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Abstract

A variety of algorithms are available for efficient numerical solution of Toeplitz
systems: classical “fast algorithms”, such as those due to Levinson {31}, Trench [37]
and Bareiss [3], as well as the more recent “asymptotically superfast algorithme” due
to de Hoog [17], Ammar & Gragg [1] and others. For the special class of symmetric
positive definite Toeplitz matrices, the classical “fast algorithms” are known to be
weakly numerically stable [8, 15], but otherwise all these methods are potentially
numerically unstable. General Toeplitz systems do occur frequently in many signal
processing applications, and there is & need for algorithms which are numerically stable
and can exploit the Toeplitz structure.

In this paper we present an extension of Levinson’s algorithm that is guaranteed to
be weakly stable for a large class of general Toeplitz matrices, namely those that do not
have many consecutive ill-conditioned leading principal submatrices. The new algo-
rithm adapts itself to the given Toeplitz matrix by skipping over all the ill-conditioned
leading principal submatrices encountered during the solution process. This is done by
a look-ahead strategy that monitors the condition of the leading principal submatrices
and, if necessary, switches to a block step of suitable size.

The overhead of the look-ahead algorithm is typically small compared to the clas-
sical Levineon algorithm, and in addition a reliable condition number estimate is
produced.

1 Introduction

Toeplitz matrices of large dimensions occur frequently in a variety of signal processing
applications, such as linear prediction {39, harmonic retrieval problems [26], ARMA spec-
tral estimation [22], computation of eigenvector oriented spectrums [21], and eigenfilter
problems [10, 28, 30]. Surveys of applications can be found in {8, 18, 19, 29]. All these

*Both authors are supported by & NATO Collaborative Research Grant 5-2-05/RG900098 and by the
National Science Foundation under contracts NSF-DMS87-14612 and ASC-9003002, The first author is
also supported by the Army Research Office under contract DAAL03-88-K-0085 and by the Dept. of
Energy under contract DE-FG-03-87-ER-25037. The second author is supported by a travel grant from
Knud Hgjgaards Fond.

!Department of Mathematics, University of California, Los Angeles, 405 Hilgard Ave., California
96024, USA. Email: chantmath.ucla.edu.

}UNIeC (Danish Computing Center for Research and Education), Building 305, Technical University
of Denmark, DK-2800 Lyngby, Denmark. Email: unipch¢vuli.uni-c.dk.



problems involve the solution of Toeplitz systems of linear equations, often during eigen-
value computations by inverse iterations [38]. Due to the size of these Toeplitz matrices
and the need for fast signal processing algorithms, it is necessary to exploit the special
structure of the matrix when solving systems of equations with Toeplitz matrices. How-
ever, the numerical stability of the algorithm (i.e., its sensitivity to rounding errors) should
preferably not be sacrificed for a fast algorithm,

Fast algorithms for solving Toeplitz systems have been around for many years., Most

of these algorithme solve the Toeplitz system in O{n?) operations, where n is the order
of the matrix, and recently also so-called “asymptotically superfast algorithms” with a
computational complexity of O(n log? n) have appeared, These methods can be categorized
into two main classes: (i} those that implicitly compute a factorization of the Toeplitz
matrix itself, and (ii) those that implicitly compute a factorization of the inverse of the
Toeplitz matrix. In the first class we find algorithms such as those due to Bareiss {3} and
Brent et al. [5, 6], while the algorithms by Levinson [31], Durbin [20], Trench [37], Bitmead
& Anderson [4], Morf [33], de Hoog [17], and Ammar & Gragg 1] all belong to the second
class. For more details about these and other algorithms, see for example the surveys in
{7} and [19].

Common for all these Toeplitz algorithms is that they are potentially numerically un-
stable for general Toeplitz matrices. Numerical stability has only been proved for the
O(n?)-algorithms when applied to symmetric positive definite Toeplitz matrices {8, 15),
and only in the sense that for well-conditioned problems one is guaranteed to compute a
solution which is close to the exact solution. This is called “weak stability” in [9]. Other-
wise, the algorithms may break down by a division by zero or—even worse—the algorithms
may give arbitrarily inaccurate solutions without any warning of this event. The reason
for this is that all the algorithms implicitly involve the inversion of principal submatrices
of the Toeplitz matrix. Unless the Toeplitz matrix is well-conditioned, symmetric and
positive definite, and an O(n?)-algorithm is used, we cannot guarantee that all these sub-
matrices are well-conditioned. If one or more ill-conditioned submatrices are encountered
during the solution process, then the accuracy of the computed solution deteriorates due
to rounding errors caused by these ill-conditioned submatrices.

A third class of O(n?)-algorithms for Toeplitz matrices is the class of iterative methods,
such as the preconditioned conjugate gradient method [35]. If a suitable preconditioner,
e.g. a circulant one, is used then this method has good convergence properties for sym-
metric positive definite Toeplitz matrices {11, 13]. However, the convergence properties for
ponsymmetric or indefinite matrices are not clear, and it is difficult to get good precondi-
tioners for general Toeplitz matrices. Therefore, these iterative methods do not provide a
practical alternative to the methods mentioned above for general Toeplitz matrices.

In view of these facts, the only algorithms that are guaranteed to be numerically
stable for general Toeplitz matrices are the classical factorization methods such as LU
and LDLT factorizations with pivoting [23, §3.4 & §4.4]. Unfortunately, these algorithms
require O(n?) operations to solve the Toeplitz system. Therefore, it is important to develop
more efficient algorithms for general Toeplitz matrices.

The algorithm presented in this paper is a step in this direction. We focus on one
particular algorithm from class (ii), namely Levinson’s algorithm [2, 31], and we present
an extended version of the algorithm which is guaranteed to be weakly stable for a much
broader class of Toeplitz matrices than those being symmetric and positive definite. Our



tool for presenting the algorithm and for discussing its numerical properties is matrix
analysis and numerical linear algebra, mainly because this is a good way to analyze stability
issues, to discuss condition numbers, etc, Introductions to Toeplitz solvers from a linear
algebraic point of view can be found in {19] and [23, §4.7].

