UCLA
COMPUTATIONAL AND APPLIED MATHEMATICS

An Implementation of the Fast Multipole Method
Without Multipoles

Christopher R. Anderson

July 1990
CAM Report 90-14

Department of Mathematics
University of California, Los Angeles
Los Angeles, CA. 90024-1555

UCLA
COMPUTATIONAL AND APPLIED MATHEMATICS

An Implementation of the Fast Multipole Method
Without Multipoles

Christopher R. Anderson

July 1990
CAM Report 90-14

Department of Mathematics
University of Califernia, Los Angeles
Los Angeles, CA. 90024-1555

AN IMPLEMENTATION OF THE FAST MULTIPOLE METHOD
WITHOUT MULTIPOLES

CHRISTOPHER R. ANDERSON*

Abstract. We present an implementation of the fast multipole method which uses approxima-
tions based on Poisson’s formula. Details for the implementation in both two and three dimensions
are given. We also discuss how the multigrid aspect of the fast multipole method can be exploited
to yield efficient programming procedures. The issue of the selection of appropriate refinement level
for the method is addressed. Computational results are given which show the mmportance of good
level selection. We present an efficient technique which can be used to determine an optimal leve]
to choose for the method.

1. Introduction. The purpose of this paper is three-fold. I'irst we will present
a method for computing N-body interactions which is similar to the fast multipole
method (FMM) as developed by L. Greengard and V. Rokhlin [4] [5] and L. Van Dom-
melen and E. Rundensteiner [12], but one which does not use complex power series in
two dimensions or spherical harmonic expansions in three dimensions. Our procedure
will be based on the use of Poisson’s formula for representing solutions of Laplace’s
equation. While the accuracy and operation count of the resulting method 1s almost
identical to the fast multipole method, the method does offer some advantages. One
advantage is that the component operations of the multipole method such as shifting
and combining multipoles are very easy to formulate for approximations based on
Poisson’s formula. Another advantage is that the difference between the two and
three dimensional methods is very slight, and so programming a three dimensional
method is relatively straight forward once a two dimensional method has been pro-
grammed. The second aspect of this paper is to discuss how multigrid programming
strategy can be used to facilitate the programming of our method and others like it
(such as the original fast multipole method). Thirdly, we wish to discuss the issue of
parameter selection when using these “fast ” methods. Essentially, the computational
efficiency of these methods depends critically upon the choice of a level of refinement
of phystcal space. A wrong choice can lead to a very inefficient algorithm. We shall
present a procedure for obtaining an optimal choice of the refinement level.

The problem of calculating N-body interactions occurs in a wide variety of com-
putational problems - discrete vortex calculations, galaxy simulations, plasma sim-
ulations etc. For each of these computational problems the calculation takes on a
slightly different form, but each shares the common feature that the interaction is
determined via solutions of Laplace’s equation. So, rather than address each different
application, we will discuss the following N-body model problem : Given N charged
particles at locations z; with strengths x; the goal is to calculate the potential ¢(z;),

* Department of Mathematics, UCLA, Los Angeles, California, 90024

Research Supported by ONR Contract #N00014-86-K-0691, NSF Grant DM586-57663
and IBM Fellowship D880908

where ¢ is a solution of

N
(1) A¢ = ;5(3: — T)Ki

Here §(z) is Dirac’s delta function and A is the Laplacian. Since the key ideas
behind the method presented here don’t change much when one goes from two to
three dimensions, we will primarily discuss the two-dimensional case. Those aspects
which do change with dimension will be gpecifically addressed.

Often in simulations one uses smoothed delta functions (or “blobs”) and the

model problem in this case is identical to (1) but we solve

N
) 8b =3 V(o -2

where U, is a smoothed delta function whose support is contained within a disk of
radius €. The choice of ¥ and ¢ is important for a simulations accuracy, but not
particularly important for the methods used to accelerate the computation of (2).
We do make the assumption that the blobs have support contained within disks or
spheres of radius ¢, and so the blob functions cannot be completely general.

The solution ¢ of (1) is given by

N
(3) #(e) = 3 g loglle — i)
while for (2)
@ LOEDIL-LECEES

where @, is the potential induced by a single blob. (This can often be calculated
explicitly by solving A® = U (z) using the method of separation of variables.)

From (3) or (4) it is clear that if we evaluate the solution ¢ at each point z;,1 =
1,...N, then this computation requires O(N?) operations. For particle simulations,
the larger the value of N the better, and so there is great interest in reducing this
operation count. The fast multipole method is a technique for reducing the operation
count of this problem to O{N) operations. '

There are two basic ingredients to the fast multipole technique. One ingredient
is the process of combining large numbers of particles into single computational el-
ements. When a cluster of particles is “far away” from a particular point, then the
potential of the cluster is approximated by the potential induced by a single computa-
tional element located inside the cluster. (How far “far away” is must be determined
of course.) In the fast multipole method the computational element is a multipole
expansion located at the center of a disk containing the cluster of particles. In two
dimensions one can represent the potential induced by a collection of particles as the

2

real part of log(z) where z is a complex number. Given a cluster of particles located
at positions z;, i = 1...N,, the approximation used is the following

N
(5) $(z) = Re (D log(z — z)) ~ Re (aolog(z — 2o) »»1~E)k).

i=1

Here zp is the center of a disk enclosing the particles z;, p is the order of the mullipole,
and ay, are coefficients chosen so that the multipole is an accurate approximation of
the potential. The efficiency of the method comes about because the evaluation of the
potential of this single computational element, O(p) operations, is typically much less
work than that of computing the corresponding potential of the whole collection of
particles, O(N,) operations. In the three dimensional implementation of the method,
the complex multipole is replaced by an expansion in spherical harmonics [5].

The second ingredient of the fast multipole method has to do with organizing
the computations so that the application of the technique of combining particles is
efficient and doesn’t lead to inaccuracies. For example, when one combines particles
into single elements, the more widely distributed in space the particles of a given
cluster are, the greater the inaccuracy the approximation (5) becomes (for a fixed
value of p and a fixed point of evaluation). However, if the particles are fixed and
the evaluation position, z, is moved away from the center of the expansion z then
the accuracy of the potential approximation at z improves. The net effect is that if
a fixed degree of accuracy is desired, one approximates the potential by using a hier-
archy of approximations of the form (5). Close to an evaluation point one combines
particles over small regions to form multipole approximations. Particles further away
are combined over larger regions to form multipole approximations. {Essentially the
size of the region over which particles are combined is inversely proportional to their
distance to the evaluation point.) In the fast multipole method, this aspect is orga-
nized by decomposing the region containing all of the particles into boxes of different
sizes. The particles in each of the boxes are combined and their potential is replaced
by an approximation of the form (5). The potential at a particular point is then the
sum of these approximations and the potential induced by the direct contribution of
very close particles. In Figure 1 we show a test particle and the surrounding regions
in which the particles are combined into multipole expansions. The potential induced
by particles in the region immediately surrounding the test particle is computed using
the exact interaction formula (3) or (4).

In the approximation of the potential due to a cluster of particles by a single
computational element, one is not forced to use multipoles. There is a possibility for
other types of computational elements to be used and in this paper we shall discuss
one alternative computational element. The basic strategy is to use Poisson’s formula.
In two dimensions we have that for points outside of a disk of radius a containing the
particles, the potential can be represented by

(6) ‘?5(""! 9) = klog(r) + % f ‘g(aa s) [1 —2(%) Cisz(g%fs)) + (2)2 ds.

