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Abstract

This paper continue to discuss the treatment for discontinuities in [11]
and [12], whose main idea is that on each side of a discontinuity the com-
putation draws the information that jumps at the discontinuity only from
the same side. A numerical method for ordinary differential equations is in-
corporated into the algorithm to compute the locations of the discontinuity.
Analysis shows that this is equivalent to record the conservation errors and
compensate them in the following time-steps; therefore, the treatment still
has a conservation feature. Finally, some numerical examples for both scalar
and system cases are displayed.
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1. Introduction

The partial differential equations concerned in this paper is the hyperbolic
system of conservation laws

U + f('u')x =0
u(z,0) = uo(z), (L-1)

where u = (u,uz, "+, 4m )", and the Jacobian matrix of f has m real eigen-
values and a complete set of m linearly independent right-eigenvectors. A
weak solution of (1.1) is a bounded measurable function u(z,t) satisfying

/0°° [:(U‘f’t + flu)¢y)dzdt + .[: uo(z)¢(z,0)dz =0 (1.2)

for all smooth test functions. This paper continues to discuss the treatment
of discontinuities introduced in {11] and [12] for finite difference methods for
(1.1).

As we claimed in [11], the treatment is a shock tracking technique, whose
main idea is that the computation on each side of a discontinuity draws the
information that jumps at the discontinuity only from the same side. In the
scalar case, this is done by using extrapolated data from the same side at
the grid points on the other side. In the system case, Riemann problems
related to the original and extrapolated data are solved to obtain the data
that replace the original data at the grid points on the other side. By doing
this, the whole computation still proceeds on the regular grid, and there is
no need for a lower dimensional grid to resolve the discontinuity; therefore,
the treatment applies to any difference schemes, and the algorithm is much
simpler than the traditional shock tracking methods.

The idea that computation uses information only from one side of a dis-
continuity has been behind many recently developed numerical schemes and
techniques. Except [12], an early paper by the author, I first saw this idea
in [2] which uses the extrapolated data on each side of a discontinuity it
tracks. [2] also explains that the idea makes sense since the extrapolated
data are "virtual” due to the characteristic-converging feature for shocks
and the characteristic-paralleling feature for contact discontinuities.

ENO schemes, constructed by Harten, Osher, Engquist and Chakravarthy
(see [6, 7], [8], [9]), uses a local adaptive stencil to obtain information au-
tomatically from regions of the smoothness when the solution develops dis-
continuities. As a result, near an isolated strong discontinuity, the stencil
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of an ENO flux will choose grid points only from one side of it. However,
ENO schemes do not make the computation completely get information from
one side of a discontinuity. For example, when a discontinuity locates right
in a cell [z;,z;41), the stencil of an ENO flux corresponding to the cell at
least contains its two endpoints, i.e. z; and z;4,; therefore, the flux uses
information from at least one point on the other side.

Later, Harten developed a technique called ”subcell resolution”, which re-
covers the location of a discontinuity from the cell averages of the numerical
solution and uses it in computation. In doing this, the subcell uses extrap-
olated data in constructing the numerical fluxes on the two sides to prevent
their stencils to be across the discontinuity. Harten’s subcell keeps conserva-
tion feature for the algorithm; as a cost, there is at least one transition point
in the discontinuity. It is impossible for a conservative scheme to always keep
a discontinuity in one cell, since a true discontinuity almost never coincides
with a cell boundary and, therefore, at least one transition point is needed
to represent the discontinuity’s location within a cell. Another feature of
Harten’s subcell is that, being a shock capturing technique, it does not save
locations of the discontinuities for the use in the following timesteps; instead,
it recovers the locations once every time.

This paper continues to discuss the x — ¢ version of the treatment in
[11]. This version always keeps a discontinuity in one cell, so that it is
geometrically simple and easy to be extended to the high dimensional case,
a paper about its extension to two dimensional case is in preparation. This
version is not conservative; however, a conservation feature in a more general
sense is discovered for it.