The classical Levinson algorithm is basically a recursive sequence of updating the so-
lutions to increasingly larger systems of equations involving all the leading principal sub-
matrices in their natural order. Qur look-ahead algorithm is essentially a block-version
of this method, where the block size is adjusted adaptively in each step to ensure that
the leading principal submatrix involved in the particular step is as well-conditioned as
possible. We have borrowed the idea for this algorithm from a similar algorithm we de-
signed for symmetric indefinite Toeplitz matrices [14]. Our new algorithm takes advantage
of the fact that, during the Levinson algorithm, one can compute inexpensive estimates
of the condition pumber of the leading principal submatrices. Hence, our algorithm can
“look ahead” and always choose locally the best conditioned leading principal submatrix,
in order to “skip over” all the ill-conditioned ones. In addition, it provides the user with a
reliable accuracy estimate for the computed solution. The algorithm is numerically stable
for all those Toeplitz matrices that have at most pmax — 1 ill-conditioned leading principal
submatrices, where puax i8 the maximum block-size allowed by the user. Our algorithm is
particularly well suited for eigenvalue computations by means of inverse iterations, such
as the algorithms in {10, 16, 38).

The overhead of the new algorithm is difficult to predict, because it depends on the
number of ill-conditioned submatrices encountered. A matrix of order n = 120 with 39
singular leading principal submatrices requires an overhead of 41 % including condition
estimation. For matrices with one ill-conditioned leading principal submatrix, which typi-
cally appear in Toeplitz eigenvalue computations {27, 38], the overhead is about 20 %. For
matrices with no ill-conditioned leading submatrices, the overhead is less than 10% for
matrices of order greater than 60. Notice that this last overhead is primarily due to the
necessary condition estimation in each step.

The idea of skipping certain leading principal submatrices is a natural one and, in
fact, has been used before by several authors [18, 24, 36, 40]. In all these algorithms, the
decision for taking a block-step is based solely on the size of the prediction error, which
appears as a denominator in the algorithms, The prediction error is zero if and only if
the corresponding leading principal submatrix is singular. In [18, 24, 40] a block step
is taken if a true zero prediction error is encountered. Moreover, these algorithms make
explicit use of the fact that the leading principal submatrix is singular, and therefore need
further development before they can be used in finite precision arithmetic. Sweet [36] uses
a simple threshold-type test and takes a block step when the prediction error is less than
a pre-set threshold. However, an ill-conditioned leading submatrix is not guaranteed to
reveal itself by a small prediction error, and his algorithm is therefore not guaranteed to
detect the need for a block step. Our algorithm is based on a more reliable—and still
efficient—test for ill-conditioned submatrices.

Fortran implementations of our algorithms have also been developed [25], and they are
available from both authors.

The paper is organized as follows. In Section 2, we review the classical Levinson
algorithm for nonsymmetric matrices, while the new lock-ahead Levinson algorithm is
presented in Section 3. In Sections 4 and 5 we give some important details concern-



ing the practical implementation of the extended algorithm. Finally, in Section 6 we
present numerical results. Our notation is the following. Capital letters, boldface small
letters, and regular small letters denote matrices, vectors, and scalars, respectively, I
denotes the identity matrix of order k, while Ej denotes the k£ X k exchange matrix
Ex = antidiag(1,1,...,1), which satisfies E7 = I;. The superscript “T” denotes matrix
and vector transposition, and ||+ ||z denotes the matrix 2-norm which is equal to the largest

singular value of the matrix [23, §2.5.3].

2 The classical Levinson algorithm

Since our new algorithm is basically an extension of the classical Levinson algorithm for
nonsymmetric matrices, let us first summarize this algorithm following the notation in [23,
§4.7]. For a formulation of the Levinson algorithm in terms of Szeg® polynomials, see e.g,
[1, §5]. We write the Toeplitz system as T,, x = b, where the real n x n Toeplitz matrix
and the corresponding right-hand side are given by

Po 1 P2t Pr-l B
o1 Po Pr tt Pn-2 Ba

T.=] 2 o1 po = pn-za}, b=|Ps]. (1)
41 Op-2 0On-3 *°° Po ﬁn

Notice that we write o; instead of the standard notation p_;, because this makes our
notation clearer. We recall that a Toeplitz matrix as well as its inverse are persymmetric,
ie. E,T,Ey = TT and E, T E, = (T7')T. At the kth stage, the Levinson algorithm has
recursively computed the solution X to the order-k problem Tk xx = bi = (B1,...,8:)%
and, simultaneously, the solutions y, and 2zj to the following two Yule-Walker-problems
of order &:

T yi=—rk = ~(p1y.. 1)’y Thze = -8 = —(01,...,0%)7. (2)
The next step is then to solve the three problems Tip+1Xz41 = bit1, Tjg:}.1Yk+1 = —Tktl,
and Tiy1Zre1 = —Bg41. To illustrate this step, we first factorize the matrices Th41 and
TT., as follows:
Tpry = ( T Ekrk> _ ( I ) 0) (Tk E;,rk) (3)
* 5 Ex  po st 4Tt 1/ \07 4%
T T

r _{ T} B\ _ I 0) (Tk Eksk)

Tk+1 = (!’{Ek po ) - (l‘{Ek(T’:l)T 1 ol 7(1:) . (4)

We note that the bottom right element in the rightmost factor of both Tx41 and TE 41 18
the same, namely the prediction error y*¥). From our linear algebraic point of view, (k)
is the Schur complement of T} in Ti41, and it is given by

})T

+®) = po — 8] ExT 7 Exry = po — 81 (T )Trs = po + sl . (5)




Now, write the solutions sought as x4y = (a‘ti) ), Vi41 = (1;8:)) and zz4 = (;{f) )

