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Abstract

In the past several years, domain decomposition has been a very pop-
ular topic, motivated by the ease of parallelisation. In a large class of
domain decomposition methods, the continuity of the solution over the
internal subdomain boundaries is obtained through an iterative process.
When solving the Schur complement equations for the unknowns on the
internal boundaries, an elliptic problem has to be solved on each sub-
domain in each iteration step. Therefore, doubts have been raised as
to the efficiency of these methods. An alternative solution is using pre-
conditioners for the original problem that can be inverted in a “domain
decomposed” way.

In this paper, we describe and study a class of preconditioners that
are combinations of preconditioners for the subdomain and the interface
problems. We derive some properties of the eigenvalue spectram of the
preconditioned system, relating it to the eigenspectra of the subdomsain
problems.

We show some numerical examples to illustrate these properties.

Keywords : parallel algorithms, domain decomposition, partial differen-
tial equations, preconditioned conjugate gradients

1 Introduction

In the majority of domain decomposition methods, the matching of the solution
on the subdomains to an overall solution is done by an iterative process. A large
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class is based on the preconditioned conjugate gradient method for solving the
reduced equations on the interfaces between the subdomains. The efficiency of
these methods is determined by the preconditioner used. This approach involves
a solve on each subdomain in each iteration step and the cost could be expensive
if the number of iterations is not kept at a minimum. Therefore, doubts have
been raised on the efficiency of these methods as compared to a parallelisation of
traditional preconditioned conjugate gradient iterations on the whole domain.

An approach that avoids the exact solves on the subdomains, consists of
constructing preconditioners for the original problem but that can be inverted
in a “domain decomposed” way. Specifically, given a method for construcéing a
preconditioner on the whole domain (such as the ILU- and MILU-type meth-
ods), a domain decomposed preconditioner can be constructed by applying the
same method in the subdomains and using an appropriately chosen precondi-
tioner for the interface unknowns, Experimentally, it has been shown that this
class of preconditioners for the original domain can yield a faster convergence
rate as compared to traditional preconditioners, I8, 19, 22].

In this paper, we proof some properties of the eigenvalue distribution of the
preconditioned system. More specifically, we show that the eigenspectrum is &
perturbation of the union of the spectra of the preconditioned systems on the
subdomains and on the interfaces. The construction of the preconditioner and
the proofs of the eigenspectrum are purely algebraically.

In section 2, we describe how to construct this kind of preconditioners and
we proof some basic lemmas. In section 3, general properties that are valid for
any decomposition are proven. These are elaborated more in section 4 for the
special case of separable equations on a rectangle split into two strips. Based
on this, we rederive and refine some results that were already mentioned in the
literature, [4]. We Hllustrate these results with numerical examples in section 5.

2 Construction of domain decomposed precon-
ditioners

We consider the solution of the linear, second order elliptic partial differential
equation :
Ly = f (= y) e (1)
o= U (=, y) € 082
where  is a two-dimensional domain. After defining a grid on the domain

1, the equation (1) is discretised using a finite element or a finite difference
method. This gives rise to a linear system :

Au=f, (2)



In (2), v and f refer to the discrete solution and the discrete right hand side.
From now on, we always refer to this algebraical system. When L is a positive
definite and self-adjoint operator, 4 is a symmetric, positive definite matrix.
Given a symmetric and positive definite preconditioner M for 4, (2) can be
solved with the preconditioned conjugate gradient method, {10]. The conver-
gence properties of the preconditioned conjugate gradient method are deter-
mined by the eigenvalue spectrum of the preconditioned matrix M1 4. Let A,
and Ap be the smallest and the largest eigenvalue of M ~1 A, and let & = Apr/Am
be the spectral condition number. The following properties are well known, [10].

k
I~ ulla <2 (V7)1 =il )

o If M1 A has n distinct eigenvalues, the preconditioned conjugate gradient
iteration converges in at most n iterations in the absence of rounding
€ITOTS.

Furthermoze, (3) only gives an upper bound for the A-norm of the error. The
actual rate of convergence is faster as the components of the error are selec-
tively eliminated during the iteration process. This is positively influenced by
a clustering of the eigenvalues, [1].

Besides having good spectral properties yielding a fast convergence, pre-
conditioners should be cheap to invert. In a parallel environment, “cheap” also
includes “in parallel”. The preconditioners studied here are based on the domain
decomposition principle, They therefore have a natural parallelism. Further-
more, domain decomposition is characterised by a large locality giving better
local approximations.

