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Abstract

The hydrodynamic model treats electron fiow in a semiconductor de-
vice through the Euler equations of gas dynamics, with the addition of a
heat conduction term. Thus the hydrodynamic medel PDEs have hyper-
bolic, parabolic, and elliptic modes.

The nonlinear hyperbolic modes support shock waves. Numerical sim-
ulations of a steady-state electron shock wave in a semiconductor device
are presented, using steady-state second upwind and high-order time-
dependent upwind methods, For the ballistic diode {which models the
channel of 2 MOSFET), the shock wave is fully developed in Si (with a 1
volt bias) at 306 X for a 0.1 micron channel ard at 77 K for a 1.0 micron
channel.

1 Introduction

The hydrodynamic model equations consist of a set of nonlinear conservation
laws for particle number, momentum, and energy, coupled to Poisson’s equation
for the electric potential. The nonlinear conservation laws are just the Euler
equations of gas dynamics for a gas of charged particles in an electric field,
with the addition of a heat conduction term [1]. Thus the hydrodynamic model
PDEs have hyperbolic, parabolic, and elliptic modes.
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The nonlinear hyperbolic modes support shock waves. Electron shock waves
should occur in silicon devices at short length scales or at low temperatures.
Steady-state second upwind and high-order time-dependent upwind simulations
of a steady-state electron shock wave in a semiconductor device will be pre-

sented, using the hydrodynamic model. The simulations were performed for
the ballistic diade {which modelg the channel of a MQQF‘WT)_ With a 1 volt
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bias across the diode, the shock wave is fully developed in Si at 300 K for a 0.1
micron channel and at 77 K for a 1.0 micron channel [2].

2 The hydrodynamic model

A fairly general set of transport equations for device simulation has been derived
by Blgtekjer [3] from the Boltzmann equation:
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where n is the electron density, v is the velocity, p is the momentum density,
e (> 0) is the electronic charge, E is the electric field, 7" is the temperature in
energy units, W is the energy density, « is the heat conduction coefficient, and
the subscript ¢ indicates collision terms. We will assume that the energy bands
are parabolic:
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where m 1s the effective electron mass.

In addition to the transport equations (1)—{3), we have Poisson’s equation
for the electric field
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where Np is the density of donors and N4 is the density of acceptors. Egs. (1)~
(5) determine the variables n, p, W, and ¢.

Egs. (1)-(3) are in conservation form, and may be written in terms of the
variables n, v, T, and ¢. These variables represent the simplest choice for
upwind methods and for the ballistic diode boundary conditions.

3 The ballistic diode problem

As a model problem, we simulate the flow of electrons in a submicron nt —n —
nt silicon diode. This device models the channel in a MOSFET, and clearly



exhibits hot carrier effects at submicron scales. The diode begins with an n¥
“source” region, is followed by an n “channel” region, and ends with an nt
“drain” region.

Following Baccarani and Wordeman [4], we take
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where T} is the ambient temperature, pno = pro(To, Np 4+ Na) is the low field
electron mobility, and v, = v,(T}) is the saturation velocity.

The simplest boundary conditions for the simulationsare n = N and T = Ty
at Tmin and 20z, and ed(@min) = Tin(n/n;) and e¢{zmas) = Tln(n/n))+eV,
where V is the bias across the diode and n; is the intrinsic electron concentra-
tion.

The steady-state computations use the second upwind method [2], a conser-
vative discretization which captures the essential physical transport property
of supersonic flow, that advected guantities directly influence the solution only
downstream. We use Newton’s method to linearize the discretized steady-state
hydrodynamic equations. Newton’s equation may be solved directly by sparse
matrix techniques, or by block iterative methods [5].

The time-dependent simulations use an “essentially non-oscillatory” (ENO)
upwind scheme {6]. The ENO method uses an approximate Riemann solver
to evolve the solution preceded by an adaptive non-oscillatory reconstruction
of the solution, and is capable of resolving shocks over 2-3 grid points. The
upwind stencil is chosen to minimize the likelihood of crossing a discontinuity.
The scheme we used is sixth-order accurate in space in regions of smooth flow,

4 Computations for transonic flow

Higher electron velocities can be obtained in a semiconductor device by making
the active device length shorter. Since the electron soundspeed ¢ = /T/m,
higher electron Mach numbers may also be obtained by lowering the ambient
temperature Tp.

We present two parameter regimes for the ballistic diode in which there is
a transition from subsonic to supersonic electron flow just to the right of the
n* — n junction and from supersonic to subsonic flow to the left of the n — nt
junction, In analogy with gas dynamical flow in a Laval nozzle, a shock wave
develops at the transition from supersonic to subsonic flow. The nt —n — nt
doping of the ballistic diode corresponds to the converging-diverging geometry
of the Laval nozzle. For further analysis of the shock waves, see Ref. [2].



For the transonic computations at Tp = 300 K, we take a diode consisting
of a 0.1 micron source, a 0.1 micron channel, and a 0.1 micron drain. In the n*
region, the doping density N = 5x 1017 cm~3, while in the n region N = 2x 1015
em™2,

Figs. 1 and 2 present a simulation of a Mach 1.6 electron shock waveat V =1
volt (with 120 grid intervals) using the two upwind methods. The shock profile
develops at z, ~ 0.035 microns. The electron flow is subsonic behind the shock
profile and supersonic ahead of the shock profile. The electron temperature is
elevated well into the drain,

For the transonic computations at Ty = 77 K, we take a diode consisting
of a 0.1 micron source, a 1.0 micron channel, and a 0.1 micron drain. In the
nt region, the doping density N = 10'® ¢m~3, while in the n region N = 101%
cm~3,

Figs. 3 and 4 present a simulation of a Mach 3.9 electron shock wave at V =
1 volt (with 120 grid intervals). Note the dramatic cooling of the electron gas
as the electrons enter the channel, due to the potential barrier at the junction.
The shock profile develops at #, = 0.3 microns. Note that the shock wave is a
much sharper profile in v and M than the Mach 1.6 shock wave. The high-order
non-oscillatory scheme resclves the shock more sharply than the second upwind

method, and will be important in resolving strong shocks and two-dimensional
shocks.
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Figure 1: Electron velocity in 107 em/s and electron Mach number (gray) for
V = 1 volt, 0.1 micron channel, 300 K. # is in 0.1 microns.
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Figure 2: Electron temperature in eV for V = 1 volt, 0.1 micron channel, 300 K.
z is in 0.1 microns,



Figure 3: Electron velocity in 107 cm/s and electron Mach number (gray) for
V = 1 volt, I micron channel, 77 K, x is'in 0.1 microns.
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Figure 4: Electron temperature in eV for V' = 1 volt, 1 micron channel, 77 K.
x is in 0.1 microns.



