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Abstract

There has been a recent emergence of many
interesting and highly efficient hierarchi-
cal (multilevel) algorithms {e.g. multigrid,
domain decomposition, wavelets, multilevel
preconditioning, the fast multipole algo-
rithms, etc.) for solving numerical problems
in scientific computing. These algorithins de-
rive their efficiency from using a hierarchi-
cal approach to capture the sharing of global
information which is inherent in the physi-
cal processes being modelled. In addition to
being computationally efficient, these algo-
rithms also possess relatively high degrees of
parallelism. I therefore argue that the ar-
chitectures of parallel computers {especially
massively parallel ones) should be designed
to support hierarchical communication and
synchronization needs of these algorithms.
Hierarchical architectures are also more uni-
versal because they go beyond supporting
a particular class of algorithms to support-
ing the underlying physical processes being
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modelled. Pinally, I propose that algorithm
designers take a critical look at traditional
kernel algorithms and re-examine their cost-
effectiveness in a massively parallel comput-
ing environment,

1 Physics, Algorithms
and Architectures

There is a general agreement that paral-
lelism is & cosi-effective way (some may ar-
gue it is the only way) to provide the increas-
ing demand in performance in computational
power in many areas of science and engineer-
ing. There is much less agreement, however,
on how to design eflective paraliel machines.
It is well-known that it is not sufficient fo
simply compare the peak computing rates
of various designs. A successful architecture
must strike a balance between the computa-
tional rate and the cornmunication and syn-
chronization overheads, the memory hierar-
ehy and its bandwidths. Most importantly,
the architecture must support effective com-
putational algorithms which can actually be
used to solve the problems that scientists and
engineers need to solve.

How should parallel machines be designed
so that they can achieve this ultimate goal?
If one looks around teday on the architec-
tures that have been proposed and built, one



finds a wide variety of approaches. Here is a
partial Hst:

1. “General purpose” machines: designed
for a general problem domain, e.g. ar-
tificial intelligence (e.g. the Connection
Machine CM-1, although Thinking Ma-
chines Inc. has since then marketed the
CM-2 as a numerical supercomputer as
well) and scientific/numerical comput-
ing (e.g. Cray computers).

2. Data type machines: designed to work
efficiently on certain data types, such as
bit, scalar, vector and arrays.

3. Interconnection network machines: dis-
tributed multiprocessor computers clas-
sified by their underlying interconnec-
tion network, e.g. hypercubes (Intel
iPSC, Ncube}, tree, and meshes (e.g.
the ICL. DAP, the ILLIAC IV, the
Goodyear MPP, and the Intel iPSC/2
with the Direct-Connect network inter-
face).

4. Algorithm-specific machines: designed
to run specific algorithms efficiently, e.g.
the SAXPY 1M (for the BLAS Saxpy
computation: y = az + y) and many
systolic arrays.

5. Problem-specific machines: designed
for a specific physical or mathematical
problem, e.g. the Navier-Stokes Com-
puter [25} and the SUPRENUM multi-
processor system {30].

Given this large number of approaches, it
is clear that there is no general agreement.
Of course, the best design should depend on
the ultimate intended use of the machine. A
special purpose machine can be made more
efficient than a general purpose machine but
is more restrictive in its use. For example,

machines intended for non-numerical appli-
cations need not even have floating point
computing units. Machines designed for
some Al applications probably need to han-
dle tree searches efficiently.

For the purpose of this paper, we shall
restrict our attention to one general prob-
lem area, namely scientific/numerical com-
puting, by which I mean the field of com-
puter simulation of mathematical models de-
scribing processes in mathematical physics
(usually involving partial differential equa-
tions and/or integral equations). This in-
cludes computational fluid dynamics, com-
putational chemistry, computational strue-
tural mechanics, serniconductor and circuit
simulations, and oil reservoir simulations.
Certainly, this is one of the largest classes of
problems which has prompted the advent of
parallel supercomputing and can also benefit
the most from it.

Given this problem class, how should par-
allel machines be designed so that they can
be used effectively to solve the large vari-
ety of computational problems that arise?
How should the architecture interact with
the algorithms and the physical problems?
Should the architecture support specific al-
gorithms? If so, which algorithms? How
does one ensure that such a machine can
adapt to new and more efficient algorithms
that will emerge in the future? How should
an algorithm designer strike a balance be-
tween designing algorithms for the physical
problems versus designing for a specific com-
puter architecture? These are some of the
questions which I’d like to address in the rest
of the paper.