They are comstructed as follows. The domain is split into a number of
nonoverlapping subdomains with the internal boundaries of the subdomains
coinciding with grid lines. This divides the nodes of the finite element mesh
or the grid points of the finite difference grid in points that are internal to the
snbdomains and in separator nodes. Quantities related to these sets of points
are denoted by a subscript d, respectively s. In the latter set, we distinguish
between nodes on the internal boundaries (called edges or interfaces, denoted
by the subscript €) and nodes on the intersection of edges. We call the last
class of nodes corners, denoted by subscripts ¢. We consider the case where the
unknowns for the nodes in different subdomains are not directly coupled. In a
finite clement setting, this means that the supports of the finite element basis
functions for a particular node are restricted to the elements of which this node is
a vertex. In finite difference methods, this implies that the discretisation stencil
extends at most one grid line at each side of the point under consideration. We
order first the subdomain unknowns, secondly the edge unknowns and finally



the corners. With this ordering, the discretisation matrix A has the form

(Add Ay, \
\ a5 4 )

The submatrix Aq4q is a block diagonal matrix with each block corresponding
to the discretisation of an elliptic problem on the corresponding subdomain.
As only the nodes adjacent to the internal boundaries are directly coupled to
the separator nodes, the off-diagonal blocks are very sparse. The structure of
the matrix 4,, depends on the division in subdomains. The matrix A can be
factorised as

I 0 A 0 I A7EA
A= . 4 aa (4)
AT A I 0 S 0 I

S=A4,, — AT Al A,,.

with

5 is the so-called Schur complement of 444 in A. Given a preconditioning
method for the subdomain problems and for the Schur complement system, we
construct a preconditioner M for A by replacing the diagonal blocks in {4) by
the corresponding preconditioners :

V- I 0 B 0 I B4, (5)
O\ ALBY T 0 M, 0 I '

B is a block diagonal matrix where the blocks are preconditioners on the sub-
domains. They can come from any class of symmetric positive definite precon-
ditioners that have been derived for a single domain, such as incomplete factori-
sations, constant coefficient approximations, or separable approximations. Pos-
sibly, they are defined in an algorithmical way, as e.g., a number of multigrid
cycles. M, is a preconditioner for the interface system as expressed by S. Several
possibilities have been proposed in the two subdomain case, [11, 16,3, 7, 9, 2, 22].
By neglecting the coupling between the interfaces, these preconditioners can be
combined into a block diagonal preconditioner M, for a decomposition in strips,
i.e., a decomposition with no corners [12, 13, 22]. In box wise decompositions,
i.e., with corners, few is known about good preconditioners for the Schur com-
plement 5. As the derivation of the properties of the eigenspectrum does not
depend on the actual form of the preconditioners B and M,, we do not elaborate
here further on possible choices for M, in the box case. In section 5, we present
8 possible way of constructing M,. For a more extensive discussion, we refer to
[17].

Preconditioners of this kind were first proposed by Bramble, Pasciak and
Schatz, [6, 5]. They are constructed by replacing the bilinear form of the weak
formulation of the differential equation by a spectrally equivalent form that can




be inverted in a domain decomposed way. Algebraically, it results in a pre-
conditioner of the form (5) where also the off-diagonal blocks are replaced. As
subdomain preconditioners, constant coefficient operators or separable approxi-
mations are used. The preconditioner for the interface sysiem is a combination
of scaled trace preconditioners, [11], and the system resulting from discretising
the differential equation on the coarse grid defined by the corner points. Nu-
merical experiments with these preconditioners are reported in [5] and in the
survey paper by Keyes and Gropp, [19]. This method is also studied in [24].
Preconditioners of the form (5), with the Neumann-Dirichlet preconditioner,
[3], and with the trace preconditioner, [11}], for two subdomains are studied in
[4]. In [22, 21], Meuzant proposes preconditioners of the form (5) derived from
block preconditioners. The interface preconditioner here follows naturally from
the recursive construction of sparse approximations to the Schur complements
as they arrive in the block Cholesky decomposition of the discretisation matri-
ces. Experiments are reported for the multiple strip case. In [8], the efficiency
of a combination of incomplete factorisation preconditioners on the subdomains
with the boundary probe preconditioner on the interface is discussed for two
subdomains. Efficiency results of an implementation on a distributed memory
computer for a general decomposition of the domain are reported in [18].

We first give some basic lernmas that will be used in the sequel. Let A bea

general block (2 x 2) matrix
Ay Agg
Al An )’

|4 = {An] x |5].

and let S = Az — AT, A7 41,

Lemma 1

It follows directly that the product of the eigenvalues of A4 is equal to the product
of the eigenvalues of 4, and §.