Using the factorizations in (3) and (4), it is easy to see that Xx41, Yr+1 and 24, are the
solutions to the three systems

(Tk Ekl'k) ( uy ) _ ( bs ) (6)

ol 7(") oF) |~ Br41 — B‘{Ekxk

(Tg‘ Eksh) ( Vi ) _ ( —T ) )
of & J{p® —pi+1 — *F Exyi

(Tk Ek.-k) (w,, ) _ ( -4 ) (®)
oT 7(5) ¢(“ - —Ch4l = B{Ekzk '

Solving these systems by backsubstitution, we see that the new vectors Xy41, ¥k4+1 and
Zr4+1 are given by the following updates to xj, yx and zi:

Xisy = (’;*) + (E‘;Yk) o®) (9)

E
Yht1 = (’6") + ( "f‘")n(’" (10)

E
Bit1 = (z(;) + ( klyk) ¢(®), (11)

where the scalars o), 7{*) and ¢(*) are computed by

o®) = (Br41 — ] Exxy) /1) (12)
n® = (=pr41 — 1{ Exyi) /7™ (13)
¢ = (=o441 — of Eyzi) /7). (14)

For efficiency, the prediction error ¥(*) should not be computed via its definition (5).
Instead, it is computed recursively along with the Xg41, ¥Yi41 and zx41. We shall not
derive the recursion formula here, but instead refer to {23, §4.7]. The recursion starts with
v = po, 50 = —py/pg and ¢® = —a;/py, and then v#+1) is given by:

y 41 = (1 = p(Rhg )y (8), (15)

It is easy to show that the classical Levinson algorithm for nonsymmetric Toeplitz matrices
requires 3n?—2n—1 multiplications or divisions. For symmetric matrices, ry = s, ¥k = 21,
7} = ¢(¥), and the computational effort reduces to 2n? — 2 multiplications or divisions.

Because of the division by the prediction error v} in (12), (13) and (14), numerical
instability will occur if one or several successive 7%} encountered during the recursive
process become numerically small. We stress that this numerical instability is also present
for formulations based on polynomials—it is not associated with the matrix formulation
used here. We also stress that for general Toeplitz matrices, one or more |[7*¥)] may be
arbitrarily small even if the matrix is well-conditioned, i.e. if [y(™] is not small. The only
matrices, for which numerical instability in the classical Levinson algorithm is guaranteed
no to occur, are well-conditioned symmetric positive definite matrices, for which there is
a monotonic decrease of the |Y(¥)] so they cannot be smaller than |y{")|. To avoid a small
|¥(¥)| for general Toeplitz matrices we could incorporate pivoting, but this would destroy
the Toeplitz structure. This motivates us to perform a block-step instead, as described in
the next section.



3 The look-ahead Levinson algorithm

Let us now describe our extension of the classical Levinson algorithm. Assume, at stage k,
that we have encountered an ill-conditioned Ty4;. We therefore wish to perform a p-step,
i.e. to skip ahead from T} to a well-conditioned Ti4p. Assume for the moment that p is

given; in Section 4 we address the question of how to actually detect an ill-conditioned

T:.. and how to chonze 1 Lot us Aafine the !hlﬁﬂrl vartorg ri. o = {p1.:. Do a T
=51 =2 2P Latataet METALLT AT Shh et YRRARET 2R VI P25i - -2 PR )

and 8g; = (O144 O24ir- -5 Okti)? (in particular ryo = ry and syp = 8;) and the kxp
matrices B, = (Tk0,...,Fkp-1) a0d Sp = (8k,0,+.+,8kp~1). Then we can write

Tk Exry Eprgi Eixrga o Eprgpa

Po P1 P2 Tttt Pp-l
T, EiR, j o
= = Po P1 Pp-2 )
Tiyyp (SEEI: T, ) k1 E . ! : . P. (16)
B}{,,_l Ey 0p1 Opz  Op3 0 Po

In order to update the xi, y& and 2y to Xi4p, Yi4p and 2Zz4p, We proceed in a similar
fashion as in the classical Levinson algorithm, but now using block Gaussian-elimination
to solve the three (k 4 p) x (k + p) systems TpypXp4p = biyp, Tg +pYktp = —Thktp and

ThtpZitp = —Bi4p. First, we introduce the matrices ¥, and Z, as the solutions to the
problems
TIY, = -R,, TiZ, = -5, (17)
Then, we factorize Ty, and T} +p 28
I 0 ) T, ExR,
Tiyp = - 18
g (sg‘ BTN I ( o T (18)
I 0\ (T EiS5,
ThL, = ( - ) 19
ke = \RIBUTY I, ( 0o ai)r) 49

where the p X p matrix I‘,(pk) is the Schur complement of T}, given by

T =T, - STE T ExRy = Ty, — ST(T7) Ry = Ty + 87, (20)
Note that the first column of Y, and Z, is simply yx and zj, respectively. Now, write
the sought solution as x4y, = (a‘it)), Yitp = (e‘;(:t)) and Zgip = (gﬁ), and let
bisp = (b?ni))’ Fhip = (:éi)) and sx4p = (:j(jb). Here, we have defined the p-vectors -

k
= (Brtr- -1 Brtn)Ts 15 = (Phatse ooy Pitp)T and 88 = (0441, ..+, 0k45)T- Then we
use the factorizations in (18) and (19) to obtain the systems

T, EiR b
( 0 &*’p) (at0) = (600 $rpm,) @)
Tj:,-r Eksp v _ bl o
( 0 (I‘,([,"))T) (eﬁ,t)) - ( ) RTEI:YJ:) #2)

6



(i;k ?ﬁﬁp) ( (6) ( STE;;z;,) (23)

If we solve these systems by backsubstitution, we see that the new vectors Xy, Yi+p and
Zi4yp aTe given by the following updates to x;, yi and z;:

X EY,
Xitp = ( gk) + ( ;pp) ay') (24)
E.Z.
Vitp = (yk) + ( k p) e’(’k) (25)
0 I
z ELY,
ms = (5 )+ (57 ) 10, (26)
where the vectors a(k), ) and fp (k) are the solutions to the indefinite systems
IMalk) = b{H) - ST Eyx, (27)
(T el = —rP - RT Byy, (28)
IMEH = o) _ §TE g, (29)

It is easy to see that the block step will handle the numerical instability problem as
long as p is chosen properly. It would be expensive if we were to solve for the extra p ~ 1
vectors in ¥}, and Z, (17) naively, say using Levinson’s algorithm, because we would have
to choose an a priori number pmay such that p < pmay and then carry along ppax — 1 extra
systems, Instead, we present a less expensive updating procedure, computing ¥ and Z,
only when necessary. The idea is to write the columns of these two matrices in terms of
updates to already computed quantities. This is possible due to the following theorem.

Theorem 1 Let the p columns of Y, and Z, be denoted by y;; and 234, i=0,...,p- 1,
each column satisfying Tl yri = —ri; and Tyzii = —sii. Also, let (v); denote the j-th
component of the vector v, and define the k X k “upshift” matriz

01
60 0 1
0o 0 . (30)
. S
0 0
Then all the vectors yi; and zx; for i = 1,...,p — 1 can be computed recursively from
Yko = Yk and zy o = z; by means of the relations:

Ap =

Yii = Dibki-1 =~ Vei-thye +egr, i=1,...,p-1 (31)
Zii = Dpzki-1 — (Zki-1)12% + dihg, t=1,...,p-1 (32)
where we have defined the vectors gy and hy by
1 By 12 1 Ere1Yk-

and where ¢; and d are the i-th components of the nght hand sides of the eguations in
(28) and (29):
c= —r},") - RfEkyk, d= —B,(,k) - Sg‘Ekzk. (34)



Proof. We shall prove the relation (31) for yg -1, the relation (32) for z;;_; is proved
analogously, Consider the following matrix-vector product of order k + 1:

TT (y:c,m) - (Po 8} ) (()’k,:-l ) (Po Yhi-1h + 8 § Bk Yk i1 ) (35)
L\ 0 rx TF ] \ Axyr,i-1 (¥ki-1)1% + Td Diyrior )

also giv
o -

TT (Yk,i-l)z( Ty Eksk)( i )___( ~Tki-1 )
k+1 rEx  po 0 l'kEkYk,z-

= () = (s = mamnen) = (520 - (- ). @)
—Tk,i —Pksi — TF Exyiic1 =Tk —Pkti — YkEkrku-l

In the last step, we have used rj Ekyk', 1 = —Yji TkEkyk,,_i = —¥j Eka Yki-1 =
¥1 Exrii—1. Equating the last k elements of the vectors in (35) and (36), we obtain

l’l
o
I.n
-t
|:J"
n
4
ﬁ
-y
[}
]

i ven nv
- T T

0 ,
TE DYk i1 = —Trs — (Vhim1)1Tk — (c) , t=1,...,p-1
H
By multiplication with (T;!)7 and using TZyx; = —r4, again, we get

- 0 .
AkYri-1 = Yii + Yriciaye = (TTHT (c) X i=1,...p- 1
]
To obtain the expression (31) for yx; we must now consider the rightmost term in the
above equation. Using one step of the classical Levinson algorithm to go from T7 ; to T7
(cf. Section 2}, the solution to this system can simply be written as

-\ O _ & Bz
(7) (c,-) = oD ( 1 )
Thus, we have proved (31), D

After the p-step, we have two choices for computing the y(¥+?) required in the next step.
We can use an updating formula similar to (15), which becomes y(F+7) = (k) _ dTe(k)
or we can compute 7(*+7) by the definition (5), e.g. Y7} = py + s{_,_pyk.,.p. We tried
both in our numerical experiments, and the latter {more expensive) formula gives better
accuracy in the computed solution for large values of the order n, so we recommend the
latter approach to computing 7("“”’).

Let us determine the computational effort for performing a p-step at the kth stage.
Computation of the extra 2(p — 1) vectors yx; and 2, requires 4(p — 1)k multiplications.

Since v(¥) is a.lready given by (5), settmg up I‘( ) and the right-hand sides in (27}, (28) and
(29) requires (1p(p+ 1) — 1+ 3p)k = (39 + Lp — 1)k multiplications. The computational

effort involved in a LU-factorization of the indefinite matrix I‘( ) is O(p®) multiplications.
Thus, the effort in preparing the p-step is

1 15
preparation effort = (§p2 +5p- 5) k 4+ O(p®) multiplications. 37)



Solving the three systems in (27), (28) and (29) using the LU-factorization requires 3p
multiplications, while the updating of Xx41, Yk+1 and zx41 in Egs. (24), (25), and (26)
requires additional 3pk multiplications, and the re-computation of 7{k+) by (5) (for p > 1
only) requires k multiplications. Thus, the effort in updating the solution is

_ :_Nc _ o multiplications, p=1 (38)
" | Bp+1)k+ O(p*) multiplications, p>1 ' M
However, note that we save p classical Levinson steps which would have involved approx-
imately 3pk multiplications. Hence, the computational overhead in the updating phase in
only k 4+ O(p?) multiplications for p > 1.