My main thesis is that both algorithms
and architectures should be designed to ac-
count for the fundamental physical processes
in the mathematical models and that hierar-
chical algorithms and architectures are good
ways of achieving this goal. Some of the



views in this paper have been expressed be-
fore in [6].

2 The Hierarchical Na-
ture of Physical Pro-
cesses

We shallfirst look at the fundamental nature
of the physical processes which are implicitly
described by the mathematical models of the
physical laws, These are often in the form of
time-dependent partial differential equations
(PDEs) of the form '

uy = F(u(z, 1))

where u(z,?) is the value of a state variable
(or a vector of variables) at a point z in a
physical domain §2 and at time ¢. The PDE
essentially describes the evolution of u in
space and time when given initial and bound-
ary conditions. In a numerical solution ap-
proachk, the PDE is discretized on a com-
putational grid, with differentiation replaced
by discrete approximations (e.g. finite differ-
ences), and the discrete model is then simu-
lated on the computer. Sometimes a full sim-
ulation in space-time is needed while some-
times only the steady stale (or equilibrium)
solution is needed (the steady state solution
u(z) satisfies the equation F(u(z)) = 0.

It has often been stated that PDEs are
fundamentally local in nature: the evolu-
tion of a variable in a certain point in space
depends only on the values of variables in
a local neighborhood of the point. One
argument is that the differentiation opera-
tor inherent in PDEs (and their approxima-
tions) are local by definition. Another rea-
son is that the PDEs are really asymptotic
continuous models of locally interacting dis-
crete elements in the real physical world (e.g.
molecules, charge particles, etc.).

While this point of view is based on a
sound basis, it would be wrong to conclude
that PDEs only describe processes that are
Jocal in nature. A prevalent feature of many
physical systems, and one of the basic diffi-
culties in their numerical simulation, is the
presence of a large range of scales, both in
space and time. Activities on a large scale
is relatively global compared to those on a
smaller scale. For example, in the mod-
elling of atmospheric circulation, the time
scale ranges from the (slow) speed of fronts
to the (fast) speed of sound in the air, and
the length scale ranges from the (large) size
of continents to the {small) size of a tornado.

The presence of different scales plays an
even more fundamental role in the modelling
of steady state configurations. Mathemati-
cally, these are typically modelled by elliptic
PDEs, which have infinite domains of depen-
dence, l.e. the solution at any point depends
on data at every other point in the computa-
tional domain. For example, increasing the
load at a single point on the span of a bridge
will change the steady state deflection of the
bridge at every other location.

Thus, while PDEs may be defined via lo-
cal operations, the solutions they describe
are often global in nature, In fact, in many
disciplines, the fundamental objective is to
understand the interaction of the local and
global scales (e.g. turbulence).

3 Algorithm

Tradeoffs

Design

A fundamental design principle for PDE al-
gorithms is to capture efficiently the interac-
tion -of the global and local features of the
physical processes described by the mathe-
matical model. If only the global features
are required, then one should minimize the



computational effort spent in computing on
the small local scales.

The simplest algorithms are the local ones,
exploiting the local nature of the discrete
models. These have the advantages of sim-
plicity, efficiency per step and highly parallel.
But often they are slow because many local
steps must be taken in order to account for
the global interactions. On the other hand,
global algorithms accounts for more of the
global features of the solutions per step and
can therefore take fewer steps but they are
usually more complex, more costly per step
and are less parallelizable.

The best algorithm for a particular prob-
lem depends on many factors, such as the
desired accuracy of the final solution, the ac-
curacy of the initial guess, whether the tran-
sient and/or the steady state is needed, and
last but not least, the computer on which the
algorithm is to be executed. The design pro-
cess often involve delicate tradeofls between
the advantages and disadvantages of the lo-
cal and global algorithms.