Let (m(A),1(A),((A)) be the inertia of A, i.e., the triplet with the number
of positive, negative and gero eigenvalues of 4,

Lemma 2 The inertia of A is equal to the sum of the inertia of Ayy and S,
l.e.,

‘JT(A) = 11"(A11) —|-1T(S)

v(A) (A ) +v(9)

¢(4) ¢(A1) +<(5).
This is a direct application of Sylvester’s theorem, [23]). From this, we derive

that if B and M, are symmetric positive definite matrices, M is also symmetric
positive definite.

il




3 Eigenstructure of the preconditioned opera-
tor
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M-ip = | B 1Aaa— B ALMITAL (T B~ Aw) BV Aa, (I - M,“§)
M;7PAL (I - B~ Au) M§

where

S=4,, - AT B4,
Applying a similarity transformation VM -1 AV-1 with
Bl/z B—-I/ZAd’
V= i/2 ’
] M,

we arrive at the symmetric matrix

B“IleddBmllz (I—B_1/2A4d3_1/2) B-I/ZAJJM:UZ
MV AL BT (1 B2 40,87 7) M8 '
(6)
where
§ = §-ALB M (1- B V24BTV2) B4y,

i

2
S+ AT 457 (1- AYPBT ALY 4307 Ag, (7)
= §4 AL B-Y? (I-— B-lszddB—uz) pBlltg-1gi/z

(r— B2 442B712) B2 Ay,.

We use the following shorthands for the blocks of (6) :

A = B M*q,B1?
As = M7VEgM[
Ag = M;YVESM?

B = B Y2, MYV

We rewrite (6) in this notation for later use :

A (I A)B
( BT(I-A) A ) ®



with

D

= As—BT(I-A)B
= As+BT(I-A)A(I-A)B.
Let A4y be of order N aud let S be of order n, so A is of order N = N + n.

Note that N == O(n?). We introduce the following notations for the eigenvalues
of the various blocks :

Symbol Matrix
M, I=1..., N A
&, I=1,...,N M-14 |
o, j=1,...,N|B 1Ay, B Y AuB': A
Mo k=1,...,n g
ﬂ'ﬁf: k=1,...,n M,

b, k=1,...,n | M7LS, M7PsM7VR A

k=1,...,n s

* k=1...,n M:l_g‘-’ M.“I/ZS‘M,““, Ag

We sometimes change the superscript to denote another way of numbering the
eigenvalues. The symbols themselves always refer to the same type of block.
We assume that all the eigenvalues of a block are numbered in ascending order :

A}_S)\zg...}

where X is any of the symbols just defined.
Applying Cauchy’s interlace theorem, [23, pages 186-187], to the block ma-
trix (6) gives

Theorem 3 There are at most n cigenvalues of M1 A smaller than o', and
analogously, there are at most n eigenvalues of M~1A larger than o . Further-
more, in each interval [of | o t"| lies at least one eigenvalue & .

Note that the eigenspectrum of B~1/2 4,4, B~ 1/2 is the union of the spectra of the
preconditioned operators on the subdomains. It follows from theorem 8 that the
spectra on the subdomains have to be clustered around the same value. If these
spectra are shifted relatively to each other, the condition number of M 14 can



be very large even though the condition numbers for the subdomain problems
are small.

In the following two theorems, we give an indication for the amplitude by
whicl the extreme eigenvalues of the subdomain spectra are shifted. Applying
the trace theorem for matrices to (6) gives

Theorem 4
N n
Sd = a3
I=1 k=t

)TM lleT gyt (I B4, B 1/2)

+ % =
M”M
’a?‘

k=1
B~ Ay, M e}

2
Z(e Y M2 AL A5 (1 A;ff BAY) %
k=1
A Aa M (9)

TiMz

with e the kP unit vector of length n.
The perturbation (9) is equal to the sum of the eigenvalues of
2
MY AT aTM? (I—Af,ézB“IA;éz) A 4, MM, (10)
Let s
Pr=(I— AP B AY) A5 Aaa M2,
The eigenvalues of the matrix (10) are the squares of the singular values of

Py. Let py be the largest singular value. The sum of the eigenvalues of M 14
exceeds the sum of the eigenvalues of A and Ag by at least (p;)?. Let

1/2 o1 4172
P o= (1- 4B 4Y7)
Py = AyMAlMYR,
and let p, be the spectral radius of Py, and p; the largest singular value of Py,
An upper bound for p; is
P L paps. (11)
The singular values of P; are equal to the square roots of the eigenvalues of

PT P, or equivalently of AT, A7 A4, M. Let py be the largest eigenvalue of
A:*;A ! A4,. This alleviates the upper bound (11) :

(p1)? < (p2)*(ps)? < (p2)?palpds) ™" (12)



The upper bound (12) becomes sharp when :

» the eigenvector of P;, belonging to the spectral radius, is the same as the

{eft singular vector of A,_T;/ zAd, belonging to the largest singular value,
and

¢ the right singular vector of A;dl / 2 Ade, belonging to the largest singular
value (or equivalently the eigenvector of AT A7} A4, with the largest eigen-
value}, is the same as the eigenvector of M,, corresponding to the smallest
eigenvalue.

