the following theorem, neglection of the submatrix Rz; in a
RRQR factorization also yields a good rank-k approximation, provided that W is well-
conditioned.

Theorem 4 Let By = Q Hé]“ Rﬂw N7 denote the matriz obtained from the RRQR
factorization (4) by neglecting the submatriz Rop. Then

14 = Bill € Va = k(W5 | ok41, (19)

1A= Bullr < Vo= R[W;H [ (ohys + -+ 0R)E. (20)

where A denotes the truncated SVD matriz (18).

Proof. Obviously, |4 — Byl = [|Rz2f| and |4 — Billr = [|R2zl|F, and (19) then fol-
lows from Theorem 1. To get an upper bound for ||RzflF, we use that |[Ra|r <
(R Wollr W5 lr < |ATW||p{{Ws|lp. Since each column vector w; of W sat-

isfies |[ATlw,| = ”QR(W‘ )“ = |ROWO| = & < ok4i, of. Eq. (5), we obtain

[ATLW||% < 0}, + -+ ol. This yields (20).

Theorem 4 states that matrix approximations derived from RRQR factorizations are
almost as good as those derived from truncated SVD approximations. Moreover, it is
trivial from Theorem 4 that the difference between A, and By satisfies [[Ax — Bif| <
(1 4+ v = E||W;!||) ox41. The interesting fact about the RRQR matrix approximations
is that the bounds in (19) and (20) do not depend on the gap between ox and oj41.
The algorithm can therefore be applied to any matrix independently of its singular value
spectrum and with potential application to digital image compression. We illustrate this
in Table 4, which shows typical values of ||A — Bi|| and ||Ax — By|| for random matrices
with m = n = 100, 01 = 1, 641 = [|A — Agfl = 1077, and different values of the ¢-rank %
and the ratio oy /ok41. The table confirms that ||A — Bi|| and ||Ax — By|| are both of the
order o44; as proved in the above theorem, and independent of oy /ok41.

O

6 Total least squares problems

Another aspect of matrix approximation arises in connection with total least squares (TLS)
problems [12, §12.3]. The key problem here is to find three matrices E, R and X such
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that ||(E, R)|| is small and such that (A + E)X = B + R, with A € R™*" and B € R™*7
(the ordinary least squares problem corresponds to setting E = 0). Total least squares.
problems typically arise ir applications where both the coefficient matrix 4 and the right-
hand side B are contaminated with errors, in which case one can think of £ and R as

being residual matrices.
The classical approach to TLS is based on the SVD and is described in [12, §12.3], Let

V = (5“ gm) be the matrix of right singular vectors in the SVD of the compound
21 Va2

matrix (A, B), partitioned such that ¥j; € "7, where r is the e-rank of A. If 4 has full
rank (r = n), then the solution which minimizes the Frobenius norm of the compound
residual matrix [|(E, R)||F is given by Xsyp = —Vi2Vyp! {12, Theorem 12.3.1]. When
A is rank deficient (r < n), the solution of minimum Frobenius norm which minimizes
I(E, B[ is given by [27]

Xsvp = --V12V242'. (21)

Here, V% is the pseudoinverse of the p X (n — r 4 p) submatrix V23, and V,t is identical
to Vj;! when r = n. As long as p < n, V,; can easily be computed stably, e.g. by a
QR factorization of V;. Notice that there is no guarantee that V; is well-conditioned.
Also notice that the numerical rank of the compound matrix (4, B) is not used in total
least squares, only the e-rank of A is required. We return to this aspect at the end of this
section.

From (21) it is obvious that the complete SVD of (A, B) is not needed for computing
Xsvp. Instead, only the right singular vectors corresponding to the smallest n — r 4+ p
singular values are required. It is possible to modify the classical SVD algorithm by
taking this into account. This is done in the PSVD algorithm {25, 26], developed for TLS
problems, which requires (2m + 2n + 14p + 2)(n + p)? + O(n} flops to compute Xgyvp if
the bidiagonalization part is preceded by a standard QR factorization as described in [5],