An example of this tradeotl is that between
explicit and implicit algorithms for solving
time dependent problems. Explicit methods
are local in space and are highly paralleliz-
able. In fact, many parallel computers are
designed specifically with solving PDEs with
explicit methods in mind, e.g. the ILLIAC
1V, the ICL DAP. However, by having only
local interactions, one limits the time scale to
that of the smallest spatial scales represented
on the computational grid. Consequently,
the size of the time step is limited (by what
is usually referred to as the CFL condition)
and thus many time steps may have to be
taken than is necessary for the desired ac-
curacy of the solution. On the other hand,
implicit algorithms involve sharing of global
information, usually in the form of having to
solve a system of equations per time step, but
are less limited in the size of the time step

and thus can take many fewer steps than an
explicit method.

Many successful schemes can be viewed as
striking a balanced tradeoff between these
two extremes by modifying implicit schemes
so that they are more efficiently computable
per step but still share global information ef-
fectively. An example of this are the frac-
tional step and approximate factorization
schemes [3] which approximate spatial dif-
ferential operators in multiple spatial dimen-
sions by products of simpler one dimensional
operators, typically in the form of having to
solve narrowly banded linear systems which
allow global sharing of information but are
still efficiently solvable at least on conven-
tional computers. Explicit methods were
very popular in the early days of computing
but implicit methods are seeing increasing
use more recently.

If only the steady state solution is desired,
then in principle it could be obtained by an
explicit method which computes the tran-
sient solution from an initial state for a long
enough period of time. But that is not the
only way and often more efficient methods
can be found to compute the steady state so-
lution directly. For example, computing the
transient (and probably highly oscillatory)
motion of a bridge after a sudden load in-
crease in order to obtain the steady state so-
lution may not be the most effective method.

One alternative is to sclve for the steady
state solution directly by an iterative method
[26]. Here the tradeoff between explicit (lo-
cal) and implicit {global) algorithms is again
present. The simplest methods are local re-
laxation methods (e.g. Jacobi, Gauss-Seidel,
and SOR) which are purely explicit but are
very slow in general. More implicit methods
(e.g. ADI, block methods, incomplete LU
preconditioned conjugate gradient methods)
are faster but are more costly per step. The
extreme is the direct solution of the discrete



equations by Gaussian elimination.

The underlying computing model also has
a strong influence on the design of the al-
gorithms. Many classical iterative methods
(e.g. SOR, ILU) traverse the computational
grid in & sequential manner, imposing a strict
data-dependence which limits the degree of
parallelism. Simpler and more local meth-
ods (e.g."Jacobi) are more parallelizable but
are in general slower because they cannot
account for the global nature of the solu-
tion. One attempt to rectify the situation
is to re-order the unknowns (e.g. red/black
ordering versus natural ordering) so that a
higher degree of parallelisin is available [14].
Another approach is to use only highly par-
allelizable computational kernels and try to
combine thern in a judicious way to construct
faster convergent methods {e.g. polynomial
preconditioning [26]). However, these ap-
proaches can only improve the situation by a
limited degree because the resulting methods
are still effectively local in nature[9].

Thus, many classical PDE algorithms can
be viewed as making tradeoffs between the
speed of convergence and the complexity
(and degree of parallelism) per step, in order
to satisfy the specific needs of a particular
problem,

4 Hierarchical
rithms

Algo-

The above examples point out the need for
algorithms which can capture the global fea-
tures of the solutions and yet are still highly
parallelizable. T would like to argue that hier-
archical and multilevel methods are one such
class of algorithms. Simply stated, these
methods are good because they capture the
global features of the solution efficiently, via
local (and hence parallelizable) operations on

each of a hierarchy of computational grid,
each representing a different length scale.

In the last several years, there has been an
emergence of a variety of such hierarchical
algorithms. Here are some examples:

1. Nested Dissection [17]: Thisisa tech-
nigue for ordering the unknowns in the
computation grid in order to minimize
the fill-in (and hence the computational
work) when Gaussian elimination is ap-
plied. Tt is one of the older hierarchi-
cal numerical algorithms. The essen-
tial idea is to recursively separate the
grid into two halves by a small separa-
tor set of grid points. By ordering the
separator points last, the fill-ins are lim-
ited to those involving the separator set
only and no fill-ins can oceur between
the two halves. Thus one can view the
separator sets as providing an efficient
(because they are chosen to inclhude only
a small number of points) and hierarchi-
cal global coupling between all the grid
points.