We conclude that the trace of M~1 4 differs from the sum of the traces of
B-124,,B-1? and M,mlfzsﬁ!I,_ljz, by ai least the amount {p;)®. This term
is bounded from above by the speciral radius of (I — A;ng‘IA;{iz), by the
largest eigenvalue of AE,AE;AQ:, and by the smallest eigenvalue of M,. The
upper bound is attained under rather special conditions, To keep the distance
small over which the extreme eigenvalues are shifted, the subdomain spectra
should be clustered around one. This is a requirement that does not hold when
we use Bj; in a preconditioned conjugate gradient iteration on the subdomains,
for which only the condition number (B’ Ai) and the relative spacing of the
eigenvalues are important.

Using (7) it is easily shown that the Schur complement of B~1/24,44B~1/2
in (6) is equal to S. From lemma 1 follows

Theorem b5

bl

N N
I = [T T
I=1 i=t k=1

When more information on the spectrum of A is available, we can further refine
these general resulis.

3.1 B spectrally equivalent to A4y

Suppose we combine spectrally equivalent preconditioners on the subdomains
with a spectrally equivalent preconditioner for S. It is a natural question to
ask if the resulting domain decomposed preconditioner is spectrally equivalent
to A. Spectral equivalence imnplies that the eigenvalues of the preconditioned
system are of the order O(1), independent of the grid size h, so :

il

o 0(1)
b = o).

The trace of M~1 4 differs from the sum of the traces of A and of Ag, by at least
(p1)?. Suppose that this perturbation is O(h—"), with @ > 0. This perturbation



results in an eigenvalue of M 14 of order O(h~P). It follows from theorem 5
that U, & = O(1). So, there must also be an eigenvalue M~' 4 of the order
O(h?). We conclude that in this situation

(M1 4) > O(h~F),

The combination of spectially equivalent preconditioners for Agy and S can
result in preconditioned operator whose spectral condition number grows with
h%,

To have a speciral equivalent preconditioner M, the perturbation term for
the trace of M ~! A4 should be independent of the grid size. A necessary condition
is that (p1)? is independent of h. From the upper bound (12) we derive the
sufficient condition

(p2)?palpaae) ™ < O(1).
All the eigenvalues of A7 A;}Ad, are O(1). For the Laplace operator and a

decomposition in two strips, this is derived in [3]. For more general splittings,
consider the Raleigh quotient

mTAfsig;Ad,:c. (13)
T
The nominator of (13) is equal to
fa
> (42); (Aaa)) ™" (Aa); T2, (14)
i=1

where (Aq4q); is the diagonal block corresponding to subdomain i, f2], is the
subvector of # with the components for points on the internal boundaries of {1;,
and ng is the number of subdomains. The terms in {14) correspond to solving
homogeneous problems with homogeneous Dirichlet conditions on the external
edges and = as Dirichlet boundary conditions on the internal boundaries, and
subsequently making the inner product of the solution in the points adjacent to
the internal boundaries, with the vector of the Dirichlet boundary conditions. As
the grid is refined, these points move closer and closer to the internal boundaries

or equivalently
= (A7) ((Aa2))) ™" (Aa); 2] = O(([e],)T [=),),

So, the Raleigh quotient (13} and thus also pg, are O(1). We conclude that a
sufficient condition for (p,)? to be of order O{1) is

(p2)* < O(pehe)-

The question on the behaviour of the combination of spectrally equivalent
preconditioners, was first raised and answered by Bérgers in {4}, for a splitting

10



in two subdomains. In section 4, we come back to this problem and we extend
the results from [4].

We next consider the situation where all the eigenvalues of A lie at the
same side of one. This situation arises when using incomplete factorisaiion
preconditioners on the subdomains. In what follows, we use the simple lemma
that the triplet with the numbers of eigenvalues of a matrix A that are larger,
smaller, and equal to a constant A is equal to the inertia of (4 — AI). Lemma 2
applied to the matrix

A_X (I-A)B )

(,Aif_lA-—AI): ( ET(IMA) AWAI

gives that the inertia of (M "4 — AI) is equal to the sum of the inertia of
{& — AI) and of A(A), with
AX) = (Ag-AD)-(1-N)BT(A- AN~ A)B
= (As =X} - ABT(I- A)A™Y (A = AD"Y(I - A)B,

where we assume that A is not an eigenvalue of A. For A equal to 1, we find
that

oM AT = #a(A—-T)+n(As—1)

v(M'A-1) = v(A-ID)+v(As—1)

(M TA-T) = ((A-D+¢(Az-1).