Concerning the numerical stability of the look-ahead algorithm, we shall not go into a
detailed discussion here, but only mention that the error analysis can be carried out using
exactly the same technique as in {14, 15]. In particular, following (14, Thm. 2], for all
the intermediate steps of the look-ahead algorithm we can prove that the residual vector
corresponding to the computed Xx4p is guaranteed to be small. Hence, if the Toeplitz
matrix T, is well-conditioned and if all ill-conditioned leading principal submatrices of T,
are avoided during the look-ahead algorithm, then the computed solution x, is guaranteed
to be close to the exact solution. The conclusion is that the look-ahead algorithm for
nonsymmetric matrices is weakly stable [9}). '

4 'The choice of the block size

For numerical stability and efficiency, it is important to decide when to perform a p-step
and to chose the correct value of the block-size p. Our aim is to choose the block size
adaptively in order to ensure the best possible accuracy in the computed solution while,
at the same time, choosing p > 1 only when necessary, because such block-steps are more
expensive (as measured in multiplications) than p usual Levinson steps. Our approach is
to let the user choose a maximum block size pmax and then, in each step k, the algorithm
adaptively chooses the optimal block-size p within the look-ahead range p = 1,..., Pmax;
i.e. the p that minimizes the influence of rounding errors. The perturbation of the solution,
due to rounding errors, when solving the system TyipXi4p = biyp Is proportional to the
machine precision times (Ymin(Tk4p)) ™}, Where Ymin(Tk4p) denotes the smallest singular
value of Ty4p [23, §2.5.3]. Therefore, we want to find p such that ¢Ymin(Th+p) is as large
as possible. Let spin denote the smallest Ymin(Thep) accepted so far in all the previous
steps. In the kth step, we then choose as block size the smallest p for which

Ymin(Th4p) 2 0.1 Smin. (39)

The reason for comparing with s, is that if we have already accepted a leading principal
submatrix with a smallest singular value equal to Smin, then any better conditioned sub-
matrix will not improve the error in the solution significantly. The factor 0.1 is included
in (39) to avoid choosing a too large block size p if Ymin(Ti+p) is only slightly smaller than
Smin Such that Tyy. is still well-conditioned. If (39) is not satisfied for any p < Pmax, then
we choose as block-size the p for which ¥min(Th+,) is maximum, and only in this case do
we update the sgin. In this way, we are guaranteed in each step to choose the optimally



conditioned T4, within the allowed look-ahead range pup,x, and the strategy is numeri-
cally stable as long as T}, does not have more than pg.x — 1 consecutive ill-conditioned
leading submatrices.

An important side-effect of using 8pin in this fashion to keep track of the smallest
accepted Ymn{Tk4p) is that it provides us with an almost “free” estimate of the condition
of the computed solution. Since the accuracy of the computed solution depends on the
smallest singular value of any Txy, accepted during the look-ahead Levinson algorithm,
we can define the algorithm condition number as:

Kievinson = ||Tnl|2/ min{accepted Ymin(Thsp)} # ITnll2/ 8min, (40)

and then we know that the relative error in the computed solution is proportional to
KLevinson times the machine precision, Another important quantity is the matriz condition
number k(Ty) = [ Tnllz2/ Ymin(Tn) = | Tallz/Ymin{Tn) (23, §2.7.2], which measures the sen-
gitivity of the solution x to perturbations of the right-hand side b. Due to the definition
in (40), we always have KpLevinson 2 #(Tn). When both the algorithm condition number
and the matrix condition number are not large, then our new Levinson algorithm has
computed a numerically stable solution. On the other hand, if KLeyinson 3 &(Ty) then the
maximum block-size pmay was too small to “skip over” a sequence of ill-conditioned lead-
ing principal submatrices. Notice that our extended Levinson algorithm returns estimates
for both the algorithm condition number Ky eyinson and the matrix condition number #(T;)
without increasing the complexity of the algorithm.

In order to keep the computational overhead as small as possible, it is very important to
compute an estimate of ¢mi(Tiyp) efficiently. It is well-known that the smallest singular

value z,bmin(l‘,(,k)) = 1;(r§,"))-1||; ! of the Schur complement r§,“) does not give a reliable
estimate of the condition of T}, see the discussion in [12]. Our numerical experiments
confirmed this: in some situations an ill-conditioned T}, was not reflected by a small

wmin(f‘,(,k) ), and a p-step—although necessary—was therefore not performed.
As an alternative to using gbmm(f‘,(,k)), we will estimate Ymin(Tktp) = [T} _;pH; 1 directly.
The following expression for T} _,fp is obtained by means of Egs. (17) and (18):

Ty + By (1)1 2] By Ekm&"))*‘) (41)

Trip = ( k k
: ()1 2L B (T3
Since we are only concerned with identifying the ill-conditioned submatrices Th4, in order
to “skip over” them, the accuracy of the estimate of ||T} _:pﬂg is not so important. What
is needed is a reliable and efficient means for detecting when [|T; ), ||2 becomes large. A

lower bound for ||T,, _:pllg is given by:

max{|[T;" + EyYp(TE) 7 27 Eilla, | ERY, (TP o, (DF) 2 27 Exlla, (TH) Iz}
42

There are no simple lower bounds for the matrix norms in (42), so instead we use the
upper bounds

ITE™ + BaYp(T) 7 27 Eilla < 1T 1o + 1% li2 12502 (D)2 (43)
1B () 2 < 1% ll2 1T 2 (44)
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WS 27 Billa < 122 11CTSD) 7 e - (49)

The norms of Y, and Z, can be bounded by means of their numerically largest elements
as follows: By) = m“{[(yp)ul} < |I¥p]lz and Hizy E max{|(Z,)i;]} £ |Z,]l2. Finally,
due to our block algorithm we know that T} is well-conditioned so that {75 |l; cannot
contribute sxgmﬁcantly to a large |7, +p“2, and we can therefore reachly ignore ||T; 1||2 in

ando bn d Tavrine hanwiadie and nta

f A9 IS TE Y L R o
(39, This combination of lower and uppei bounds leads to the fo OWILE ASUristic estimate

for Ymin(Trsp) = || T, +p1|2 which works well in practice:

Yonin(Tetp) ® Vitp = Yrmin( T}/ max{1, ney), iz, bvyfz) b (46)

For p = 1, Yrin(TLY) is simply [y}, and for p > 1 the smallest singular value Yumun(T{)
can be estimated by any efficient condition number estimator in O(p?) multiplications,
Determination of the numerically largest element in Y, and Z, requires 2kp comparisons
at the kth stage, i.e. O(n?) comparisons for the complete algorithm. We do not think it
is possible to get good estimates of the smallest singular values with a lower complexity
than this.