2. Multigrid Algorithms [6}: These
algorithms can be viewed as gener-
alized telaxation methods for elliptic
problems, in which the relaxation (or
smoothing) is performed on a hierarchy
of coarser grids in order to more effi-
ciently annihilate the more global er-
ror components. They derive their effi-
ciency by exploiting the different length
scales of the solution on the appropriate
grid level. These algorithms have seen
increasing use in the last 15 years and
the basic principles have been applied
to many computing problems in science
and engineering.

3. Domain Decom-
position Algorithms [19, 8]: These
are relatively new techniques for solv-



ing PDEs in which the computational
domain is decomposed into a number of
smaller (overlapping or non-overlapping
subdomains. ‘The solution is obtained
by solving the PDE on the subdomains
(and often alsc on & coarser grid in ad-
dition) and iteratively piecing the global
solution together through the matching
of the solution on the boundaries be-
tween the subdomains. The local fea-
tures of the solution are accounted for
by the subdomain solves and the global
features are accounted for by the inter-
face coupling and the coarse grid solu-
tion.

. Multilevel Preconditioners [23, 4,
2, 1]: These are preconditioning tech-
niques to be used in conjunction with
the conjugate gradient method for the
iterative solution of elliptic linear sys-
tems. As mentioned earlier, traditional
preconditioners are either not highly
parallelizable or are very slow. This new
class of preconditioners can be viewed
as one cycle of a standard multigrid
method without the smoothing opera-
tions. They use the multigrid princi-
ple to capture the different length scales
of the solution but rely on the conju-
gate gradient method to deal with other
convergence difficulties (e.g. large vari-
ations in the coefficients of the PDEs).
They offer the efficiency of multigrid
methods and the robustness of the con-
jugate gradient method.

. Adaptive Mesh Refinement Algo-
rithms [24]: These are algorithms for
locally and adaptively refining a com-
putational grid where local features de-
mand a more refine resolution, e.g. the
presence of steep gradients in the solu-
tion. The key idea is again to treat each
tength scale locally and efficiently on an

appropriate grid. The global feature is
accounted for by the coarse overall grid.
A fundamental issue is the coupling be-
tween the refinement levels (i.e. the dif-
ferent length scales).

. Wavelet Basis [28]: Mathematically,

the wavelet basis is similar to the
Fourier basis in that it forms an or-
thonormal basis for square-integrable
functions. However, unlike the Fourier
basis, the wavelet basis consists of func-
tions defined on a hierarchy of nested
grids: the basis functions on a particu-
lar grid level have almost compact sup-
port on that grid and is used to cap-
ture the essential features of a function
in that length scale. An expansion of a
function in the wavelet basis is less sen-
sitive to local fluctuations as compared
to a Fourier expansion. Wavelets 1s con-
sidered by many a major development
in the field of image and signal process-
ing. Its use for solving PDEs and its
relationship with conventional multigrid
algorithms are currently being explored
[18, 21].

. The Fast Multipole Algorithms

[20]: This is a class of algorithms for
efficiently computing N-body interac-
tions under certain potential force fields,
The main idea is to cluster the effect
of a collection of particles {(using the
multipole expansions) for the purpose
of accounting for the relatively weak
global interactions with distant parti-
cles. More local interactions are com-
puted directly. The idea is applied re-
cursively to achieve optimal efficiency.
These methods can be applied to solve
PDEs through the boundary integral
method.

All of the above hierarchical algorithms



have one feature in common: they cap-
ture the global processes in the mathemat-
ical models in an efficient way, resulting
in near optimal (sequential) computational
complexities.

5 Hierarchical Parallel

Architectures

Ideally, a good computer architecture should
support the best algorithms for solving a
class of problems. Since I have argued that
hierarchical algorithms are emerging as some
of the most efficient for solving PDEs, I
therefore take the position that parallel com-
puter architectures for this class of problems
should at least support the efficient imple-
mentation of hierarchical algorithms. To do
this, the architecture must provide efficient
ways for hierarchical communications and/or
synchronization. The design of memory hier-
archies must also take into account the quan-
tity and bandwidth of hierarchical data ac-
cess requirements. The additional cost of
providing these facilities will be compensated
by the efficient implementation of fast hi-
erarchical algorithms. Ignoring these issues
will result in architectures which will only
support the less efficient (and more local)
algorithms, possibly resulting in longer ex-
ecution time for solving the physical prob-
lem. Moreover, having an architecture which
takes into account the fundamental hierar-
chical processes of the physical problems to
be simulated on it ensures that the architec-
ture performs effectively for a much wider
class of algorithms.