3.2 Eigenspectrum of A greater than 1, o/ > 1

When all the eigenvalues of A are larger than one, ¥(A — I) is equal to zero
and Y(M~1A 1) = v{Az; —I). If &' > 1, then v(Ay — I) = 0, and all the
eigenvahies of M ™14 are larger than one. If &' < 1, consider A(&'). The
smallest eigenvalue of A(§71) is equal to
aTAa
min

2Tz
The eigenvalues of the matrix {—(1 — &' )(A — & I)~1(I — A)) are equal to
(-1 #)(f a1 - o)),
with j = 1,..., N. This expression is always positive, so
' 2T Az > T (Ag — &I)e > 0.

So, »{A) = 0, and from this we conclude that all the eigenvalues of M~ 4 are
larger than &'. In summary :

Theorem 6 When the spectrum of A lies to the right of one, all the eigenvalues
of M~'A are larger than the minimum of (1, &).

11



3.3 Eigenspectrum of A smaller than 1, o/ < 1
In an analogous fashion as above, we derive:

Theorem 7 When the spectrum of A lies to the left of one, all the eigennalues
of M~ A are smaller than the mazimum of (1, ).

4 Separable equations on a rectangle

We illustrate the theoretical results of the previous section, which are valid for
any decomposition and any choice for B or M,, with a splitting of a rectangle
in two strips. We use the academic example where the subdomain precondi-
tioners By; have the same eigenvectors as the discretisation matrices on the
subdomains. In practice, this restriction will hardly ever be satisfied. However,
this choice allows more quantitative bounds to be derived for the eigenvalues of
M1 A. This helps to understand the interplay between the eigendecomposition
of the subdomain blocks and the eigendecomposition of the Schur complement
block. We also rederive and refine the conclusions from [4], and give a possible
explanation for the numerical results reported in that paper.

We consider the special case of a separable operator over a rectangle divided
in two horizontal strips. The differential equation is diseretised over an equidis-
tant grid with n internal grid lines in the = ditection and m; 4+ my + 1 internal
grid lines in the y direction. Grid line my + 1 forms the interface between the
two subdomains. The matrix A has the form

Asr Aqg
A= Az Aas
Aly A5y Ass

The indices 1 and 2 refer to the subdomain unknowns and the index 3 to the
interface unknowns. For a separable operator

L=1L,+1L,

where

L,

I

1‘-% (fw(a:)(,%) + foos ()

I

i} a
Ly '“a_y (.fﬂl('y)a_y') + fOGy(y)s

the discretisation matrices can be expressed as the tensor product of the dis-
cretisation matrices for the one-dimensional problems with the operators I,
and L,. Ordering the unknowns in the subdomains by lines and the lines from

12



botiom to top in the lower subdomain and from top to bottom in the upper
subdomain, these matrices are :

A = Ay.' S Iy + I, ® 4

Aiz = ﬁtem: ® In

Agg = ﬁIn + Am:
where §; and 3 are constaﬂts, determined by the functions fo,{y) and foo,(¥),
and efyi, I, are the m{ " unit vector of length my and the identity matrix of order

£ respectively. The exgendccomposxtmn of the subdomain blocks is expressed in
a similar tensor product form

Aii = (Vy, @ Va)(By, ® In + Im; ® B (Vg ® V)

with V},; and V, the eigenvectors of the one-dimensional problems in the y— and
z—direction. The Schur complement S can be factorised as, [3],

5§ = A33 AIBA A13 — AzaA Aza
Ve (ﬁfn + Ag

- Z(ﬂ:)z Z' Vy,-(mi‘j)f/g(j, m'i)(Aii)“‘l) 4

i=1 j=1
2
= Vu,(ﬁfmam - ZA;)KE’
i=1

= V.diag ()\) v

=1,..n
with

Ay = d1ag(dk)k .

- 2 yl In”])
i Bi Z aE

B,
E
!

1t is well known, [3, 7], that

& = 0(1)
Ay = O(ha)
X2 o= O1).
The matrix (6) expands to
B Y Ay BH? 0 BB M A MM?
0 By P AnBy "t BB AgsMM? (15)

M40 BBy MY 4B R, MIYREMY?

13



where

B = (I _ B,.;‘”AHB,.;”;’) .