Here we derive algorithms for TLS based on the RRQR factorization of (4, B). The
key idea is to use the RRQR algorithm to compute approximate null-vectors corresponding
to the n—r+p smallest singular values of (4, B) (assume for the moment that r is known).
We can then use the same approach as that used in [8} to compute TSVD solutions, namely
to use inverse subspace iterations to refine the numerical null-vectors in W. This approach
yields the right singular vectors required to compute Xgyp by (21), and the accuracy of
the solution depends primarily on the number of subspace iterations. Except for a single
backsubstitution, which is not required to compute Xgvp, the dominating computational
effort remains the same as that for computing xsvp, ¢f. Section 3. Hence, this approach
requires (2m — £n + (2¢ + 3))(n + p)? flops (where ¢ is the number of inverse iterations
required to refine the null vectors), and it is actually less demanding than the PSVD
approach, mainly because a reduction to bidiagonal form is avoided.

We shall now analyze an even simpler approach to TLS, based directly on the matrix
W without performing any inverse iterations. Whenever the singular values o, and o,4
are well separated, it is shown in [8, Theorem 4.1} that the range of IW is a good
approximation to N, (4, B), in the sense that the subspace angle 8 between R(Il W) and
N;(A, B) is small. Thus, it is natural to obtain an approximation to the last n —r + p
null vectors of (A, B) simply by orthonormalization of the columns of I W, e.g. by means
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of the modified Gram-Schmidt process, to obtain:

7 i o o .
nw = (V;:) R, V17£V12 + V271:V22 = In--r+p, (22)

and then define the alternative TLS solution by Xrrgr = -Vuf’{zl or, in the general

roon hu
LBOTy WY

Xrrgr = —V12V33. (23)

As is the case in the SVD approach, we cannot guarantee that V3, is well-conditioned.
The question is then whether a small subspace angle 6 ensures that Xprrgk is close to
Xsvp. In Theorem 5 below we give a positive answer to this question for the full rank
case (r = n), but first we need the following two lemmas.

Lemmal IfV = (Vn Vm) is orthogonal, then the norm of the Schur complement of

Vo Vg
Vg satisfies
IVin — ViV Vanll = (Vaz* . (24)

Proof. For simplicity, we assume Vi; € R9%9, Vyy € ®P*? with ¢ > p. Then the CS
decomposition [12, Theorem 2.6.1] of V is given by

(Vll Vlz) _ (Ul 0 ) Iqo—p g g- ({/1T 0 )
Var Vo 0 U 0 -5 C o Vv
where C24.§2 = I,. It is straightforward to show that Vi3 = VeC10f = |Vt = IIC7Y|

and, by inserting the CS decomposition, that Vi; — V12V2_21V21 = ffl q(; P 00“1 T“/IT,

from which (24) immediately follows. O

Lemma 2 IfQ, V and V are orthogonal matrices such that

V=T =ve=mw (I 3 (25)

then the subspace angle 8 between the subspaces R(Vz) and R(V2) satisfies
sin 6 = || Q12| cos§ = “Qi"}“_l- (26)

Proof. We have sin 8 = |[VIVa| = VT (ViQ12 + VaQ22)l| = |Q12]]. The relation for cosé
follows from the CS decomposition of Q. a

Theorem 5 Let Xgvp and Xpror be given by (21) and (28), respectively, and assume
that A has full rank. If § denotes the subspace angle between N (A, B) and R(ILW), and
if tan @ < ||V |72, then

IXsvD — Xnrorll < tan 6 {[V5'*(1 + O(tan)). (27)
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mean maximum .

tan 6 1.92-10-7 | 1.92-10-F
IVl 1.20 1.30
tan 8 ||V 12 /I X svoll 4.07-1077 | 3.95. 10~

”XSVD - XRRQR”/“XSVD” 5.06-10-8 | 5.27.10~7

- [ P [ | [N ST PPN oS . NURPUNY R | kW aTs) mhmt i nard : mm et
: Mean and maximum values {or an experiment with 100 matrices with dimensions

5
= 150, n = 100, and p = 5. The ¢-rank of 4 is r = 80,

Proof. Using the notation from (25) with V, = (Vm) and V, = (‘-}12), we obtain
Vaz Vaz

Viz = Vi1@Q1z + V12Q2; and Vi, = Va1Qiz + Vaallzz = (VaQ12Q7: Vaz® + Ip) VaeQao. If
we define A = VngmQ;}Vz;I, then Vo = (I, + A)Va2Qa2. From Lemma 2 we have
lA]l < tan8][Vi3 |, and since we have assumed that tan é < [[Vj5!||~" such that [|A[f < 1,
we have _
Via' = Q5 Vi (I + )71 = Q7 Vg (I - A+ 0(AY).