A nice consequence of combining this strategy for estimating |7} _:pllz with the block-
size decision based on (39), is that a specific threshold for detection of ill-conditioned
submatrices is not required. This is important both from a numerical and a practical
(i.e., a user’s) point of view. In [14] we discussed the numerical performance of the above
strategy for estimating IiT[_;pllz- Our tests for the nonsymmetric case reported in [25] lead
to exactly the same conclusion, namely that the estimate (46) is always within a factor of
about ten from the true norm. We shall therefore not pursue this any further here.

5 Practical details

An important detail in a practical implementation of our algorithm is the fact that two
block steps may follow immediately after each other. Let p’ denote the size of the previous
p'-step, and let k' denote the corresponding dimension of that leading submatrix T,
such that k = k' + p’. In such a situation, neither 7("‘1) 10T ¥%_1 OF Z.y i8 available
because we skipped the step k¥ — 1 and the ill-conditioned matrix Tk.; when going from
T to Ty = (nggk’ E;}? o
vectors Y ¢ ancf Zki becatfse we cannot produce the vectors g and hy in (33) {which are
functions of 7“‘ ) , ¥k-1 and zx—1). However, in this special situation there is another
way to proceed. The idea is to compute y; 1 by updating the vector yxr; and, if p > 2,
then compute gi such that yx can be computed by means of (31) (and sm:ularly for hk
and zy):

) Hence, we cannot use Egs. (31) and (32) to compute the

Theorem 2 In case of two consecutive eztended Levinson steps with k = k' + @/, the
vectors yi 1 and Zx,; are given by

¥ra Ek'Z ¢ _ | &k, Ek!Yl'
Ykt = ( 0 )+ ( I, )"‘(ﬂ’ Zh = ( 01) +( L, )%} (47)
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where the vectors a(,) and a(,) are the solutions to the systems

, Pki+2
(1",(; Wagy=~| i |-BLEwyw, (48)
, Ph+1
[ itz )
I‘gf’)a(,) = - ( ) - Sg;Ekrzkr'l. (49)
Tir+1

If p > 2, then the remaining vectors yi; and zx;, i = 2,...,p— 1 can be computed from
(31) and (32) with the vectors g and hy given by

gk = T (Yoo — Akt + (Yihve)s  he = dit(zen — Arze + (2k126)  (50)
in which ¢; and dy are the first component of the vectors ¢ and d defined in (94).

Proof. We recall that the vector zj 1 is the solution to the system Th2zz,1 = —(02,...,0k43 )7
= "(ka 12Ok+25 -+ Ok41)7 . In the previous p'-step we have already computed zjr,; sat-
isfying Tkrzkr 1= —s;,: 1. Since the first &' components of these two right-hand sides are
identical, it is immediately clear that we can use an extended Levinson-step as described
in Section 3, Eqs. (24)~(29), to obtain zk, with a,) gwen by (49). The expressmn for
¥k,1 is proved in a similar manner, using that T yk1 = —(rk, 1 PE 2y ey pr+1)T and that
T¥yw: = —rp 1. Eq. (50) follows immediately from Egs, (31) and (32) withi=1. O

Hence, all we need to do is to save the matrices Y,» and Zy and the factorization of

I‘“’) from the previous p'-step. Then the vectors yi; and zx, § = 1,...,p— 1 can be
computed recursively using (31) and (32) and Theorem 2. The effort in computmg Yk1s
i1, gk and hy this way is only about 4(p' + 1)k + O((p')*) multiplications.

In the special situation where we have looked pmax steps ahead, but chosen a p < prax,
we could in principle update the remaining yy ¢ and 24, ¢ = p+ 1,..., Pmax to obtain
some of the new vectors y; ; and 2, ;. This is, however, not reliable in general because some
of these remaining yr; and 2z, ; might correspond to ill-conditioned leading submatrices
occurring after the current Ty4,. Thus, we prefer to recompute all the yi; and zg; by
means of Theorem 2. The complete look-ahead Levinson algorithm, including condition
estimation, is summarized in Fig. 1.

A second detail, which is but a minor one, is that the very first leading submatrices
Ty,T3,...of T, may be ill-conditioned. If this is the case, we cannot perform a p-step,
simply because we have no starting vectors to update. Instead, we compute the solutions
Xp, Y, and Z, by a standard linear-equation solver, such as LU-factorization with pivoting,
ignoring the Toeplitz structure of T, (notice that we need the full matrices ¥, and Z
because the immediately following step may also be a block step).

We conclude this section by giving upper and lower bounds for the computational
effort involved in the new algorithm. In the worst case, for each k we will look puax steps
ahead and choose p = 1, thus spending a lot of effort on “unnecessary” looking ahead.
This will happen, for example, if Ty, is an ill-conditioned positive definite matrix for which
Ymin{Ti) < 0.1 Ymin(Ti—1) for all i = 2,...,n. According to Egs. (37) and (38), and taking
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into account the overhead in estimating ¥min(Tk4p) a5 well as the overhead in Theorem 2,
each such step requires about

Pmax 1 15
> (§p2+ 2P~ 5)k + 3Pmaxk + 4(Pmax + 1}k =
p=1

/ ar \
Vo

.3 :
(pnrsxax +4pl ., + 5 Pmax + 4) k multiplications,

Summing over all ¥ we then obtain the following approximate expression for the very
pessimistic upper bound

3

maximum effort = % (E"T’”‘ + 4p% .+ P-(-?pm,x + 4) n? multiplications. (51)
For pmax equal to 2, 3 and 4 this amounts to 21.5n2, 38.6n% and 61n? multiplications, re-
spectively. As we shall see in the next section, we never obtain this upper bound in practice.
The minimum computational effort corresponds to matrices where all the Pmin(Th41) form
an increasing sequence, such that only 1-steps are performed, and we only look one step
ahead in each stage. For such matrices, Theorem 2 is never used, and Eqgs. (37) and (38)
lead to 6k multiplications in each stage, thus giving a total computational effort of:

minimum effort = 3n?multiplications. (52)

Notice that this is identical to the complexity of the classical Levinson algorithm;i.e,, for
such matrices there is no overhead. For a typical well-conditioned nonsymmetric Toeplitz
matrix, neither the minimum nor the maximum bounds apply, but our experience is that
the look-ahead algorithm typically takes a few 2-steps and rarely p-steps with p > 2, such
that the average computational effort is not much larger than 3n% multiplications.

