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Abstract

The first order linear equation % + ac(t,z) - Vu, = 0 is discussed when a. is

an oscillatory function, in particular when a. = a(%), where a is 1-periodic in all
space variables. The concept of generalized flow is used to describe the behavior of

u® when & approaches 0.
1. Introduction.
We are concerned with first order linear equations of the type:

(1.1) 8;; +as(t,2) - Vu. =0, z€ kK, t>0; u(0,z)=uop(z),

where K is R? or R?%/Z%, u; is a given compactly supported continuous function
on K and a. is a smooth globally Lipschitz continuous divergence free vector field

on K.

It is well known that (1.1) is easily solved once the flow X, associated with a.

and defined by
(1.2) X.(0,2) =z, X.(t,2) = a.(t,X:(t,2)), te R, z €K,
is known. (Here - denotes the time partial derivative.) Indeed we get from (1.1-2):

(1.3) ue(t, X (t,z)) = uo(z), Vi€ R, Vz € K.

We are interested in knowing the behavior of u. when (a.) is a sequence of

oscillating functions, with more and more oscillations when ¢ approaches 0. To
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describe the limit of u.(¢,), for each fixed ¢ > 0, it is convenient to introduce (in

the spirit of L.C. Young’s generalized functions) nonlinear integrals of the form:

where @ is an arbitrary compactly supported continuous function defined on K x R.
Because a. is divergence free, X, is measure preserving (det D, X (¢,z) = 1) and

(1.4) can be rewritten as:

(1.5) [K P(Xo(t,2), et Xelt,)))de = /Kso<xe<t,m>, wo(2))de,

by using (1.3} and the change of variable ¢ — X.(f,z) in (1.4). Thus, we are now

mainly interested in knowing the behavior of nonlinear integrals of the form

(1.6) / P(Xe(t,2),z)de, fort >0,
K
where 1 is an arbitrary compactly supported continuous function defined on K x K,

An elementary example.

Let us assume K = R? and :

(1.7) Ge(t, 71, B2) = (O‘(;?z)>

where « i3 a given smooth 1-periodic function. Then, one immediately gets:

Xe(t,$1,$2) _ (3;1 +ta(?2)) ,

Iz

and, therefore,

a9 g [ wo)de= [ [ e+ ta) e 2)dyds,

which shows that a new integration variable y has to be introduced to describe
the limit when ¢ goes to 0. In the general case (1.1), we will say that the flow
(t,z) € R x K — X.(t,2) € K converges to a “generalized flow”:

(t,z,y) e Rx K x Q — X(t,z,y) € K,
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if we find a probability space ({2, dy) and a mapping X such that:

(1.9 iy [ b)) = [ ] (Xt 20),2)dyde

for all continuous compactly supported function ¢ on K x K.

In the elementary case (1.7), we get:
(1.10) 2=10,1] and X(¢,z,y) = = + ta(y)

where a(y) = (a(y), 0)T.

The goal of this short paper is to give some examples when the generalized
flows can be more or less explicitly found. Let us quote, among the most recent
papers devoted to these topics, the works of Amirat, Hamdache and Ziani [AHZ]
and the paper of Gérard [Gé] where the concept of microlocal defect measure, which

is the same as Tartar’s H measure [Ta], is used.
Acknowledgement.

The author is grateful to Bjorn Engquist for arising the questions discussed in

this paper.
2. The case of purely oscillatory velocity fields.

In this section, we investigate the case:
(2.1) K =R a.tz)=a(2),
£

where a is a smooth divergence free velocity given, 1-periodic in all space variables,

which also means that a can be defined as a smooth vector field given on the torus

T = R4/Z4.
In that case, we can prove

Proposition 1. There is a bounded measurable mapping @ : T? —» R? such that

the flow X. tends to the “generalized” flow

(2.2) (t,z,y) € R x R x T? = X(t,z,y) = z + ta(y) € R%.
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Moreover [r, aly)dy = [p. aly)dy.

Proof. The proof is a simple application of Birkhofl’s pointwise ergodic theorem

that asserts:

Let be a smooth divergence free vector field on the torus K = T¢ and (t,y) —
£(t,y) be the associated flow on K. Then, for each f € L'(K), there is f € LY K)
s.t.

(2.38) /K Fw)dy = A F(y)dy

T
(2.3b) forae y€ K Tlim %/ FE(t, y))dt = F(y).
—_r 0 0
Here ¢ is the flow associated with a, on the torus. By using an elementary scaling

X., which is the flow associated with a., on the whole space RY, can be easily

recovered from £. Indeed, let us fix € R%. 2 can be written as
(2.4) z = ek + ey, where k € Z%, y € T%.
It is not true (as shown on figure 1) that,
Xe(t,z) =k + sf(é,y)(because X, is defined on R? and ¢ on T%)
However, there is a simple correspondance between the velocities:
(25) Ko(t,2) = E(2,0)

Thus, by integrating (2.5):

g tfe |
(2.6) Xhe)=a+ [ s =ste [ o)
0 0

where z = ¢k + ey.