There have been many approaches em-
ployed to provide hierarchical communi-
cation/synchronization facilities in parallel
computers. The simplest means o provide
global communication is via a global data

bus. However, this alone is often not suffi-
cient because data congestion can oceur. For
distributed memory architectures, a variety
of interconnection networks have been pro-
posed to provide more efficient global com-
munication. Many of these networks are hi-
erarchical in nature, e.g. the hypercubes,
the shuffle-exchange and other switching net-
works. Some are even designed specifically
for supporting multilevel algorithm, such as
the SUPRENUM computer {30]. The most
popular is probably the hypercube network,
which has been adopted by several commer-
cial manufacturers, e.g. Inte] iPSC, Ncube,
CM-2, the NSC. The hypercube embeds the
local nearest neighbor mesh network, but in
addition, also supports hierarchical multi-
level communications. By using the binary
reflected Gray code of mapping data into
processors, it is possible to preserve the local-
ity of data on each grid level of a grid hierar-
chy [10}. Thus the hypercube is an ideal net-
work for supporting hierarchical algorithms.

For shared memory architectures, one ap-
proach is to use a hierarchical clusters of
processors, linked together via a hierarchi-
cal network of data bus, to a hierarchical
memary system. The best example of this is
the Cedar system [22], but various features
of this (e.g. hierarchical memory systems)
have been used in the design of many other
shared memory machines.

Of course, the most cost-effective design
is technology dependent, and also depends
on many other factors, such as the num-
ber of processors, etc. If the communica-
tion/synchronization technology employed is
fast enough compared to computational rate
of the arithmetic processors, then the topol-
ogy of the architecture can be effectively
hidden. For example, with more efficient
communication technology, the Intel iPSC/2
abandons the hypercube network in its pre-
decessor {the iPSC/1) altogether and rely




solely on a nearest neighbor mesh topology.
In the extreme case, with negligible commu-
nication costs, the distinction between dis-
tributed memory architectures and shared
memory architectures becomes fuzzy: data
1s there when you need it and is accessible at
negligible cost. In fact, this framework has
been used to design general purpose paral-
lel programming models, e.g. the Linda sys-
tem. However, especially for massively par-
allel machines, the communication needs of
hierarchical algorithms cannot be completely
hidden, and for an ideal optimally balanced
machine, the hierarchical structure should be
built-in.

On massively parallel architectures, hier-
archical algorithms share a peculiar feature:
on the coarser levels of the hierarchy, many
processors not used by the algorithms may
remain idle. Thus in terms of processor uti-
lization, the hierarchical algorithms are not
optimal. ‘There have been some methods
proposed for making better use of the idle
processors. For example, for the multigrid
solution of elliptic problems on massively
parallel computers (see [11] for a brief sur-
vey), Frederickson-McBryan [15] combine so-
lutions on multiple coarse grid problems to
obtain better convergence rates. Gannon-
van Rosendale [16] and Chan-Tuminaro [12]
solve problems on each of the grid hierarchy
simultaneously. However, the potential gain
in the problem solving efficiency, while essen-
tially free, is imited, because the unmodified
hierarchical algorithms are often already op-
timal in computational complexity, even al-
lowing for the idle processor problem. Some
authors [13] have even argued that these new
methods are no more efficient than a paral-
lelization the standard multilevel methods,
at least when the latier are running at top
efficiency. However, these new methods may
offer some improvement in more practical sit-
uations when it is more difficult to obtain

optimal efficiency for the standard methods
[31].

The foliowing numerical results from [29]
help to illustrate the points just made. In Ta-
ble 1, we tabulate the results of solving a 2D
Poisson problem on a 16K processor CM-2
with floating point hardware in single preci-
sion by the conjugate gradient method with
several preconditioners. The table shows the
number of iterations to achieve a certain ac-
curacy, the total execution time in seconds
and the Mflops rate.