Thus, we obtain that
Xrror = —VaVgg' = V01202, Vig' = ViaVio! + (ViuQuaQz; + Vas)Vgp' A + 0(4%),.
Inserting the expression for A and using that Xgyp = —Vj2V,;', we then obtain

Xrror —~ Xsvp = —(Vi1 = Vi2Vi3' Va1) Q12Q3; Vi + V1a@12Q3, Vi A + O(A?),

Taking norms on both sides of the above equation and using Lemmas 1 and 2, we then
obtain (27). o

Theorem 5 states that if A has full rank, if the subspace angle ¢ is small, and if Vy,
is well-conditioned, then the total least squares solution Xgrrgr defined by (23) will be
close to the ordinary total least squares solution Xgsvp given by {21). Although we cannot
ensure that the matrix Vag is well-conditioned, it is our experience that it is very unlikely
to be ill-conditioned.

Unfortunately, we were not able to prove a similar result for the rank deficient case (r <
n), the reason being the appearance of the pseudoinverse V;} which severely complicates
the relations. On the other hand, our experiments with Matlab highly suggest that Eq.
(27) holds in general: among 100 random matrices with dimensions m = 150, n = 100,
p = 5 and with A’s erank r = 90, the ratio between || Xsvp — Xrrgr|| and tan 8 ||V}
in Eq. (27) never exceeded 0.6. The results from this test are summarized in Table 5,
where we list the mean and maximum values of tan#, ||V, tan 8 ||VE]|%/ I Xsvp]), and
i Xsvp - XR.RQH”/“XSVD”- This confirms that V3 is in all likelihood a well-conditioned
matrix and that the upper bound in (27) is not large. The conclusion is that Xprgr is
indeed a good TLS solution.

Besides from being faster than both the traditional SVD algorithm and the PSVD
algorithm, our approach to TLS based on RRQR has one more important advantage: if
the e-rank of A is anknown then one can compute it during the RRQR factorization of
(A, B) with very little overhead. First compute an RRQR factorization of A,

(1} pli)
(1) Ry Ry
An® = Qo (f) =0 | o a0 |, (28)
0 0
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(1)
revealing the e-rank r of A. Then append (R ) with (QUNT B, to form

0
By R B B,
C=| o0 RBY B/, By | =(@M)B
0 0 By By
and compute the RRQR factorization of the lower right 2 x 2 block submatrix of C:
; (2) p@
RS Bz) @ - g B B
(0 7)o = qu -g?a?- (29)
Finally, apply the second set of permutations to (Rg) B,) to obtain
(B RE)= (& B)u®. (30)

Then the resulting triangular factor of (A4, B) is given by

W) a
re(o A Rl
o o =&Y

During the second factorization (29), one can take advantage of the fact that the first n—r
columns are in all likelihood linear combinations within the tolerance € of the remaining
columns. Since RS) is guaranteed to be well-conditioned, the QR factorization resulting
from (28)—(30) is close to being an RRQR factorization of (4, B), and the desired RRQR
factorization can then be achieved by a few “backward passes” through R as described in

[1, §3].

References

[1) C. H. Bischof & P. C. Hansen, Structure-preserving and rank-revealing QR-factori-
zations, Report MCS-P100-0989, Mathematice and Computer Science Division, Ar-
gonne National Laboratory, 1989. To appear in SISSC.

(2] C. H. Bischof & G. M. Shroff, On updating signal subspaces, Report MCS-P101-0989,
Mathematics and Computer Science Division, Argonne National Laboratory, 1989.

[3] A. Bjorck, Least Squares Methods; in P. G. Ciarlet & J. L. Lions (Eds.), Handbook of
Numerical Analysis, Vol. I: Finite Difference Methods—JSolution of Equations in R",
Elsevier, 1990.