6 Numerical results

In this section we present some numerical results from applying our look-ahead Levinson
algorithm to a series of test problems. These tests were carried out in Matlab [32]. Fortran
implementations of the look-ahead Levinson algorithms are also available {25).

We first tested our algorithm on three small nonsymmetric Toeplitz matrices from [36)
as listed in Table 1. Also shown in Table 1 are the smallest singular value Ymin(Ti41) of
all the leading principal submatrices, and the estimate ¥,;; computed by means of (46).
The table demonstrates how well this estimate is able to track the smallest singular value
of all the leading principal submatrices—even when there is a rapid change in the size
of Pmin(Ti41). We see that these three matrices require block steps of size 2, 2 and 6,
respectively, to skip over the ill-conditioned submatrices. We generated right-hand sides
b to these systems such that the true solution is x = (1,1,...,1)7, and we measure the
accuracy of the computed solution X by means of the relative solution error p, defined as

p = [1% = xljz/lixl2. (53)

13



Sweet-1 Sweet-3
ilp a; Yain(Tit1) Vins i1 op o Yaa(Thyy) Wiy
ol 4 4.00 4.00 0 5 5.00 5.00
118 6 2.88 2.67 14 -1 1 5.10 5.20
2|1 J+4ea 340:20°° 5000° | 2| 6 -3 5.09 7.86
316 5 0.71 0.23 3 2 12.755 1.66.10-° 3.73.10°°%
412 3 0.93 0.23 4 15697 -19.656 1.16:10-5 17.97.10-¢
513 1 0.79 1.10 5 | 5.850 28.361 1.78:10~% 7.52.10-6
Sweet-2 6 3 -7 8.79.10"% 2.52.10-6
s o Venin(Li41) [ 7 7| -5 -1 3.98.107% 7.74.16-8
R 8.00 8.00 8| -2 2 0.23 0.05
1] 4 4 4,00 6.00 9 | -7 1 0.35 0.43
211 —-34+4¢ 1.02-107 139107110} 1 -6 4.03 0.63
36 5 3.41 3.90 11| 10 1 1.69 5.22
412 3 4.51 4.34 12| -15 -0.5 3.32 5.26
53 1 3.12 4.69

Table 1: Three test matrices from [36], with ¢; = 5+

accuracy p multiplications
classical look-ahead | classical look-ahead overhead
Sweet-1 | 3.02:10~° 1.08.10°%° g5 207 118 %
Sweet-2 | 5.51.107% 3.27.1071¢ 95 157 65 %
Sweet-3 { 4.01.10719 3.49.10"14 480 859 79 %

Table 2:

10~8 and ¢ = 5. 1015,

The relative solution error p and the required number of multiplications for the
three small test matrices from Table 1.
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n accuracy p multiplications
classical  look-ahead | classical Jlook-ahead overhead
15 | 4.89.107° 5.99.10°'° 644 1018 58 %
30 |2.99.10"% 5.38.10°15 2639 3018 48%
60 |3.88-10~% 4.95.10"1 | 10679 15343 43%
120 | 8.03-107% 9.16-10"14 | 42959 60693 41%

Table 3: Numerical results for shifted KMS test matrices of order n given by Eq. (54).

n | classical | look-ahead | overhead
15 644 805 25.0%
30 2639 3030 14.8%
60 10679 11556 8.3%
120 | 42959 44821 4.3%

Table 4: Comparison of the number of multiplications of the classical Levinson algorithms
with the average number of multiplications for the look-ahead Levinson algorithm, for
matrices with all leading principal submatrices being well-conditioned.

Table 2 compares the accuracy and computational effort of our lock-ahead algorithm
with the classical Levinson algorithm for the three matrices from Table 1. The classical
Levinson algorithm gives poor results, especially for the second matrix. Qur look-ahead
Levinson algorithm is able to compute the solution to almost full machine precision, which
is approximately 1076, at the cost of some computational overhead. For these small
matrices, the overhead is significant, but the relative overhead quickly decreases as the
order of the matrices increases.

The next test matrices are the symmetric shifted KMS matrices from [38], given by

po=10"",  pi=oi=(1/2)71, i=1,..,n-1 (54)
for which every third leading principal submatrix Tk, k = 1,4, 7,...is numerically singular
(they would be exactly singular if pg = 0, but then the classical Levinson algorithm would
break down due to a division by zero). Again, we generated right-hand sides such that the
true solution consists of ones, and we compare the classical and the lock-ahead Levinson
algorithms in Table 3. Our primary aim is to demonstrate the accuracy of the Jook-ahead
Levinson algorithm, so we did not take into account the symmetry of the problem—
rumerical results for the special symmetric version of the lock-ahead Levinson are given
in [14]. Again, at the cost of some overhead, we can compute the solutions to almost full
machine precision. The overhead decreases with the order n because a great part of it is
linear in n. We notice that these test matrices are very demanding for our algorithm-—
every third step of the look-ahead Levinson algortihm is a 2-step—so we find that the
overhead is quite acceptable.