3

% v
A

Fia. 1. The hierarchical clustering of particles used to create a mullipole approzimation fo the
potential at ¢ point. The evaluation point is within the darkened boz. The potential induced by
particles in unshaded bozes are combined into multipole approzimations. The potential induced by
particles in the lined boves is computed using the direct interaction formula.

where the function qz(a, s) and the value of are determined from the values of ¢ on
the circumference of the disk. {r,8) is the position in polar coordinates of the eval-
uation point from the the center of the disk. In the numerical method, the integral
in Poisson’s formula is converted into a sum of K quantities {(where K is the number
of points in an integration rule for (6)). Thus, the potential induced by a cluster
of N, particles can be reduced to the evaluation of a sum of K terms. The idea of
using a numerical approximation of Poisson’s formula to represent the potential is
similar in spirit to an aspect of the method introduced by Rokhlin {9] for solving the
equations of scattering theory. While the idea of using Poisson’s formula is straight
forward, getting Poisson’s formula to work numerically proved quite troublesome.
The problem is that the numerical evaluation of Poisson’s kernel is difficult because
of the singularity in the kernel. As the evaluation point approaches the ring where
the integration is performed, the kernel becomes more and more singular, and the
accuracy deteriorates rapidly. In the first section we discuss how this problem can be
eliminated. In the first section we also present the necessary details (for both the two
and three dimensions) which facilitate the incorporation of this type of computational
element into a fast multipole scheme. In order to distinguish this type of computa-
tional element based on Poisson’s formula from a multipole element, we refer to them
as “outer ring approximations” (two dimensions) or “outer sphere approximations”
(three dimensions). (We shall also have use for these approximations inside rings or
spheres and these will be “inner ring” and “inner sphere” approximations.} In Figure
2, a schematic of the use of this element is presented. The computational particles
(represented by the small circles) induce a potential at locations on the circumference

4

¢ -

Fia. 2. Schematic of an outer ring approzimation. The computational particles (represenied by
the small circles) induce o potential at locations on the circumference of a ring which surrounds the
particles, The potential outside the ring is evalualed by inlegrating these values against a (modified)
Poisson kernel

of a ring which surrounds the particles. The potential outside the ring is evaluated
by integrating these values against a Poisson kernel.

There are other possible choices for the computational elements, for example
Nowak [8] uses charge distributions over panels. While each different computational
element will give rise to a different method, the structure of the algorithm is relatively
independent of the type of element used. We shall therefore refer to the class of
methods which use the basic computational structure of the fast multipole method
{(but different elements) as “hierarchical element” methods.

As discussed earlier, in the multipole method one forms an approximation to the
potential at a point by summing the potential induced by multipole approximations
for different size clusters of particles. The same type of construction will be used with
the computational elements based on Poisson’s kernel. In both our method and the
original multipole method, when one chooses different evaluation points one sums a
different collection of these approximations. The organization of the evaluation of the
appropriate approximations presents a challenging computational problem. One im-
portant component of the fast multipole algorithm as presented by Greengard-Rokhlin
[4] is an effective way to construct and evaluate this hierarchy of approximations. An
observation which can be made about their method for carrying out this computation
is that it is much like the multigrid method. The observation has some merit, and in
the second section we show how this inherent multigrid structure can be exploited to
yield an efficient programming strategy for the construction and evaluation of the hi-
erarchical set of computational elements. (The identification of the multigrid, or tree
structure, in the method is also useful in analyzing the performance of such methods
on parallel processors - see [6], for example.) We shall present this discussion in the
context using Poisson kernel computational elements, but the results apply directly
to the original multipole method as well.

The efficiency of hierarchical element methods comes about from the ability to
represent a cluster of many particles by an approximation {multipole or otherwise)
which can be evaluated with little numerical work. However, there is the possibility
that the work to evaluate such an approximation may be more than that of evaluating

5

the field induced by the particles in the cluster directly. This problem will certainly
arise if the clusters contain only a very small number of particles. Thus, one is
left with the problem of determining what is the minimal region size which should
be used in forming the clusters of particles. This can be determined if the points
are uniformly distributed, but if they are not, the problem is much more difficult.
Fortunately, an a-priori estimate of the computational time for any level of clustering
is readily available and the level which requires the smallest time can be identified
and chosen. In the third section we shall discuss this issue and present the details of
a method for obtaining timing estimates for each level of clustering. We will also give
computational results which illustrate the importance of appropriate level selection.

Lastly we present our conclusions and discuss some of the advantages and disad-
vantages of the techniques presented in this paper. The programs described in this
paper are available from the author.

2. Derivation of Computational Elements. A basic component of the fast
multipole method is the ability to represent the potential induced by a large number of
particles by a single computational element which is relatively inexpensive to compute
(i.e. the multipole expansion). The use of the multipole (or spherical harmonic)
expansion is not a necessity, and in this section we present a computational element
which is based on Poisson’s formula for a circle in two dimensions and a sphere in
three dimensions.

Let U(r,) be the potential in two dimensions induced by a collection of N parti-
cles at locations &; = (r, §;) and strengths «; which are contained within in a disk of
radius a centered at the origin. This potential is a harmonic function outside of the
disk, and so one can use Poisson’s formula, (with a log term to satisfy the circulation

requirements) to represent it. Set k = Z: £ and U(r,0) = ¥(r,8) — xlog(r), then if

(r,8) is a point in the plane outside the dlsk we have

1-(3)°
(7) U(r,8) = log(r) + f‘l’(a 3 [1 2 (E eos((0 =) + (%)2] ds

Our first attempt to get a representation suitable for numerical computation was
to use the trapezoidal rule to approximate the integral in (7). Let M be an integer
and set K = 2M + 1. If we set h = 2r/K and s; = (acos(zh),asin(ih)),i =1,..., K,

then an approximate representation is given by

(8) U(r,0) = klog(r) + 21_% ; @(a, i) [1 —2(%) cis(_(é%—)zsi)) +(2)? } "

However, the approximation in (8) is very ill conditioned. As the evaluation point

moves towards the ring of radius a, the approximation is exceedingly inaccurate. In

Figure 3 the dashed lines are the errors in the potential which are obtained using the

approximation (8). The ring is of radius @ = 2 and the potential is that induced by a

single particle of unit strength located at r = +/2/2 and § = 7/3. The upper, middle,
§

and lower dashed line correspond to K = 9, K = 17, and K = 25 points respectively
in the integration formula.

The remedy for this problem becomes apparent when one considers the derivation
of Poisson’s formula, Let ¢ be a solution of Laplace’s equation exterior to the disk of
radius ¢ which has circulation . If f(8) is the value of §(r,8) — xlog(r) at r = a we
have, using the method of separation of variables,

(9) ¢5 = ﬁ;log('r) + §° i (g)wmieikﬂ

k=—o0

where the coefficients ¢; are the Fourier coefficients of the function f(#),
1 2
(10) = é}—off(s)e_"ks ds.