Let the preconditioners By; have the same (tensor product) eigenvectors as
A;;. This gives the following decomposition :

B s B = (v, @ Vo)ding (A1) (VI e V)

with
) . "

Al = diag (af‘ ) .
k=1,.,n

Let V. be also the eigenvectors of M, :
M, = VoA VY

AM. = dla.g (Ju’i‘elf)k:l..--."' '

The matrix (15) is similar to
Enu 5 t§13
N By Agg (16)
Aly ATy Ags

where all the elements in this block decomposition have themselves diagonal

natrices as blocks. After a similarity transformation by a permutation of the

rows and columns, (16) becomnes :

. Ak
diag (A )k:l,.. n
with -
] Ay AL
Ak = . _‘D;:sz éga (17}
(Af)T (A3s) Ass
and
-'?'. = i ';i’k
Ay diag (cxl )JW1, .

Afs = & = (b)Y (B) Z Vi (ma, 5)(1 = ad *)(ud )~

i=1 i=1

.

A?S = ﬁi(ﬂ'ﬁ{)—l/ZCOl (Vyi:(j, Tﬂ{)(l — a{’k)(}‘fg’k)_”z)j :

where col (aj )J. denotes a column vector of length m;, with a7 as elements.

From the special structure of A* we can derive some more properties on the
position of the eigenvalues. Let a; be a generic notation for the elements of the

i4



blocks A}y and A%,. The matrix (17) is a symunetric rank-two perturbation of
a diagonal matrix of the general form :

o / diag (aJ)J: 1,..,m col (¢;(1 - aJ)) T \
T row (¢5(1 — e;));y Cmi1 = 3oiey J(1 a;)

The following properties of the eigenvalues of such matrices are proven in
{2b, pages 103-104], or can be derived straightforwardly.

Property 1 Ifc; =0 ora; =1, forj=1,...,m, then is a; an eigenvalue of
Cin. If apmyq =1, then it also is an eigenvalue.

From now on we consider the case where ¢; # 0 and o; # 1.

Property 2 If a; eppears ! times in the row ay,...,a, then o; is a (I — 1)
fold eigenvalue of Cpy

Let @&;, fori=1,...,m+1, denote the eigenvalues of C,,, and let the row a; be
ordered in ascending order :

ay <az <o <y < agyy <o < O,
Property 3
Gy <oy <z < v <oy < By <oy < e < A < Gy
Property 4
m41

a. Zajmam+1+2cr_, Z (1-a‘,

m+1
b. H & = Qpypt Ha_, Zc (1 —-ozt)l_Icr_,If
i=1 :#a
Property 5
a. Ifa; <1, ferj=1,...,m, then :

min(om 1, 1) < @msr < max{amyr, 1).

b. Ifay > 1, for j=1,...,m,then :

min(eme1,1) < & < max(ami1, 1).

15



These properties are special cases of the theorems derived in the previous sec-
tion.

In [4], C. Borgers studies domain decomposed preconditioners for the Pois-
son equation on an L-shaped region. He proves that a combination of spec-
trally equivalent precenditioners on the subdomains with spectrally equivalent
interface preconditioners does not necessarily give rise to a spectrally equiva-
lent preconditioner for A. He also derives conditions under which the spectral
equivalence is obtained. More specifically, the following are proven.

Theorem 8 If the preconditioners By; are a constant tines the discretisation
matrices Ay, le.,
By = -1~Aii
&
with «; independent of the grid size h = h, = hy, the following underbound
holds for the spectral condition number

w(MtA) > O(R™).
If the speciral radius of the iteration matriz is bounded by
p(I ~ B 4y) < OV, (18)
then M s specirally equivalent to A or equivalently
w(M~PA) = O(1).

For a rectangular domain, these results can be derived straightforwardly from
the properties derived earlier. We consider spectrally equivalent preconditioners
By, i.e., '

of* =0(1), Vi k.

We denote the eigenvalues of A*, as defined in (17), by &** with 7 = 1,..., m.+
my + 1. Applying property 4 to A* gives

mytmatl

jz:;&f-" _ 21201 P
~ (1)~ Z(ﬁ‘ ZW (m, F)(1 ~ of*)ad* (M%) !
+ () Z(m) Z (s, 7)(1— o *POP) 7, (1)
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and

my+ma+l 2 m;
H ak —a"HHa" ) (20)
- i=lj=1
Let a* be the smallest of the eigenvalues cr yfori=1,2and j=1,...,my,

and analogously, let «™* be the largest elgenvalue Let &b* and a"‘“‘ b be
the smallest, and the largest eigenvalue of A* respectively. From (19) and
from the interlacing property 3, we derive the following bounds for the extreme
eigenvalues of A¥ :

aljk + o.k +pk < &1 3 + C{m+1 E (21)
Gk g amrtth < o™k g gk gk, (22)
with
P - (tu’.M‘)_ Z(ﬁ:@ Z (;rn,”J) .;!.k)z()\_;!',k)_]_
Let ]
(1 — orf ll°)
——— <, Vi

P‘M

The perturbation term p* is bounded by
2 g
p< 8% Y (A Y V) (ma )R = 6*(dk + df),
=1 i=1

with df = O(1).
Let M, be spectrally equivalent to S or equivalently ¢* = O(1). From (21)
and (22) follows that
&ﬂt-l'l,k — 0(1) + O(&k)

Let {1 — ad™®) = O(1), for all j and k. As ply = O(Rh), we have
6! = O(r™!