Next, we applied our algorithm to random nonsymmetric test matrices for which all
the leading principal submatrices are well-conditioned, and the average computational
overhead is listed in Table 4. Again, we see that the overhead decreases with the order n,
and the overhead is less than 10 % for n > 60.

Our last tests were done on a class of nonsymmetric test matrices generated such that
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at least one leading principal submatrix is ill-conditioned, with a controlled degree of ill-
conditioning. In order to generate such test matrices, we first generate a random positive
nonsymmetric Toeplitz matrix T,; i.e., all the elements of T}, are positive. Let A(Tx)
denote the numerically smallest real eigenvalue of the leading principal submatrix T} of
T, (due to Perron's theorem [34, p. 216), a positive matrix always has at least one real
eigenvalue, which is identical to the spectral radius of the matrix). Thus, for arbitrary k

wa ran got nnr tact mnfﬂiv tre
we Lan B our el aviia v,

T, = Tn - (’\(Tk) - 6)Im (55)

where § > 0 is a real parameter, and then we know that the leading principal submatrix
Ty of T, will have an eigenvalue equal to . Since the numerically smallest eigenvalue
is bounded below by the smallest singular value {23, p. 349], we are guaranteed that the
smallest singular value of T} satisfies ¥mim(T%) < &, and in this way we can control the
ill-conditioning of T} by means of § (we emphasize that there may be other ill-conditioned
submatrices, too). Matrices of the particular form (55) are likely to occur in eigenvalue
computations by means of inverse iterations [16, 38]. Qur tests were carried out with the
following values of &,

§=0, 10%a, 10%1, 10%, 1 (56)

where u = 2.22. 1076 denotes the machine precision, and with the following values of

Pmax:
Pmax = 1 (classical Levinson), 2, 3, 4. (57)

For each é we generated 300 test matrices: 100 of order n = 16, 100 of order n = 32, and
100 of order n = 64. We chose k¥ = n/2 and the right-hand side b such that the exact
solution is x = (1,...,1)7. :

Fig. 2 illustrates the typical performance of our algorithm by showing four histograms
of the relative error p as defined in Eq. (53). These four tests were carried out with test
matrices with n = 64, § = 10%u, and puax equal to 1, 2, 3, and 4. For puay = 1 (classical
Levinson), p is never smaller than 10™2 due to the ill-conditioned submatrix 73;. On the
other hand, for pmayx > 1 the relative error p is never larger than 107%, and typically it is
even smaller, about 10712,

For each combination of § and py,ax, we computed the maximum relative error pyax =
max{p} over all 300 test matrices, Fig. 3 shows a plot of pnay as a function of § and puay.
For pmax = 1 (classical Levinson), the maximum relative error pmayx is approximately
proportional to 6= as expected, while pp.y is almost independent of & for pumax > 1. We
see that the look-ahead Levinson algorithm is always more accurate than the classical
algorithm, even in the case § = 1 (where typically all the leading submatrices all well-
conditioned). For § < 1, the look-ahead Levinson algorithm is actually much more accurate
than the classical Levinson algorithm, with 2 maximum relative error of about 10~*° almost
independent of 6.

In Fig. 4 we show the average number of p-steps required in our experiments. The
average number of 2-steps is only about 1.5, which is the ‘price’ we have to pay for
ensuring that we can handle these indefinite Toeplitz matrices. The average number of
3-steps and 4-steps are much smaller, less than 0.4. '

Finally, in Table 5 we compare the number of multiplications required in our new
algorithm with those of the classical Levinson algorithm. Each entry in the table shows,
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Pmax

n 1 2 3 4

161 735 735 918 1107 981 1292 | 1071 1563
321 3007 3007 | 3381 3792 ; 3518 4215 | 3698 4800
64 | 12159 12159 | 12014 14014 | 13223 15242 1 13587 16526

Table 5: The average (left) and maximum (right) number of

“a < o =

for each combination of n and pp,.y, the average number of multiplications over all 300 test
matrices (left) and the maximum number of multiplications (right) over the same 300 test
matrices. We do not show the dependency on § because, due to the uniform way in which
we generate the test matrices, the average multiplication count for pmax > 1 is almost
independent of §—although somewhat smaller for § = 1 than for § < 1—and completely
independent of 6 for pray = 1 (classical Levinson). We notice that the multiplication count
for our new method with ppax < 4 is never more than twice the multiplication count for the
classical Levinson algorithm, the average ratio in fact being only 1.2. Also, note that the
average ratio decreases as n increases, from 1.35 (for n = 16) t0 1.09 (forn = 64). Hence,
for this particular class of matrices—which are likely to occur in eigenvalue computations
by means of inverse iterations (16, 38]—the complexity of our new algorithm, including
condition estimation, is about 20% larger than that of the classical Levinson algorithm.
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init.: let T, = best conditioned T}, i = 1 ! prax
solve Ty x; = by, TE Yy = ~ Ry and T} Zx = —5; e.g. by LU-factorization
the first column of Y; and Zj is yx and 2, respectively
&) = pg 4 8]y
8min = Ymin(Tk)
loop: fori=k:n-1
for p=1: min{pmax,n— k)
if last step was a block-step
set up ¥, and Z, using Theorem 2
else
set up Y, and Z, using Theorem 1
endif
set up the systems in (27)-(29)
estimate Ymin(Tr4p) by (46)
if Yemin(Thep) > 0.1 8min goto update
end
let Thyp = best conditioned Thyi, £ =1 : Prax
Smin = Ymin(Th+p)
update:  solve (27)—(29) for updates a,(,k), e,(pk) and f,sk) e.g. by LU-factorization
update Xjip, Yi4p and Zpyp by (24)-(26)

ifp=1
7(k+1) =(1- n(k)¢(k))7(k)
else
749 = o 4 8k
endif
end

KlLevinson -—~—||Tn||2 /smin
K(Tn) =1 Tallz /¥min(T5)

Figure 1. The look-ahead Levinson algorithm.
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