(4] P. A. Businger & G. H. Golub, Linear least squares solution by Householder trans-
formation, Numer. Math. 7 (1965), 269-276.

{5] T. F. Chan, An improved algorithm for computing the singular value decomposition,
ACM Trans. Math. Soft. 8 (1982), 72-83.

14



[6] T.F.Chan, Alternative to the SVD: rank revealing QR-factorizations; in J. M. Speiser
(Ed.), Advanced Algorithms and Architectures for Signal Processing, SPIE Proceed-
ings Vol. 696 (1986).

{7} T. F. Chan, Rank revealing QR factorizations, Lin. Alg. Appl. 88/80 (1987), 67-82.

[8] T.F. Chan & P. C. Bansen, Computing truncated SVD least squares solutions by rank
revealing QR factorizations, SIAM J. Sci. Stat. Comput. 11 (1990), 519-530.

[8] P. Comon & G. H. Golub, Tracking a few eztrerne singular values and vectors in
signal processing, Proc. IEEE 78 (1990), 1327-1343.

[10] L. Foster, Rank and null space calculations using matriz decomposition without column
tnterchanges, Lin. Alg. Appl. 74 (1986), 47-71.

[11] G. H. Golub, V. Klema & G. W. Stewart, Rank degeneracy and least squares problems,
Report TR-456, Dept. of Computer Science, University of Maryland, 1976.

[12] G. H. Golub & C. F. Van Loan, Matriz Computations, 2. Edition, Johns Hopkins
University Press, 1989.

[13] P. C. Hansen, The truncated SVD as a method for regularization, BIT 27 (1987),
534-553.

{14] P. C. Hansen, Truncated SVD solutions to discrete ill-posed problems with ill-
determined numerical rank, SIAM J. Sci. Stat. Comput. 11 (1990}, 503-518.

{15] P. C. Hansen, T, Sekii & H. Shibahashi, The modified truncated SVD method for
regularization in general form; submitted to SIAM J. Sci. Stat. Comput.

[16] M. T. Heath, Some eztensions of an algorithm for sparse linear least squares problems,
SIAM J. Sci. Stat. Comput. 3 (1982), 223-237.

{17) Y. P. Hong & C.-T. Pan, Rank-revealing QR factorizations and SVD, Mathematics
of Computation, to appear.

{18] C. L. Lawson & R. J. Hanson, Solving Least Squares Problems, Prentice-Hall, 1974.

{19] T. A. Manteuffel, An interval analysis approach to rank determination in linear least
squares problems, SIAM J. Sci. Stat. Comput. 2 (1981), 335-348.

[20] C. B. Moler, J. Little & S. Bangert, Pro-Matiab User’s Guide, The MathWorks,
Massachusetts, 1987.

{21] E. Ng, A scheme for handling rank deficiency in the solution of sparse linear least
squares problems, Report ORNL/TM-10980, Mathematics Division, Oak Ridge Na-
tional Laboratory, 1988. To appear in SIAM J. Sci. Stat. Comput.

[22] L. Reichel & W. B. Gragg, Algorithm 686: Fortran subroutines for updating the QR
decomposition, ACM Trans. Math. Software 16 (1990}, 369-377.

{23] G. W. Stewart, Rank degeneracy, SIAM J. Sci. Stat. Comput. 5 (1984), 403-413.

15



[24] G. W. Stewart, An updating algorithm for subspace tracking, Report CS-TR 2494,
Dept. of Computer Science, University of Maryland, 1990. To apear in IEEE Trans.
Acoustics, Speech, Signal Proc.

[25] S. Van Huffel, J. Vandewalle & A. Haegemans, An efficient and reliable algorithm
for computing the singular subspace of a matriz, associated with its smallest singular
vaiues, J. Comput. Appl. Math. 19 (1987}, 313-330.

[26] S. Van Huffel & J. Vandewalle, The partial total least squares algorithm, J. Comput.
Appl. Math. 21 (1988), 333-341.

[27] M. D. Zoltowski, Generalized minimum norm and constrained total least squares with
applications to array signal processing; F. T. Luk (Ed.), Advanced Algorithms and
Architectures for Signal Processing I1l, SPIE Vol. 975 (1988), 78-85.

16