If one combines (9) and (10) one obtains

(11) ¢ = klog(r) + io: [%ff(s)e“"ks ds} (f::)-—tkleike‘

k=—co

Poisson’s formula results when one interchanges summation and integration in (11),

¢ = ﬁ:log(r)ﬁ——zl}—/ f(s) Li e—ik(e—s)(%)—lkl} ds
~ 17 1 (2)?
““bd”+§E!“”[1WMﬁmﬁw-ay+ev]“‘

From this derivation one can see that using a trapezoidal rule approximation to
the integral in (7) is equivalent to implicitly using the trapezoidal rule to approximate
the Fourier coefficients (10). Clearly, if only K = 2M + 1 points are used in the
quadrature rule then one should not use any coeflicients ¢; with |k| > M, i.e. one
should only use those Fourier modes in (9) which can be reliably estimated using K
equispaced points. Thus, we consider using (9) with only the first M modes,

~ kl T IR N d
¢ ~ wloglr)+ 5= [|3 e HOIE) I fs)ds

o le=-M

2
1 1 (21 —2(2)MH1 cos((M+1)(6—3))+2(2)M+2 cos(M(6—5))
o K,lOg(T') ';' —2_; / f(s) [1__2(%}(:05((9_3))4”(%)2] dS.
0
Here, as in the original derivation of the Poisson kernel, the simplification arises from
the formula for summing a geometric series. When this integral is approximated by
the trapezoidal rule we obtain the numerical approximation,

(12) #(r,0) ~
7

1 K 1—(2)2 - 2(&)M+ cog({M+1){f~—5;})+2(2IMH? cos(M{8—s3;
klog(r) + 5= > f(s:) [R e (=))} h

where the integration points s; are equispaced on the ring with h = 27a/K. By
construction, this discrete approximation is precisely that which would be obtained
if one formed an approximate solution of the exterior Laplace equation by combining
solutions for the first M modes of the data f(s). The Fourier coefficients used in
the approximation are, however, those obtained from the discrete, rather than the
continuous, Fourier decomposition of f(s).

We will use (12) with « = E £ and f(s;) = ¥(a,s;) — rlog(a) to approximate

the potential ¥ induced by N partzcles of strengths x;. The steps to create this
approximation consist of summing the strengths of the particles in a region of space
to obtain the strength of the log term in the approximation. This is then followed
by the evaluation of the potential induced by the particles (minus the log term) at
equispaced points on the ring of radius a which encompasses these points. To evaluate
this approximation at some point outside the disk, one merely adds the contribution
of the log term and the sum in (12). As before, if the number of particles N contained
within the ring are large compared to K, a substantial saving in work is accomplished
by using such an approximation. We shall refer to the approximation (12) as an outer
ring approximation.

The improvement in accuracy when (12) is used is demonstrated by the solid lines
in Figure 3. In this figure, these lines indicate the error in the potential when (12) is
used for the problem of a point charge located at r = /2/2 and 8 = 7/3. The upper,
middle, and lower solid lines correspond to K = 9,K = 17, and K = 25 integration
points respectively. As can be seen from the figure, the error remains sufficiently
small as the evaluation point approaches the ring used in the approximation (a ring
of radius 2). This behavior is in sharp contrast to the error in the approximation with
the unmodified kernel (8) which gives O(1) errors as the evaluation point approaches
the ring. '

Complete error estimates for the approximation have yet to be worked out, but
the accuracy can be partially assessed using the results of Greengard and Rokhlin {4].
In particular, in the derivation of (12) one sees that the approximation is formed by
combining the solutions of Laplace’s equation corresponding to the first M Fourier
modes associated with the data f(s). If in this approximation we used the exact
Fourier coefficients (10) instead of the discrete Fourier coefficients, then the approxi-
mation which would result would be identical to that of a multipole expansion with M
terms. Hence, using the result of [4] we expect that if the particles are centered within
a disk of radius « about the origin then the error in the potential at any test point
with a radial distance r will be O((2)M). It is important to note that this estimate of
the error depends on the relative 1ocatlon of the evaluation point to the ring of radius
o which surrounds the particles, and not the relative location of the particle from
the ring of radius a which is used in the approximation. For example, the solid lines

8

10s Y T

102

101

Log’10

Error

104

107

10-10

T T

2 2.5 3 3.5 4

19-13
L5

radial distance

F1G. 3. Error in the potential when outer ring approvimations are used. The dashed lines correspond
to an unmodified Poisson kernel, and the solid lines to a modified Poisson kernel The ring radius
was a = 2 and the value of K refers to the number of points in the integration formula.

in Figure 3 indicate that the error in the approximation remains small even as the
evaluation point moves inside the ring which is used for the approximation. This is
expected, and in fact necessary, since in the complete algorithm we shall have reason
to evaluate the approximation for points inside the ring. The ring radius which used
in the approximation (12) has an indirect effect on the accuracy. Essentially, the
distance of the ring from the center of the disk which contains the particles effects
the aliasing which occurs with the implicit use of discrete, rather than continuous
Fourier coefficients. We found that setting the ring radius a = 2« gives acceptable
results.

In the complete method there is the need to represent the potential inside a
given region. Following the same strategy for obtaining a numerically stable outer
ring approximations we define an inner ring approximation by

(13) ¢(r,0)

1 XK 1 (E)2—2{ T+ cos((M41)(8— 5) }4H2(Z MH2 cos(M(0—s:))
o= f(si) [T T (D) cos(=) (B] h

where (r,0) is the evaluation point and f(s;) is the value of the potential induced by
particles (or outer ring approximations) outside the ring of radius a. The evaluation
point can be taken to be outside as well as inside the ring.

To make efficient use of approximations of the form (12), clustering is done on
different levels, 'i.e. approximations are constructed for collections of particles in
clusters of increasing size. In this construction it is necessary to combine several outer
ring approximations into a single outer ring approximation. (In the multipole method,
this is carried out by shifting the origin of the multipole expansions.) This operation
of combining outer ring approximations is particularly simple to implement, one just
evaluates the potential induced by the component outer ring approximations at the
integration points of single outer ring approximation under construction. (See Figure
4). Similarly for the other required combining operations in the method, i.e. forming
inner ring approximations to represent the potential of outer ring approximations
etc., these are all carried out by just evaluating the component approximations at the
set of points needed for the particular approximation. Due to the close relationship
between these operations and those that are used in the original multipole method,
the errors for ring approximations with K = 2M+1 integration points can be expected
to behave in a similar fashion to the errors in the multipole method when M terms
in a multipole expansion are used.

In three dimensions the construction is essentially the same. Let g(8,¢) denote
values on a sphere of radius a and denote by ¥ the harmonic function external to
the sphere with these boundary values. Given a point outside the sphere of radius
a, & = (r,0,¢), let T, = (cos(8) sin(¢), sin{#) sin{¢), cos(4)) be the point on the unit

10

Fig. 4. Schematic diagram of the operation of combining ouler ring approximations. The coarse
level outer ring approzimation is obiain by evaluating the potential of the ouler ring approzimations
contained within it

sphere which points in the direction of #, then
(14) (@) = / [(2 + D)(E)HPa(3)| g(as)ds

where the integration is carried out over $?, the surface of the unit sphere, and P, is
the nth Legendre function. (See [3], page 513).