A‘-"E& 4\‘32.

g ng*glqr\\
TN

&

Figure 1. Correspondance between X, and £

4



Let us now consider I = [, ¥(X.(t,%),z)dz for a compactly supported con-
tinuous function 1 defined on R¢ x R?. We have (by splitting R? in cells of length

€):

r

I = Z o (X (t, ek +ey), ek + ey)dy
keze U017
=), ¢ P(ek + ey + 6]2 &(s,y)ds, ek + ey)dy,
kcZd {o,1]¢ 0

(by (2.6))

that can be (artificially!) rewritten as

I. = Z'&:d/
k [

Since % is uniformly continuous, changing ey into ez in I, does not modify much

I.:

Y(ek + ey + Efe (s, y)ds, ek + ey)dydz.
[\

0,1]4

P(ek + ez + 5/5 é(s,y)ds, ek + ez)dydz
0

IE:ZEd/
E [

+re

0,1]¢

where r, — 0 when & goes to 0.

Then, we can go backward to recover an integral over the whole space R%:

I, = f Wz + ef? f(s,y)d.s,;c)dmdy + re.
R J[0,1]¢ 0

Since £(s,y) = a(£(s,y)), this can be rewritten as:

L= f (s +e / " a(é(s,y))ds, 2)dyda + ..
R J[0,1]4 0

According to Birkhoff’s theorem, there %s a bounded measurable function a associ-
1
ated with a, such that @(y) = Tlim / Ta(ﬂs,y))ds“, for a.e. y in T¢. Thus, it
—_— 00 0

follows from Lebesgue’s theorem that:

I. — / ¥z + taly), z)dyde.
R4 J[0,1]4
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Moreover, Birkhoff’s theorem asserts that [, @(y)dy = [r. e(z)dz, which achieves
the proof of Proposition 1.

Remark 1.

This result can be considerably improved in the 2-dimensional case, as shown
by Liu [Li] (personnal communication). If Ay = [, a1(y)dy and A, = [, aa(y)dy
are not rationally linearly dependent then the limit flow is a classical flow defined
by X(t,z) = o -+ tA. Otherwise, there is a scalar function § : [0,1} — R such that
[ B(8)d6 = 1 and the limit flow is a generalized flow defined by:

X(t,z,0) =z +tB(0)A.

Remark 2.

By definition, the flow £ associated with a on the torus is ergodic if and only

if, for each f € L*(K), f is a constant and f(z) = est = [, f(y)dy.

It follows that, if the flow is ergodic, then the flow X, converges to a classical

flow, namely:

(2.7) X(t,z) =z +tA, where 4 = f aly)dy.
K

3. Examples of complicated behavior.

Let us consider the 2-dimensional case. Then ¢, must be a curl., Let us assume

that

(3.1) ac(t,z} = curl P.(z), where

z
(3.2) e(z) = o(z) + eth1 (=, ;)
and vy is, say, a uniformly strictly convex function, namely iy(2) = %(m% + ).

The dynamics of the ODE & = a. is governed by the level contours of the

“stream function” .:
(3.3) Ye(Xe(t,2)) = e(z), VEER, z € R?
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If 1 is assumed to be uniformly bounded, the level contours of 1. will stay very
close to the level contours of iy (with a distance of O(¢)). Thus, if it is assumed
that X, converges to some generalized flow (t,z,y) € RxRZxQ — X(1,z,y) € R?,

we will get when € approaches 0:

(3.4) Po(X (2, 2,y)) = Po(x).

But, beside this information, it is quite clear that essentially any kind of behavior
can be expected, in the limit, for the trajectories that live near a given level contour
of g, as shown on figure 2: some of then can stay trapped in a small level island,

when £ goes to 0, that converges to a loop along the level contour of y.

Figure 2. Behavior of trajectories
4. Generalized flows and higher order ODEs.

If we get back to the results of section 2, we see that the generalized flow,

obtained in the limit,
(4.1) X(t,z,y) = z + ta(y),
trivially satisfies the 2nd order ODE:

(4.2) X =0.