Table 1: PCG for 2D Poisson Problem

| precond. [ grid [ mo. iter, | time [ MFLOPS |
CG(none) 256x256 401 1.23 406
RIC 256x256 40 57.1 1.4
Jacobi-2 256x256 197 1.15 337
L5-3 256x256 132 1.34 271
MGMF 256x256 26 1.02 47
CGinone) || 1024x1G24 1525 40.0 7660
RIC 1024x1024 too much time
Jacobi-2 1024x1024 748 38.7 641
LS-3 1024x1024 503 41.5 534
MGMF 1024x1024 27 18.5 43

The methods tested are: CG(none), the
conjugate gradient method with no pre-
conditioning; RIC, the Relaxed Incomplete
Cholesky method [26] with natural order-
ing; Jacobi-2 and LS-3, the Jacobi and least
squares polynomial preconditioners with 2
and 3 terms respectively [26]; and MGMF,
a multilevel preconditioner [23]. From the
tables, it can be seen that the CG(none) al-
ways has the highest Mflops rate but never
the minimum time (although it is almost the
fastest for the smaller 256 by 256 problem),
due to the large number of iterations needed,
especially for the larger 1024 by 1024 prob-



solely on a nearest neighbor mesh topology.
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tem. However, especially for massively par-
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machine, the hierarchical structure should be
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processors not used by the algorithms may
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lizailton, the hierarchical algorithms are not
optimal. There have been some methods
proposed for making better use of the idle
processors. For example, for the multigrid
sclution of elliptic problems on massively
paraliel computers (see [11] for a brief sur-
vey), Frederickson-McBryan [15] combine so-
lutions on multiple coarse grid problems to
obtain better convergence rates. Gannon-
van Rosendale {16] and Chan-Tuminaro [12]
solve problems on each of the grid hierarchy
simultanecusly. However, the potential gain
in the problem solving efficiency, while essen-
tially free, is limited, because the unmodified
hierarchical algorithms are often already op-
timal in computational complexity, even al-
lowing for the idle processor problem. Some
authors {13] have even argued that these new
methods are no more efficient than a paral-
ielization the standard multilevel methods,
at least when the latter are running at top
efficiency. However, these new methods may
offer some improvement in more practical sit-
uations when it is more difficult to obtain

optimal efficiency for the standard methods
[31}.

The following numerical results from [29]
help to illustrate the points just made. In Ta-
ble 1, we tabulate the results of solving a 2D
Poisson problem on a 16K processor CM-2
with floating point hardware in single preci-
sion by the conjugate gradient method with
several preconditioners. The table shows the
number of iterations to achieve a certain ac-
curacy, the total execution time in seconds
and the Mflops rate.

Table 1: PCG for 2D Poisson Problem

{ precond. [|  gnd [ no. iter. | time | MFLOPS |
CG(none) 256x256 401 1.23 408
RIC 256x256 40 57.1 1.4
Jacohi-2 256x256 197 1.15 337
LS-3 256x256 132 1.34 271
MGMF 256x256 26 1.02 47
CG{none) || 1024x1024 1525 40.0 760
RIC 1024x1024 Lo0 much time
Jacobi-2 1024x1024 748 38.7 641
LS-3 1024x1024 203 41.5 634
MGMF 1024x1024 27 18.5 43

The methods tested are: CG{none}, the
conjugate gradient method with no pre-
conditioning; RIC, the Relaxed Incomplete
Cholesky method [26] with natural order-
ing; Jacobi-2 and LS-3, the Jacobi and least
squares polynomial preconditioners with 2
and 3 terms respectively [26}; and MGMF,
a multilevel preconditioner [23]. From the
tables, it can be seen that the CG{none) al-
ways has the highest Mflops rate but never
the minimum time (although it is almost the
fastest for the smaller 256 by 256 problem),
due to the large number of iterations needed,
especially for the larger 1024 by 1024 prob-



lem. On the other hand, the RIC method re-
quires many fewer iterations but has imited
parallelism, resulting in the worst execution
time and Mflops rate. The polynomial pre-
conditioners run at respectable Mflops rates
but the number of iterations is still large, due
to the lack of global coupling in the methods.
Their run times are generally comparable to
CG{none) for the problems tested. The mul-
tilevel preconditioner has the smallest run
time of all, which is the result of a small
number of iterations and being reasonably
parallel (medium Mflops rate). These results
help to illustrate that the hierarchical algo-
rithms achieve a nice balance between degree
of parallelism and computational efficiency.