As is the case with the ring approximations we shall refrain from using all of
the terms in the kernel (14). Given a numerical formula for integrating functions
on the surface of the sphere with K integration points 8; and weights w; we use an
approximation of the form

(15) U(F ZK: S @n+1)(- ”"'an(s,E - &p)| g(ad;) w;.

=1 Ln=0

We call this approximation an outer sphere approximation.

A critical choice to be made is that of the appropriate number of terms M of
the kernel in (15). If one uses an integration formula for the sphere of degree D (i.e.
the formula integrates polynomials of up to and including degree D exactly) then an

appropriate choice for M is M < % The reasoning for this is as follows: Implicit

in the use of Poisson’s formula is the computation of an orthogonal expansion in

spherical harmonics. If we keep M terms in the kernel then we are constructing an

approximation by combining the potentials corresponding to the first M terms of this
11 ‘

expansion. In a numerical approximation of the type (15) we are implicitly using
a discrete, and hence accuracy limited, approximation to estimate the orthogonal
expansion coefficients. We should therefore choose M on the basis of our ability
to computationally estimate the coefficients of a spherical expansion with degree less
than or equal to M. Given a function on the sphere comprised of spherical harmonics of
degree m, then the spherical expansion coefficients of this function can be determined
exactly by an integration formula with accuracy of degree 2m. (Spherical harmonics
of degree < m can be expressed as the restriction of polynomials of at most degree
m to a sphere, so a formula of degree 2 * m can calculate inner products of two of
these functions exactly.) Therefore, if we ignore the effects of aliasing, using M < %
allows us to determine the first M coefficients in the orthogonal expansion accurately.
The error in the resulting approximation can be expected to be on the order of the
first neglected term in the expansion - i.e. if we keep M terms, then the error in the
potential induced by a collection of particles inside a sphere of radius o about the
origin should behave like O(2)M*2. (The highest power of r in the sum is M + 1.)

Unlike two dimensions in which the trapezoidal rule furnishes us with the optimal
integration formula for our integration, in three dimensions the choice of integration
formula is more complicated. One obvious choice is the use of product integration
formulas. The ones typically employed are those which use trapezoidal integration in
the ¢ direction and then Gaussian quadrature in the ¢ direction. These are somewhat
inefficient as the integration points are crowded near the poles so we chose to use
integration formulas from a non-product family, namely those described in {10} which
are taken from [7]. In Figure 5 and Table 1 we present the results of computations
obtained using (15). Each of the curves in Figure 5 are the errors in the potential
induced by a single unit strength particle located at r = V3 /2,8 =7/3 and ¢ = 0.
The test points are located along the z-axis (# = 0, ¢ = 7/2). This selection of points
was chosen to be representative of the worst possible (most inaccurate) configuration
which would occur when this element is incorporated into the complete method. The
individual curves correspond to a 5th, Tth, 9th, 11th and 14th order integration
formulas. These formulas required 12, 24, 32, 50, and 72 points respectively. In Table
1 we present the rates of decay of the error as the radial distance to the evaluation
point increases. As expected the rate was approximately M 4 2. It is interesting to
note that the 9th order formula has errors which are much better than expected - it
appears that the integration formula is of higher order than advertised.

The approximation which is used to represent potentials inside a given region is

K M
— r n - — -

(16) (D) = > > (2n+ 1)(;) Pa(3 - &,)] g(adi) w;

i=1 Ln=0
where the notation is that used to define (15). (Note the change in the power of £ in
this formula.) We shall refer to (16) as an inner sphere approximation.

The operations associated with forming and combining the outer and inner sphere
approximations are essentially the same as those in two dimensions - one merely eval-
12

10-2

T
5th order

10-3

L
o9 10

Error Tth order

10-4

9th ordex
10-5

E
E 11th order
10-6 E
= 14th order
10-7 % =
10-8 i 1 1 1
25 3 3.5 4 4.5 5

radial distance

Fic. 5. Brror in the potential for an outer sphere approzimation. Each curve represents the error
for a given order of iniegration formule {and fized number of terms in the Poisson kernel.) The
sphere was of radius 3.

uates the component approximations at the integration points of the new approxi-
mation. If the integration points of the new approximation are sufficiently far away
from the old approximation, then the accuraty degradation is minimal. One of the
big advantages of using outer and inner sphere approximations is the simplicity of
the process of combining them. This is in contrast to the complicated formulas which
must be used if the approximations are based on spherical harmonics.

3. Hierarchical Element Implementation and Multigrid. In this section
we discuss an implementation strategy which uses the correspondence between the
algorithmic structure of the fast multipole method [4] and the multigrid method.
Although we shall discuss an implementation which uses computational elements
based on the Poisson kernel (12) and (13), there is no explicit use of the particular
features of this computational element, and so the results apply to programming
with multipoles or any other type of element. Qur goal here is to just outline the
computational procedure which we have used and for more detailed information one
should see the programs in [1], [2].

The basic algorithm structure used is that presented in [4]. The computation
is broken down into two sweeps, the first sweep consists of constructing outer ring

13

Order of Integration | Number of Terms | Average Rate of | Expected Rate of
Method in Kernel Error Decay v Error Decay v
5 2 3.95 4
7 3 5.68 3
9 4 8.85 6
11 5 7.322 7
14 7 8.902 9
TaBLE 1

Rate of the spatial decay of the error in the potential for an outer sphere approzimation. The potential
is assumed to decay like O(r)Y

approximations for a hierarchical clustering of the computational particles. The sec-
ond sweep consists of evaluating (in an efficient manner) the appropriate members
of this hierarchy for each of the required evaluation points. There is no need for the
evaluation points to be located at the same positions as the computational particles.
In both sweeps the computational particles and evaluation points are assumed to lie
in a bounded region 2. A square box is then chosen which encloses Q. The box is
then recursively divided into smaller boxes. At the 0th level we have the original
box, at the next level 4 boxes, the next 16 etc. Associated with each level n we have
a uniform grid dividing up the original box into 4 boxes. At the beginning of the
calculation one chooses a highest (finest) level of discretization. We shall call this
level ny. ‘

In the first sweep, outer ring approximations are constructed to represent the
potential induced by the computational particles in each of the boxes at every level.
This construction is performed recursively. Starting at the finest level, outer ring
approximations are constructed for the computational particles in each of the boxes
at that level. The center of the outer ring approximations are located at the centers of
the respective boxes. The radius for the ring approximation is taken to be twice the
size of the box. One then proceeds to the next lower (coarser) level and forms outer
ring approximations for each of the particles contained within these coarser boxes.
Instead of forming an outer ring approximation directly from the particles contained
within a given box, one combines the four outer ring approximations associated with
the finer boxes contained within the particular coarse box. The process of combining
outer ring approximations is accomplished by evaluating the finer level outer ring
approximations at the integration points of the coarse level outer ring approximation.
Again, the centers of the outer ring approximations at this coarser level are located
at the centers of their respective boxes and their radius is twice the coarse box size.
This procedure is then repeated for all successively coarser levels, When the sweep 1s
completed, outer ring approximations are available for the particles within each box
at every level.