Thus, one may wonder whether this behaviour has some more generality. An exam-
ple, that was considered in an earlier work [Bre] on the Euler equations of perfect

incompressible fluids, shows a similar behavior. Here, we have:
(4.3) d= 2, ac = curl ¥(z) where ¢.(z) =esinz; sin :%2
a. solves the (stationary) Euler equations:

(4.4) (ae - V)a. = —Vp. V- a. =0,

where the pressure field is given by:

62

1
(4.5) pe(z) = 1 cos 2z + 1

cos 222,

€
By equation (4.4), the flow X, associated with a. satisfies the 2nd order ODE:
(4.6) Xe(t,2) = —=Vp(X(t,2)).
Let us introduce, for each fixed £, the auxiliary Hamiltonian system in R*:
(4.7) & =v, D = —Vpe(z), z,v € R?
and the corresponding flowmap:
(4.8) (t,z,v) € R x R? x R? = (£.(t,2,v), ne(t,z,v)) € R* x R?
such that £.(0,z,v) = z, 1.(0,z,v) = v.

Then, it follows from (4.6) that:

Xc(t,z) = &(t, @, X(0,2)),

that is

(4'9) Xs(ta 3") = €€(t= T, C"‘E(m))'

In this formula, £, and a. behave very differently a. is an highly oscillatory function:

(4.10) ae(z) = (—sinml cos _)

g£cos xy sin £
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and its limit (in the sense of Young’s measures) is the generalized function:

{(4.11) a(z,y) = (—3111:310(:08 279’) , z e R yel0,1].

More precisely, for any compactly supported continuous function on R?:

[ s aeyi [ f 4, (e, ) dyd.

In a very different way, £, behaves nicely when ¢ approaches 0. Indeed, (pc) is

bounded in C2, uniformly in e, and Vp. converges strongly, in C°, to Vp where:
i
(4.12) p(z) = i cos 2z1.

According to classical results on ODEs, this shows that {éc,7.) converges, in C°, to

the flow map (£,n) associated with the limit Hamiltonian system
(4.13) T =uv, v =—Vpz).

Thus, for any compactly supported continuous function ¢ defined on R? x R?, we

get, for each fixed ¢t > 0,
[ vt ade = [ dette,ao), )
R? R
= [ etz afo,), 2)dds,
R2 JO

which means that X, converges to the generalized flow

(4.14) (t,z,y) € R x R* x [0,1] — £(t, 2, a(z,y)) € R%

This flow X(%,z,y) = £(t,z,a(z,y)) solves, by definition, the 2nd order ODE:
(4.15) X = -Vp(X),

as expected.

We found a similar example in the 3-dimensional case, with the same behavior.
We have:

cos L&
<
(4.16) as(z) = e F(zited) sin £2 ,
g(—zo cos £ + xq sin Z2)
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that solves the 3-dimensional Euler equations:

(4.17) (ae - V)ae = —Vp., V-a. =0,
together with the pressure field

(4.18) pe(e) = pl(z) = ~ 5 exp(~(a} +23)),

which actually is e-independent.

Thus, the flow associated with X, already satisfies X, = —Vp(X.) and the

limit generalized flow is of the form:

(4.19) X(t,z,0) = &(t,2,a(2,9)), te R, z € R?, 9€0,1]
where
N A 2n8
(4.20) a(z,8) = e~ 251752 | gin2nf
O

and (£,n) is the flow associated with the Hamiltonian system:

(4.21) z=uv, v =~Vp(z).

5. More on the concept of generalized flows.

There is a very general and vague answer to the problem we are interested in.
Let us assume ﬁha,’c K = R%/7% and introduce Q as the compact product space
K%, that is the space of all paths ¢ -+ z(t) € K. Then, to each classical flow X,
on K, we can associate a probability measure g, on €2, defined as follows. Take any
finite sequence t; < -+ < t, in R and any continuous function ¢ on K™. Then

define the path functional ®(z) = ¢(2(t1),...,2(tn)), for z € . We set:

(ge, @) = /Q &(2)ge(dz) = fK H(Xo(t1,2), .. ., Xeltn, ))dz.

Following [Bre] or [Bre2], one can show that (5.1) defines a unique probability

measure g, on {} (namely, a unique g. € C(£2)', nonnegative such that {g.,1) = 1).

10



Notice that g. is not necessarily a regular Borel measure, since {2 is not separable
Y g )

nor metric.)

Now we can use the fact that the unit ball is weakly compact in C'(2)' to deduce
that there is at least a cluster point g for the sequence (g.). If (a.) is uniformly
bounded in L=(R x K), then g has the following properties: ¢ - a.e. z in  belongs
to HL (R; K) Cc C%(R, K)

1
[ [ ne@nrasa) < +oo, o < 1.
Q Jig

Because a. is supposed to be divergence free, X, is measure preserving on K and
it easily follows that g is a generalized incompressible flow (see [Bre2]) in the sense

that:

(5.4 | #tettonsataz) = [ ote)as
holds for any time ¢y and any ¢ € C(K).

Moreover, we have, for any compactly supported continuous function ¢ defined

on K x K, a subsequence (&) such that:

/ H(Xe, (1, 2), ) dz — f S(2(2), 2(0))g(d).
K Q

For more information on the concept of generalized flow, we refer to [Bre2).
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