The paper is organized in the following manner: §2. describes the treat-
ment for a single discontinuity in scalar case, which is a little different from
but still almost equivalent to that described in [11}. §3. analyses the treat-
ment by writing it into the form of (3.1), where ¢" is the local conservation
error recorded at every timestep. The idea that the algorithm records the
local conservation errors and compensates them in the following timesteps
also occurs in [4]. However, this paper reveals the relation between the con-
servation error and the location of a discontinuity, which is the theorem 3.1.
As a result, the uniform boundedness of the conservation error follows; which
is the conservation feature in a more general sense we mentioned before. §4.
extends the treatment to the case of interactions of discontinuities and also
shows its conservation feature. §5. extends the treatment to the system case.
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§6. displays numerical examples for the linear scalar and Euler system cases.

2. Treatment for a Single Discontinuity

As usual, the discussion starts with the simplest case, i.e. the one dimen-
sional scalar problem, for which the corresponding equation is

us + fu), =0, (2.1)

where both u and f are scalar. The underlying scheme used to compute the
numerical solution is a general conservative difference scheme:

A

u_?ﬂ =uj — A(fﬁl-lﬁ - f?—1/2)= (2.2)

where u}} denotes the datum of the numerical solution at a grid point (z;,1"),

_?+1/2 = f(u?—k-ﬂa T 5u?+k) (2.3)

is the numerical flux depending on 2k variables, A = 7/k is the mesh ratio,
where 7 and h are the time and space increments respectively. The flux is
consistent with the flux in (2.1) in the sense that

f(ua Uy au) = f(u) (24)

The following example is used to show the performance of the treatment for
a single discontinuity.

Assume that on the level n the numerical solution just has a jump in a
cell [z;,,2;.41], on each side of which the numerical solution is supposed to
be smooth (as shown in Figure 2.1). Also assume that the position of the
discontinuity within the cell is known as £". The things now we are going to
compute are the numerical solution and the position of the discontinuity on
the latter level, i.e., u™*? and £, The cell that contains the discontinuity
is called a critical cell , on which the treatment is going to be applied. (We
change the name for the cell that contains a discontinuity, considering that
the new name is more proper than the old one used in [12], which is generated
interval ).



As mentioned in §1., the treatment 1s a shock tracking technique based
on the idea that on each side of the discontinuity the computation uses
information only from the same side. In the present example it performs
in the following four steps:

1) This step prepares the data needed in the computation. It extrapolates
the numerical solution from each side of the critical cell to the other side,
and gets a set of extrapolated data:

n,+ + n,—
AATEREN TR AP AP (2.5)

where the data with “—” are from the left to the right and the data with
“+” are from the right to the left (as shown in Figure 2.1).

2) This step computes u™*!, the numerical solution on the new level.
When z; is on the left side of the critical cell, by which mean that j < i, it
computes u}‘“ by the fluxes with “—7"; i.e.,

wit = = M — ), (2.6)
where ) A
f}‘.f:;/z = f(u?-k+1s ’ »una Jl+1! : ,u;‘-'l-_k) (2'7)
When z; is on the right side of the critical cell, it computes u"“ by fluxes
with “+”, which are defined as
J+1/2 f(“;»—k+1a : ,“;;+au31+1’ : ,u?+k)- (2.8)

3) This step computes £*t2, the position of the discontinuity on the new
level. First, it extrapolates u™ from each side to £* and gets two extrapolated
data uén, uin. Then, it computes the speed of the discontinuity by Hugoniot

condition
U£ - U£n
Finally, it computes £ as
£ = 7 4 s (2.10)

4) This step determines the critical cell on the leveln+1. If £*! is still in
[, 525 +1], it takes the same cell as the critical cell on the new level. If £+
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moves into the left adjacent cell, it takes [z;, 1,2} ] as the critical cell on the
new level, meanwhile updates u}," ' either by the datum computed only using
information from the right side or, more simply, by the extrapolated datum
of u™t! at z; . H £*t! moves into the right adjacent cell, it takes [z;,41, 2, 42
as the new critical cell and updates u};.