Two issues to be concerned with in implementing this sweep are avoiding un-

14

necessary work and avoiding unnecessary storage requirements. A straight forward
implementation would suggest that at each level one constructs an outer ring approx-

imation for each box. If one uses K nodes in the approximation (12), then for n;
A{ns+1)

levels the storage required will be approximately K x real numbers. Also, the

work to construct all of these approximations for N uniformly disiributed particles
_ , 4t
will be on the order of K x N+ K

is necessary if the particles are uniformly distributed, this amount is certainly not
needed if they are not. If a given box (at any level) has-no computational particles, -
then one need not compute an outer approximation for that box. Therefore, for non-
uniform distributions (which are perhaps more prevalent in applications) one can save
on storage and time by accounting for this fact.

The construction carried out in this first sweep is very similar to the computation
which is performed in one sweep of a multigrid method. Both types of methods
progress through a nested set of grids or boxes, and the operation of forming an outer
approximation on a given level from the four outer approximations at the previous
finer level is analogous to implementing the restriction operator (the forming of a
coarse grid approximation from a fine grid one) in a multigrid method. However, in
a hierarchical element method one is dealing with outer approximations associated
with the grid boxes rather than solution values, and so the programming strategy is
to implement the equivalent of a multigrid restriction operator but with this operator
defined to act on approximations pointed to by address values in the boxes rather than
to act on solution values. To carry out this computation a multigrid pointer structure,
F,, consisting of-a nested set of integer arrays is first constructed. At a given level n,
F, is an integer array of size 2% x 2", The (z, 7)th element of F,, is the starting address
in a storage array of the values used in the outer ring approximation associated with
the (7, 7)th box of the nth level partition of the computational domain. If there is no
outer ring approximation associated with that box, then a negative integer is stored

. While this amount of work and storage

in the pointer array. :

The computation is now performed as follows. The particles are sorted according
to which box at the finest level (level ny) they reside in. Particles in the same box
are link listed together, and the address of the first element of the link list for any
given box is stored in a 2™ x 2" integer pointer array I, associated with the boxes
at the finest level. (By link listing we mean that we associate with each particle an
integer, the value of this integer gives the address of the next particle in the same
box.) If there are no particles in a given box, then the value stored in I, is negative
integer. Outer approximations are constructed for each of the boxes at the finest
level. This is accomplished by looping over the array I,,. If there is a non-negative
element in I,, then there are particles in the corresponding box and the potential
induced by these particles are evaluated to obtain the values necessary for an outer
ring approximation. These outer ring potential values are put into a storage array
and the beginning address of these values is stored in the array F,,. Next, outer
ring approximations are constructed for each coarser level. If we are at level k, then

15

Storage
Array

-+ [10000000000000000mMomaonononona0

Fia. 6. Schematic of outer ring construction. Formation of the coarse level ouler ring approzimaiion
is performed by combing the four finer outer ring approzimations beneath it Addresses which point
1o the storage array in which the outer ring approzimation values are stored in the nested arrays ¥y,

the pointer array corresponding to the finer level Fj 1, is looped over. If there is an
outer ring approximation associated with a given box at the finer level (indicated by
a non-negative entry in the pointer array), then the box at the coarser level which
contains this finer level box (it’s parent box) will have an outer ring approximation
associated with it. The potential induced by the finer level outer ring approximation
is evaluated to construct the coarse box outer ring approximation. These new outer
ring approximation values are put into a storage array and the beginning address
of the values is stored in the Fj. A pictorial diagram of this process is depicted in
Figure 6. This process of constructing outer ring approximations is repeated until
the second level is reached. (No outer ring approximations are needed for the first or
zeroth levels.)

The second sweep, that in which the evaluation of the outer ring approximations
is organized, utilizes the concept of being “well separated” [4]. Assume that the boxes
on a given level are ordered in standard lexicographic ordering, then, for a given level
of refinement, one box is “well separated with distance L” from another box, if the
maximum of the difference between their indices is greater than or equal to L (i.e.
the boxes are at least L boxes apart). For a given level, the second sweep consists of
constructing inner ring approximations for each box. The inner ring approximations
are used to represent the potential from two sources. The first source is the inner

16

Fia. 7. Formation of inner ring approzimations from parent inner ring approzimation end well
separated ouler ring approzimations.

ring approximation associated with the parent box at the previous coarser level. The
second source is from all of the outer ring approximations from boxes which are well
separated from the given box (with distance 1 in two dimensions and distance 2 in
three dimensions) and are contained within boxes at the previous coarser level which
are not well separated from the parent box. A graphical representation of this step
is given in Figure 7. This procedure is carried out for all levels except the finest.
For this level, the inner ring approximations are only constructed from the inner
ring approximations of the parents. At every level, the centers of the inmer ring
approximations are coincident with the centers of the boxes which which they are
associated. The radius of the ring used in the approximation is one half the box size.
With the completion of this sweep, the potential at any given evaluation point is
obtained by computing the potential of the inner ring approximation associated with
the finest level box the point resides in. This potential is then added to the potential
induced by particles in the nearby finest level boxes which are not well separated from
the given evaluation points box. The reason for choosing a separation distance L =1
in two dimensions and I, = 2 in three dimensions is to ensure that the decay of the
error in the approximations behaves like O(%)’* where <y is determined by number of
modes kept in the kernel M. (See formula (12)).

As is the case with the first sweep one must avoid using unnecessary storage
and doing unnecessary work. Here, at any given level, if there is no evaluation point
within a box, then one need not compute an inner ring approximation for that box.
Work and storage space can be reduced by accounting for this fact.

The construction carried out in this second sweep is also very similar to the
computations which are performed in one sweep of a multigrid method. The process

17

of creating an inner approximation from potential values induced by an inner ring
~ approximation associated with a parent box is much like the prolongation operation
of multigrid i.e. the construction of a fine grid solution from a coarse grid one.
The process of combining the outer ring approximations from well separated boxes
is analogous to performing relaxation. Again, in this sweep we are working with
approximations associated with the grid boxes rather than solution values, and so
the programming strategy will be to implement multigrid type operators, but with
the operators defined to act on the approximations pointed to by address values in
a given box rather than solution values. To implement this sweep; we again use a
nested pointer array, G, similar to F,. At a given level n the size of G, is 2" x 27
and the value at the (i, j}th element of this array is the starting address (in a storage
array) of the inner ring approximation values associated with the (7,7)th box of the
nth level partition. If there is no inner approximation associated with that box, then
a negative integer is stored in the pointer array.

The first task in the actual computation is to identify which boxes will have
inner ring approximations associated with them. The general rule is that if a box
at any level has an evaluation point in it, then an inner ring approximation will be
necessary for that box. The evaluation points are first sorted according to which box
at the finest level (level n;) they reside in. Particles in the same box are link listed
together, and the address of the first element of the link list for any given box 1s
stored in an integer pointer array J,, associated with the finest level boxes. Next
the pointer structure G, is swept through, starting at the finest level. At each level,
a zero is stored in the pointer array if the corresponding box in the computational
space with which it is associated with contains at least one evaluation point. (This
can be checked by considering the presence of zeros in the pointer array locations of
the next finer level.) Once this initial sweep is performed then any of the boxes whose
pointer is zero indicates that an inner ring approximation will have to be formed for
that box. -

Now, starting at the coarsest level, each level of the nested pointer array G, is
swept through, If there is a zero in the pointer array location at a given level, then an
inner ring approximation is constructed from a parent inner ring approximation and
from the appropriate well separated outer ring approximations. These approximations
are combined by merely evaluating the potential they induce at the nodes of the
inner ring approximation under construction. The addresses of the values needed to
evaluate the parent inner ring approximation and the outer ring approximations are
obtained from the pointer arrays G, and F, at the appropriate level. The values
for this inner ring approximation being constructed are put in a storage array and
the beginning address of these values is stored in the pointer array G, . At the
last (finest) level, inner ring approximations are formed from the parent inner ring
approximations. The potential at the evaluation points is then obtained from these
finest level inner ring approximations and direct evaluation of the potential from
particles in nearby (not well separated) boxes. The particles in nearby boxes are
accessed via the initially constructed link list whose starting addresses are pointed to

18

by the entries in J, .