We conclude th_at: &bl = O(h~t). According to (20), the product of the
eigenvalues of A* must be of order O(1). So, the largest eigenvalue of order
O(h~1) must be compensated by a small eigenvalue of order O(h). This implies
that x(A') = O(h™2) and thus x(M~14) > O(h~2).
If :
5 < 0(1) (23)

all eigenvalues of A¥ are of order 1, and M is spectrally equivalent to 4. A
sufficient condition for (23) is that

1- crg'k = O(\/E)

17



ai | M, An | Ay | 6(MTA) | iterations
1-/h} § (0544 181 2.95 13
1—h { § |0.771 ] 1.00 1.30 7

We can follow a similar path when 3, is spectrally equivalent to 5, or
GF = O(1). ,he following relationship holds between the eigenvalues of S and

X = X+ (892 S V2 (i, (1 - adF)(AIHL, (24)
i=1 i=1

I (1 — od®} = O(1), (24) gives that

The perturbation p* from (21) and (22) is also O(1). For k equal to 1, A} is of

order O(1), while A% only is of oxder O(h). The product (20}, must be of order
O(h) while the sum of the smallest and largest eigenvalue is of order Of{1). This
gives

&l = O(h)
T = o),

and k(A*) = O(h~1). i however (1 — o™} = O(h), Ak and z\’; are of the same
order and k(M ~14) == O(1).

We illustrate these theoretical results with some numerical examples for the
Laplace operator. {1 is the unit square divided in two vertical strips with the
interface at @ = 0.5. The preconditioners on the subdomains are By =1/ a; A,
with a; = 0.8. In figure 1 and 2, we plot on logarithmical scales, A, Apr and
K(M =1 A) versus n (he = hy = n™1). For figure 1, the interface preconditioner
M, is § and for figure 2, M, = S. These quantities have the behaviour as
predicted by the theory. Figure 3 gives the number of iteration steps to reduce
. the original residual by a factor of 10~'? for the Poisson equation. The right
hand side corresponds to the exact continuous solution

u(z,y) = 0.75e"? sin(xe) sin(ry).

When we replace the constant a; by (1 — v/&), respectively (1 h), the extreme

cigenvalues become independent of the grid. The values are given in table 1.
This analysis shows that the combination of spectrally equivalent precondi-

tioners on the subdomains and on the interface does not necessarily result in

18
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a spectrally equivalent preconditioner for the original problem. The condition
number can even grow with h~%. A sufficient condition to obtain spectral equiv-
alence is given by (18). Bérgers noted that when the Bj; represent a number
of multigrid cycles, the number of iteration steps to reduce the original starting
error by a certain factor is independent of the grid size. So, M seems to be
spectrally equivalent to A even though (18) is not satisfied for these multigrid
cycles. Though for multigrid cycles, the assumption that the eigenvectors of By
are the same as those of A;; does not hold, the qualitative results derived may
possibly give an explanation. The condition (18} is only a sufficient condition.
A less stringent condition is given by (23). It suffices that (1 — af’k) = O(+/h)
for those components for which %, = O(h). This can be satisfied even when
p(I ~ B;' Ay} is O(1). The multigrid cycles giving a spectrally equivalent pre-
conditioner is possibly explained by such an effect of favourite alignment of
eigenvectors.

These theoretical results indicate that the eigenspectra of the preconditioned
systems on the subdomains and on the separator set should all be clustered
around the same value. This asks for a possible scaling of the preconditioners.
This however can introduce an imbalance between the subdomain precondition-
ers and the unchanged off-diagonal blocks, resulting in the extreme eigenvalues
for M~'A. Another approach, appropriately replacing also the off-diagonal
blocks as proposed in [5] does not suffer from this drawback.
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5 Domain decomposed preconditioners with in-
complete factorisations

In this section, we study nsing some numerical examples, the cigenstructure of
the preconditioned system when tle subdomain preconditioners are incomplete
factorisations as e.g., the ILU or MILU preconditioners [20, 15]. These pre-
conditionets yield condition numbers of O(h)}, and O(v/h) zespectively. Given a
good preconditioner for the interface system, the eigenspectrum of M~14 will
be determined dominantly by the eigenspectra of the blocks B‘-EI/ZA,-,‘B,-:I/Z.
As the subdomain preconditioners can adapt better to the local problems, we
can expect that the overall preconditioner will perform better than applying the
preconditioning method directly to the whole domain. As example we take the

following problem

. say U d by 611.) u _
E( ¢ 6m)+3y( ¢ dy +l—1—:u-§-y_'f(w‘y)