Thus ends the computation from the level n to the level n 4 1.

The treatment is a shock tracking technique; however, it does not define
a lower dimensional adaptive grid for the discontinuity as the traditional
tracking method does (cf [1], [5]), nor computes the numerical solution at grid
points on that. Therefore, it does not need adaptive schemes at the points
near the discontinuity and the computation still proceeds on the regular grid.
The whole algorithm is quite simple and it is possible to use the treatment to
capture a spontanecus shock. This paper focuses only on the tracking feature
of the treatment; nevertheless, readers can find some discussion about its
capturing feature in{11].

Several comments on the above four steps are as follows:

a) In [11], a conservation error is introduced by writing the overall al-
gorithm into (3.1) (in {11] the conservation error is called artificial term),
and the treatment is performed based on the observation of the conserva-
tion error. However, the treatment in this paper is performed based on the
observation of the position of the discontinuity. Nevertheless, Theorem 3.1
in the following section shows the relation between the conservation error
and the position of the discontinuity, which indicates that the two versions
of the treatment are essentially equivalent to each other when the solution is
piecewise smooth.

b) In order to keep the same order of accuracy as the underlying scheme’s
for the overall algorithm, the order of the extrapolation used in step 1) must
be the same as or higher than the order of accuracy of the underlying scheme.
For example, if the underlying scheme is of the second order, the extrapola-
tion should be at least the second order (cf[11]).

c) In step 3), the position of the discontinuity is computed in a first oder
accurate way; however, the algorithm can be improved to be of the higher
order accuracy, either by using information on the level n + 1 in computing
s in (2.9) or by a Runge-Kutta procedure. The algorithm that computes
the numerical examples in ‘§6 is built upon a second order Runge-Kutta
procedure, which will be described later.



d) The speed of the discontinuity computed in (2.9) satisfies
|s| < max |f(u)];

therefore, the position of the discontinuity will only moves to the left or right
adjacent cell if the mesh ratio A satisfies CFL-condition. It will not jump to
 a cell far from the original critical cell.

e) The treatment does not keep the conservation feature for the overall
algorithm; in other words, the numerical solution u® obtained by using the
treatment does not satisfy

S uth =Y ulh. (2.11)
3 3

The reason is that in some cell different numerical fluxes are used in the
computation. For example, when £**1 is still in the critical cell on the level
n, the flux corresponding to the cell [z;,,2;41] in computing u};"" is with
”, while the flux corresponding to the same cell in computing u;"_'t,ll is with

“4+”. and they are not equal. The similar situations also happen in the other

two cases.

3. Conservation Feature of the Treatment

The overall algorithm for the example studied in the last section can be
written in a conservation-like form,

?H = U - A(.f_,.H/z Pm1/2) +IP?+1/2 - P?-1/2 + q}'“ - q?, (3.1)
where
2 f_,.;..1j2 .7 S jl
n = LT 3.2
J+1/2 { f;-i'-:il-ﬂ i>dh+1 s ( )

and p™ and ¢" are introduced to balance the numerical fluxes in the cell where
different fluxes are used. The p™ and ¢" are nonzero only in the vicinity of
the critical cell and are as follows in each case: When ¢"+! moves into the
left adjacent cell

PJ:I-['-_].1/2 i —q.?:_ + (u;: - ) + A( 1-—1/2 Jlﬂ-]./Z) (3.3)
G5y -1 = =Pj-1/2»



when £ remains in the original critical ceil
. L] 3 + £ Yo

q:'1+1 = ¢ + ’\(fj:+1/2 - f;+1/2) ) (34)
and when £"*! moves into the right adjacent cell

— ~ '+ Aﬂ,_
Pﬁflllz =g+ A(f§+1/2 - f:‘1+1/2 et . (3.5)
n = ¥ Dl )
Gy =+ (Ui — uha) + A e — i rap)
As mentioned in the last section, u} is not conserved; however, (3.1) indicates
that u] — ¢7 is conserved, i.e.