The entire procedure consists of these two sweeps. The first sweep goes from
a fine discretization of physical space to a coarse discretization and results in the
construction of a hierarchy of outer ring approximations. The second sweep goes from
a coarse discretization to a fine one and results in a hierarchy of inner ring expansions.
If one considers the operations which are being performed on the pointer arrays, then
the method is algorithmically similar to a multigrid V-cycle. In fact, the first version
of the code was obtained by modifying an existing multigrid code. The modification
consisted of changing the subroutines used in multigrid (like a relaxation routine) so
that instead of working with the values at the cell centers, the routine worked with
the approximations which were pointed to by the values at cell centers. It proved
to be very productive to use the programming techniques which have developed for
multigrid, specifically those which are embodied in the sample code given in [11].

It is clear that if the computational particles and the evaluation points are dis-
tributed in a region which is not well represented by a square then there will be a
great number of elements in the pointer arrays which will be associated with no outer
or inner approximations. In order to reduce storage space, and shorten loops over the
pointer structure one can allow for regions which are non-square. This is most easily
accomplished if the bounding region is constructed to be a rectangular box whose
sides have an aspect ratio which is a power of two. To implement this a rectangu-
lar box is constructed which contains the computational particles and the evaluation
points. The sides of this box are then enlarged to create a rectangle which has an
appropriate aspect ratio. The refinement of this rectangle proceeds by successively
dividing the larger side by powers of two until the box side is equal to the length of
the smaller side. From this point on the refinement is accomplished by refining the
boxes in both directions. (See figure 8 which depicts the refinement of a box with
aspect ratio four to one.) The corresponding nested set of pointer arrays F,,, Gy, I,
and Jn, will be non-square and contain a number of elements corresponding to the
number of boxes at each level of the decomposition of the original rectangle.

In three dimensions we found that using an outer sphere radius which was three
times the box size worked better than using one which was only twice the box size.
Other than this difference and the changes in the number of indices in the pointer
arrays and the form of the kernel in Poisson’s formula, the implementation of the three
dimensional method is identical to the two dimensional method described above.

4. Timing and Level Selection. As discussed in the introduction, the primary
component of a hierarchical element method which leads to a computational savings
is the representation of the potential induced by a large number of particles by a
single computational element which requires less work to evaluate. On the other
hand, it is clear that if one uses a computational element to represent the potential
induced by only a small number of particles, then this may lead to more, rather
than less, computational work. In the implementation of the method presented here,
the computational domain is broken up into boxes, and as one increases the level of

19

Level O

Level 1

Leval 2

Level 3

Level 4

D060

Fic. B. Refinement of ¢ rectangle with an aspect ration of four fo one.

refinement, the size of these boxes decreases. Since the number of particles per box
will ultimately decrease, and thus the number of particles per computational element
will decrease, there is some level for which it is more expensive to use a hierarchical
element method than to use the direct method. This is illustrated by the results
in Figure 9 and Figure 10. (All of the computations where carried out on a SUN
Sparcstation 1. There were 25 points in the ring approximations - a number of points
which provides an accuracy of 107%.) The figures give the time it takes to compute the
potential induced by all of the particles at the locations of all the other particles for
different numbers of particles. (These times are estimated by the procedure described
below.) For Figure 9 the particles were uniformly distributed in a square and for
Figure 10 the particles were uniformly distributed in a rectangle with aspect ratio
of ten to one. Bach of the separate lines in the figures correspond to different finest
levels of domain discretization. As is evident from the figures the level one should
choose depends on the number of particles. The more the particles - the higher the
level of refinement. The choice of level also depends on the distribution of particles.
The fact that the timings vary greatly as the level is changed indicate that it is crucial
to choose the appropriate level. If the particles are always uniformly distributed in
some particular geometric arrangement, then one could work out estimates of the
appropriate level of refinement one should choose. If the particles are not distributed
in such a way, then the construction of a scheme for identifying the appropriate
level seems difficult, However, a computationally efficient and optimal level selection
scheme can be constructed.

The key observation is that the amount of computational work at each level
in the hierarchical element method is completely determined (and hence one can
estimate it) by the number of computational particles and evaluation points in any
given box at any given level. In essence the selection scheme is to “dry run” the
hierarchical element method, and, instead of performing all the required operations,
just increment counters. The counter increments are based on the population density
of the particles in each box and models of the computational time necessary to carry

20

[iio e

LB o000

1000 ' T ' 250 . r .
9001 - level &
800} 917 2001 m.7
C
B N P
700 e
600} 5 150 -
5001 e level 4
c
4001 ° 100} 4
2 level 2
300 1. s
2001 level 4] S0
1001 - lavel 3
P et level 3
‘‘‘‘‘ SR 1 1 1] 1 1
O0 1000 2000 3000 4000 00 500 1000 1500 2000
Number of Particles Number of Particles

(a} (b)

Fic. 9. CPU time for a hierarchical element method based on ring approzimations. The particles
are distributed uniformly in o unit square. Each of the solid curves represents the estimated CPU
time used by the method for a given level of spatical refinement. The circles represent the actual
time taken when the minimal estimate is chosen. (b) is a magnified version of (a).

out specific computational tasks. Timings are then estimated for the work required for

" different levels of refinement, and the level selected is the one with the least amount

of estimated time. It is not necessary to perform a different timing computation for
every level of refinement - the recursive nature of the method allows one to compute
the amount of work for each level up to some ultimate level in one computation.

Before presenting the details of the implementation of this selection procedure,
we present some results, In Table 2 we present the CPU time estimate (in seconds)
from our selection code and the actual CPU time taken for a computation of the
potential induced by 2000 points distributed in a unit square. As can be seen, one
can get rather good estimates of the time it takes for any given level. The cost of
performing this estimation is very small. For 2000 points it takes .6 CPU seconds to
estimate the running time for 6 levels of refinement. This time is about 1.25% of the
time it takes to actually perform the calculation. Figures 9 and 10 also illustrate the
accuracy of the timing estimates. The circles in these figures correspond to the actual
CPU time taken to perform the computation when the level with the least amount
of estimated time is selected. As desired, these circles coincide with a lower envelope
for all of the timing curves in the figure.