6 Where Are the (Truly)
Parallel Algorithms?

Before closing, I have a final remark on the
design of parallel numerical algorithms in
general. The traditional approach to algo-
rithm design is to reduce {or approximate) a
complex problem to (by) a sequence of sim-
pler kernel problems. Examples of kernel
problems are: basic linear algebra compu-
tations such as matrix-vector products and
vector inner products, the solution of tridi-
agonal and triangular systems of equations,
the fast Fourier transform, the computation
of finite differences, ete. Thus, in Gaussian
elimination, the solution of a general linear
system is reduced to the solution of two tri-
angular systems. In ADI methods, a discrete
elliptic operator in multi-dimensions is ap-
proximated by a sum of one dimensional op-
erators (often in the form of tridiagonal ma-
trices).

Underlying this approach is the implicit
assumption that these kernel problems can
be solved efficiently. However, this de-

pends on the computing model in which
the problem is to be solved. Traditional
kernel problems have been developed over
many years and are primarily based on hand-
computation and sequential computers. The
advent of vector computers have required
modifications in the specification of some
kernel algorithms. I believe that, for mas-
sively parallel computers, we may need to
re-examine the choice of kernels more funda-
mentally.

The solution of tridiagenal {(and more gen-
erally narrowly banded) systems provides a
good example, On sequential computers,
tridiagonal systems can be solved in opti-
mal time (proportional to the number of un-
knowns) and therefore is one of the simplest
and most efficient way of providing global
coupling in mathematical models. This fact
alone has resulted in its wide-spread use
in many algorithms in scientific computing.
However, on a vector computer, it is diffi-
culf to solve tridiagonal systems using vector
operations with the maximal vector length.
One of the most efficient methods is cyclic
reduction, which uses vectors with lengths
ranging from O{n) to O(1), where n is the
number of unknowns, Fortunately, many
problems require solving many independent
tridiagonal systems and this modified kernel
can be vectorized efficiently. The situation is
even worse on massively paraliel computers,
where tridiagonal systems are not so easy te
solve any more. In fact, there is no known
method for solving tridiagonal systems in
time less than logn, no matter how many
processors one has. Thus on these comput-
ers, iridiagonal systems are really no eas-
ier to solve than say computing the FFT,
a much more complicated kernel in the se-
quential case.

A siimilar situation holds for the solution of
triangular systems: solving them efficiently
on massively parallel computers require so-



phisticated and complicated algorithms {26].
A naive implementation can easily take as
much computational time as the factoriza-
tion process to obtain the triangular factors.
Alternative methods for factorizing a matrix
into more parallelizable factors have been
proposed [27].

Should we re-examine the choice of ker-
nels in traditional algorithms and abandon
kernels that are not highly parallelizable and
favor more parallelizable kernels which may
have higher sequential computational com-
plexity? Should we search for and use more
hierarchical kernel algorithms? As an exam-
ple, the standard implementation of a fast
Poisson solver on a 2D rectangular dormain
uses FFTs in one dimension followed by solv-
ing tridiagonal systems in the other dimen-
sion. Mathematically, the second phase can
also use FFTs but tridiagonal systems are
usually preferred bhecause they can be solved
faster. On a parallel computer, should we use
a PF'T-FFT approach instead? There iz ev-
idence that a FFT-FFT approach may have
the added benefit of producing more accu-
rate results [7].

We can even go further and re-consider the
discretization procedures used to construct
the discrete models from the PDEs. Tradi-
tional methods can be classified as local (e.g.
finite differences, finite elements, etc.) and
global (e.g. spectral methods, boundary in-
tegral methods, ete.). The usual tradeoffs
exist: the local methods are simpler but re-
quire many more degrees of freedom than the
global ones. This again is a reflection of the
existence of both local and global features
in the PDE. Why not use hierarchical dis-
cretizations? Some research along this direc-
tion using wavelet basis has just begun [18].
These are exciting developments.

Hierarchical algorithms are not as easy as
local algorithms to implement and this prob-
ably has caused some resistance in their ac-

cepiance into mainstream scientific comput-
ing. However, this situation may change
with the advent of massively parallel com-
puting. In a way, parallelism has forced us
to think about the fundamental assumptions
of algorithm design.
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