{m,y} €[0,1]®[0,1]

The right hand side and the boundary conditions are taken such that the exact
continuous solution equals 0.75¢*¥ sin(ww) sin{ry). For the subdomain precon-
ditioners, we take the modified ILU preconditioner. Figure 4 gives A, Az and
k(M~1A4) as a function of n when applying the preconditioning method to the
original problem. It is well known that A, is bounded by below by a constant,
while Azr grow linearly with =,

We consider first a splitting of tlte square in two vertical strips £ = [0,0.5]®
[0,1] and ©2; = {0.5,1] ® [0,1]. As preconditioner on the interface we use a
tridiagonal approximation to § constructed by probing 5 with a set of two
test vectors {9, 19]. This is a very flexible and general applicable technigue
yielding preconditioners that use information from the original operator and
from the original geometry. The resulting domain decomposed preconditioner
has a condition number that is smaller by a factor of 1.4 than for the full domain
version. In figure 8, we also plot the number of iteration steps needed to reduce
the original residual by a factor of 10~'° stariing with a random guess. This
shows an improvement of 15% in iteration steps. In the two subdomain case,
using a lefi to right ordering of the grid lines in subdomain ; and & right to
left ordering in f2;, the arithmetic complexity of inverting the preconditioner is
the same as in the one domain situation [8]. So besides the natural parallelism,
domain decomposition yields here an overall faster method.

The next example {figure 6} shows the results in the case of four vertical
strips. The Schur complement matrix § is a block tridiagonal matrix. The
diagonal blocks are the Schur complements for the interfaces as internal edges
between two neighbouring subdomains. As preconditioner for S, we take a block
diagonal matrix where the diagonal blocks are the probing preconditioners pre-
conditioners for the two subdomain case. The smallest eigenvalue is constant as
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function of the grid size, but is smaller than with only one subdomain. This has
its origin in neglecting the coupling between the interfaces, {12, 13]. The largest
eigenvalue is again determined by the largest cigenvalues on the subdomains
and grows linearly with n. It is smaller than for the full domain version. The
condition number now is larger due only to the smaller X,,. As preconditioned
conjugate gradient iteration quickly filters out components of the error corre-
sponding to isolated eigenvalues, the iteration count is comparable to the two
subdomain version.

In the last example, the domain is split in four square boxes. The separator
set consists of four edges and one corner. The Schur complement S for the
general case of a decomposition into boxes, has the following structure :

S - SC Aec
B Ag’c ‘§¢

The matrix S,, is a block matrix with ;

(Se)y; = (Aee)jj“Z(Ai)ﬁ(ﬂdd);?l(fide);j (25)
(S = — (AL); ()i’ (Aae) (26)
Se = Ace— AL A7IA,.

In (25), the summation is done over the two subdomains that are adjacent
to edge j. In (26), i is the number of the subdomain for which edge j and
edge k both are internal boundaries. S itself can be factorised in a block LU

factorization : I s-ig
S, e Aee
s=(3 s ) (7). @)

with 5. = §, — AL S 14,,.. Note that S, is also the Schur complement matrix
for the corner system in the original matrix A. We construct a preconditioner
for ' in an analogous way to domain decomposed preconditioners by replacing
Se and S, in (27) by approximations. We replace S, by a block diagonal matrix
as in the multiple strip case. A possible choice for a preconditioner for S,
is the discretisation matrix on the coarse grid defined by the corner points.
This approximation is also used in the domain decomposed preconditioner as
proposed by Bramble, Pasciak and Schatz, [5], and as a way of global information
transport in the additive Schwarz method, [14]. An appropriate scaling of this
coarse grid approximation is here also very important. In the four box case, this
coarse grid approximation is just a constant.

Figure 7 shows that, in contrast to the multiple strip case, A,, as well is
a function of n. This is probably due to a non optimal scaling of the corner
preconditioner. The iteration count however is comparable to applying the
MILU preconditioner on the whole donain.
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6 Conclusions

We have shown that the eigenvalue spectrum of domain decomposed precon-
ditioners of the form (5) is a perturbation of the union of the spectra of the
preconditioned systems on the subdomains and on the interfaces. In case of bad
scaling of the preconditioners to eachother and of the preconditioners to the
unchanged off-diagonal blocks, some extreme eigenvalues can be introduced.
When combining suboptimal subdomain preconditioners, such as e.g., incom-
plete factorisations, we can obtain better preconditioners than applying the
method directly on the full domain.
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