In the implementation of the method for approximating the computational time
we use a nested set of integer arrays set up like F,, and G,, of section 3. (A nested
set of arrays whose individual elements at any level are associated with individual
squares in the decomposition of physical space at that same level of refinement.) We

21

1000 1 1 L] 50 T | 1 L]
900 . 45k -
o 800} ¢ 40 level 5 .
P P Direct
o 700} T oasf
s 600} s 30F
e e
° 500 ° a5k
o o]
n 400F n 20F
d d
38 300 e s 15 =
200F 10 level 4™
100F) 5h .
- i T level B
- 1 1 1 1 1 1
OO 1000 2000 3000 4000 0(} 200 400 600 800

Number of Particles Number of Particles

{a) (b)

Fia. 10. CPU time for a hierarchical element method based on ring epprozimations. The particles
are distributed uniformly in a reclangle with an aspect ratio of 10 to 1. Fach of the solid curves
represents the estimated CPU time used by the method for a given level of spatical refinement. The
circles represent the actual lime taken when the minimal estimate is chosen. (b) is a magnified
version of (a).

Estimated and Actual CPU time for a hierarchical element method based on ring approvimations.

Level | Estimated CPU | Actual CPU
Time (Secs.) | Time (Secs.)
Direct 207.3 206.8
2 85.5 86.0
3 48.1 48.4
4 126.4 123.5
5 443.2 430.9
TaBLE 2

The timings are for 2000 particles disiributed uniformly in a unit square.

22

1000

have one nested set of arrays S, associated with the computational particles and
one nested set of arrays T, associated with the evaluation points. At each level
of these nested arrays we store in the (z,7)th element the number of particles {or
evaluation points) contained within the (4, 7)¢th box in computational space at that
level. To construct these population values a finest level of refinement is chosen and
the number of particles in each box is stored in the corresponding array element of 3,
associated with that level. Next, the other levels of the array S, are swept through
and the number of particles in each box is determined by summing the number of

" particles in each of the boxes at the finer level which are contained within the given
box. The same procedure is carried out for the evaluation points-and the nested array -
T,.

In order to use the population density information in the arrays 5, and T,, we
need models of the computational time which is necessary to carry out particular
operations of the method. Assume there are n computational particles and m evalu-
ation points. In two dimensions, if we are using an approximations of the type (12)
with K points, then the models used are

(0) direct interaction : g XmxXm +b
(1) formation of outer approximations : agxnxK +8
(2) combining; formation of outer approz. from outer approz. etc. : cax K x K +b
(3) evaluation of finest level inner approz. : g xmx K 4+ by
These models depend upon values of the constants b, cg, by, ..., b3, cs. We call

these formulas models, because they are not exact - peculiarities in specific compu-
tational hardware or compilers may mean that the constants are not truly constants.
However, on the machines the author has worked with, these formulas capture rather
well the actual amount of computational time for a wide range of the parameters
n, m and K. In order to estimate the values for these constants, a small program
was written which times the specific operations. Using the results of these timing
estimates for several values of n, m etc., the constants in the models were determined
by a least squares procedure.
In three dimensions the models are slightly different because the finite sum in
- the integral kernel in Poisson’s formula is not represented by a single closed formula.
Assuming n computational particles, m evaluation points, K integration points and
M terms in the Poisson kernel, we use the following computational models,

23

(0) direct interaction g xXnXxXm + by

(1) formation of outer approzimations c axnx K 46
(2) combining - formation of outer approx. from outer approz. elc. : ¢z X KxKxM + b
(3) evaluation of finest level inner approz. ceaxmxKxM + b3

Here, as before, values for these constants are obtained by using a least squares - ..
fit to the output of a program which times the particular operations.

With the computational model constants determined, complete timing estimates
are obtained in two sweeps. In the first sweep the amount of computational time
to construct the hierarchy of outer ring approximations is estimated. Let n; denote
a finest level of discretization chosen for the timing. (This level should always be
greater than the finest level chosen for the actual computation.) Starting at this
finest level the time it takes to construct the outer ring approximation is estimated
by using the model (1) and information in the array S, at the finest level. If there
is a non-zero value in any element of this array, then a outer ring approximation will
be constructed for the particles associated with the corresponding box. The work to
construct this outer approximation is estimated using (1) with the value of n being
the value in that particular array element of S, (i.e. the particle count for the box).
Each of these estimates is added together to get a complete timing estimate for the
construction of the outer approximations at the finest level. One then proceeds to the
next coarser level, At this level two computational time estimates are computed. The
first estimate is that of the time necessary to construct all of the outer approximations
assurning that this particular level is the starting level - the same procedure as for the
finest level. The second estimate is that of the time necessary for combining outer
ring approximations from the finer level into the outer ring approximations at the
current level. In this second estimate, the current level of S, is swept throngh and
if any element is non-zero, then an outer ring approximation must be constructed
for the corresponding box. The time compute this construction is obtained by using
the model (2) and determining the number of finer level outer ring approximations
which must be used in the construction. (This information can be obtained from
the presence of a non-zero value in the next finer level elements of S,.) One then
proceeds to successively coarser levels, forming these same two estimates, until level
one is reached. At this point one has information about the time necessary to form
outer ring approximations starting from any level as well as the time to create outer
ring approximations from outer ring approximations at previous levels. By summing
appropriate combinations of these timings, one can compute the time necessary to
construct the complete hierarchy of outer ring approximations assuming one starts at
any level. As a specific example, assume that 4,000 points are uniformly distributed
in a unit square. Then if the finest level chosen is ny = 5 one obtains timing estimates
such as those given in the second column of Table 3. Each entry in this column is the

24

Level | Quter Ring Const. Inner Ring Const. Total
Time (Secs.) and Eval. Time (Secs.) | Time (Secs.)
Direct 0.0 §29.0 829.0
2 1.6 331.5 333.1
3 2.6 122.1 124.7
4 6.6 142.2 148.8
5 22.5 509.4 531.9
TABLE 3

Estimated CPU time for a hicrarchical element method based on ring approzimations. The timings
are for £000 particles distributed uniformly in a unit square.

time it takes to compute the complete hierarchy of outer ring approximations starting
from the given level.

In the second sweep estimates of the required time are made for the construction
of the hierarchy of inner ring approximations as well as the time for direct local
interaction. Starting at level one, the amount of work is estimated which is required
for a direct calculation. This is obtained using model (0) and computing n and m by
summing the values in the elements of the array S; and T, associated with level 1. One
then proceeds to higher (finer) levels. At each finer level two estimates are computed.
The first is an estimate of the time necessary to form an inner ring approximation from
nearby outer ring approximations at the same level and the inner ring approximation
at the previous coarser level. This time can be estimated by sweeping through the
array T, and determining whether or not an inner expansion will be constructed for
any of the boxes in the computational domain. A construction for any box will be
necessary if there is a non-zero value in the corresponding element in this array. One
then employs the model (2) and determines the number of outer ring approximations
and coarse inner ring approximations used in this construction from values in S, at
current level and values in T, at the previous coarser level. Secondly, an estimate of
the time which is necessary if one stops at the current level (i.e. the time to evaluate
the mner expansions at this level as well as the local direct computation time) is
formed. This time can is computed using the models (0) and (3) and population
information for the evaluation points contained in the array T,. Both of these timing
estimates are performed for successively finer and finer levels. The computation is
stopped at the finest level n;. After this computation, we have, for every level, the
time it takes to construct the inner ring approximations and the time it takes to use
that level for the evaluation of the potential from the inner ring approximations and
local direct calculations. By summing the appropriate values of these timings, it is
possible to compute the time it takes to construct and evaluate the hierarchical set of
inner approximations for each level from the first to the finest. In the example above

with 4,000 points, the timings for this second step are presented in the third column
of Table 3.

25

The complete estimate of the time it takes for the whole method consists of adding
the amount of work to construct the outer ring approximations and the amount of
work to construct and evaluate the inner ring approximations. The level one chooses
for the actual computation is the level for which this total is the least. For the
example, an estimate of the total time is obtained by summing the elements (across
the tow) in the second and third column of Table 3. These times are presented in
fourth column of that table. One should choose level 3 for this computation.

5. Discussion and Conclusions. The model problem discussed in this paper
- has been the computation of the potential induced by N charged particles. In many
calculations one is interested in calculating the derivatives of this potential and not the
potential itself. There are two ways to use a hierarchical element method to determine
the derivatives of the potential. One way is to first create the complete hierarchy
of inner ring and outer ring approximations and then, at the last step, compute the
derivatives at an evaluation point by summing the derivatives of the potential induced
by nearby particles (particles which are not contained in well separated boxes) and
the derivative of the potential induced by the inner ring expansion associated with the
finest level box the evaluation point resides in. The local interaction is computed by
using the analytic derivative of (3) or (4). The derivative of the inner ring expansion
is computed using the derivative (either numerical or analytical) of the approximation
(13).

The other way to evaluate derivatives consists of computing each derivative by a
separate hierarchical element computation. Each derivative of the potential induced
by N charged particles is identical to a potential induced by N dipoles. Since the hi-
erarchical element method requires only that the interaction be governed by solutions
to Laplace’s equation, we can use the method to compute the potential defined by a
distribution of N dipoles. Each component of the derivative is therefore obtained by
a separate computation and the formulas used for the initial ring construction and
local direct evaluation are the analytic expressions for the derivatives of the potential.

In two dirmensions, it seems best to use the first technique - compute the potential
and then differentiate the result. While there is a loss of one order of accuracy in this
procedure, this can be compensated for by increasing the accuracy with which the
potential is calculated. (This is accomplished by increasing the number of integration
points in the ring approximations, or by using more terms in a multipole approxima-
tion.) The extra cost to preserve accuracy is very small compared to having perform
completely separate computations for each derivative. The first approach is also likely
to be better in three dimensions if one just wants the derivatives of a scalar potential.
However, if one is interested in computing the velocity induced by a distribution of
vorticity in three dimensions, then the second approach is more efficient. In this case,
the velocity field is determined by the curl of a vector potential. To implement the
first method, one must determine the three separate components of the vector po-
tential by three different computations and then evaluate the velocity by taking curl
of the resulting function. In the second approach, each component of the velocity is
determined directly via separate computations and there is no need to differentiate

26

the result. Thus, one saves on both work and accuracy by using the second approach.

One is of course interested in a comparison between the multipole method and
the method based on the the use of Poisson’s formula. Since the method which uses
Poisson’s formula is in some sense the discrete transform of the multipole method, one
cannot expect there to be any great computational advantages in using one method
over the other, i.e. they basically give the same results. The reason for considering
using a method based on Poisson’s formula is that it is perhaps more convenient to
program and use. Since the operations for combining and constructing the hierarchical
elements involve only function evaluation, they are easy to formulate and to program.-
Furthermore, these operations are essentially the same in two and three dimensions
and this makes the implementation of the method in three dimensions very easy.
A hierarchical element method based on Poisson’s formula can also easily treat the
problem of determining the potential induced by collections of sources which are more
general than point charges. For example, one might be interested in computing the
potential induced by collections of segments with some given charge distribution on
them. The difficulty with using the multipole method for this computation occurs in
the first step. In this step one needs to form a multipole approximations induced by
collections of segments. While for point charges, this initial multipole approximation
can be analytically determined from the locations of the charges and their strengths,
this may not be possible, (or if possible, then rather complicated), for segments.
To get an initial ring approximation for such elements one need only to evaluate
the potential induced by these distributions at the integration points of the ring
approximation.

For either the method presented here, or the original multipole method, one can
and should take advantage of the inherent multigrid structure. This inherent structure
allows one to take advantage of the variety of techniques which have been formulated
for programming multigrid. We have used the techniques for programming on single
processor machines, but there is no doubt some benefit to using multigrid techniques
for multiprocessor computers. Also, as seen in the third section the timing of the
hierarchical element method is very important. From the results of that section it is
casy to see why some early experimenters with the method (ourselves included) were
not particularly pleased with the hierarchical element method performance. Fortu-
nately, the recursive nature of the method allows for efficient and accurate timing
estimates which can be used to select the appropriate level of refinement. The three
contributions of the paper, the use of Poisson’s formula, the use of multigrid pro-
gramming strategy, and the use of timing estimates to obtain good level selection,
certainly do not exhaust the set of tasks which could be done to improve on the hi-
erarchical element method. Other improvements could come by making the method
more adaptive, or improving the speed at which the component operations can be
carried out. Such procedures will hopefully lead to even more efficient algorithms.

27

REFERENCES

[1] C.R. Anderson, 'HELM2 : A Hierarchical Element Method in Two Dimensions’, UCLA Report
CAM 90-15, Dept. of Mathematics, UCLA, Los Angeles, CA., 1690.
[2] C.R. Anderson, '"HELM3 : A Hierarchical Element Method in Threee Dimensions’, UCLA
Report CAM 90-16, Dept. of Mathematics, UCLA, Los Angeles, CA., 1990.
[3] R. Courant and D. Hilbert, Melhods of Mathematical Physics, Vol. I, Interscience Publishers,
New York, 1953,
{4] L. Greengard and V. Rokhlin, A Fast Algorithm for Particle Simulations, J. Comp. Phys.,
73{1987), pg. 325.
[6} L. Greengard and V. Rokhlin, Fasi Methods in Three Dimensions in Vortex Methods, C. An-
derson and C. Greengard, (Eds.), Lecture Notes in Mathematics, 1360, Springer-Verlag,
1988.
[6] J. Katzenelson, Computational Structure of the N-Body Problem, SIAM. J. of Sci. Statist.
Comput., 4(1989), pp. 787-815.
[7] A.D. McLaren, Optimal Numerical Integration on a Sphere, Math. Comput., 17(1963), pp.
361-383. .
[8] Z.P. Nowak, Panel Clustering Technique for Lifting Potential Flows in The Three Space Dimen-
stons, in Panel Methods in Mechanies, J. Ballman, R. Eppler, W. Hackbusch, (Eds.), Notes
in Numerical Fluid Mechanics, 1360, Vieweg-Verlag, Braunschewig/Wiesbaden, 1987.
[9] V. Rokhlin, Rapid Solutions of Integral Equations of Scattering Theory in Two Dimensions, J.
Comp. Phys. 86(1990), pp. 414-439.
[10] Stroud, Approzimate Calculation of Multiple Integrals, Prentice-Hall, Inc. New Jersey, 1971.
[1}] K. Stuben and U. Trottenberg, Multigrid Methods: Fundamental Algorithms, Model Problem
Analysis and Applications, in Multigrid Methods, W. Hackbusch and U. Trottenberg, (Eds.),
Lecture Notes in Mathematics, 960, Springer-Verlag, 1982.
(12] L. Van Dommelen and E. Rundensteiner, ¢ Fast Adaptive Summation of Point Forces in Two-
Dimensional Poisson Equations, J. Comp. Phys., 83(1989), pp. 126-147.

28