Zu}‘h —qhh = Zu?h ~ gy h, (3.6)
) 2

where x;, is the left endpoint of the critical cell on the initial level. Therefore,
g™ is the local conservation error caused by the treatment.

In this section two theorems are proved. The first theorem shows the
relation between the position of the discontinuity and ¢", from which the
uniform boundedness of ¢* follows. The second theorem, which is similar
to the Lax-Wendroff theorem in [10], says that if the numerical solution
converges, it converges to a weak solution of (2.1). Although the discussion
in this section is only for the scalar case with a single discontinuity, the latter
sections will extend it to more general cases.

In this paper we call a treatment to be of the rth order if it uses the rth
order extrapolation in step 1), 3), and 4).

Theorem 3.1 If both the underlying scheme (2.2) and the treatment are
of the first order, then

i = Eotannltin =) | o), (3.7

and if both the underlying scheme and the treatment are of the second order,
then

no_ ('U.; — u;’+)(mii+1 - En)z + (u?a-}-l - u;':‘;l)(gn —Zj )2
9 = oh2

+0(h), (3.8)

where [z;,,;,41] is the critical cell on the level n, and x5, 1172 = 1z, +2j41).
There are several comments on the theorem.



a) The g% in (3.7) or (3.8) is uniformly bounded if the numerical solution
is uniformly bounded; therefore, (3.6) gives that
Suth =Y ulk+ O(R), (3.9)
i i

which indicates that the numerical solution computed by using the treatment
is almost conserved.

b) A geometrical interpration for (3.7) and (3.8) is as follows: Suppose
that U"(z) is a piecewise constant function defined as

7 i S <z

UMa) =4 3 H=FShmne 3.10

@={1 DS (3.10)

in a cell [z;, z;41] that is not the critical cell with z;,4/, as its midpoint, and
%5+ i+if

u? z;, Se<f®

0@ ={

iy <<z (3.1)
in the critical cell (as shown in Figure 3.1). We integrate the function U™(x)
over {—00,00) and let the integration equal to }_; ulh — ¢}, b (if there is no
critical cell, the integration is just 3=; u?h), then is (3.7). If U™(z) is piecewise
linear function defined as

U™(z) = [ (e541 — 2) + w2y (@ — 7))/ (3.12)
in a non-critical cell, and

n — (u’} (:BJ'1+3 '" m) + u,'l’_l(m - mjl))/k g, Sz <"

e ={ (R T RIS, e
in the critical cell (as shown in Figure 3.2), and let the corresponding inte-
gration equal to 3°; ufh — g%, h again, then is (3.8).

c) If the numerical solution on each side of the critical cell is smooth

enough, (3.7) and (3.8) only have a difference of O(h) by ignoring the last
error terms in them. This can be shown by rewritting (3.8) as

1 n n
a5, = E(é = Tji1/2) (W41 — U5,)
1 n y ' n n ny- n n
+2h2 {(ujz+1 - uj1+)($j1+1 -¢ )2 + (uJ'z - u.’i:-i-l)(E - $51)2}

+O(h).
(3.14)



Proof of (3.7). Denote
= (" — i 172) (U] 41 — u,) — hal, (3.15)
and we are going to show for each case
St — §" = O(R?), (3.16)

from which conclusion of the theorem follows easily. First, for the case that
£7t! remains in the original critical cell,

+1 _ n+1/2 nt1/2
STt = 5t = d(u’.'u +1 A1 ) . .
fﬂ|+ — fﬂy+
) J14+3/2 Jit+1/2

—r{ it @ =250 (3.17)
Fr,— .fn f -
“fj1’+1/2 . (gn-{»l/z _ mj1+1/2) Atz n 1 1/2},

where d = €n+1 - é'n, En+1/2 — _;_(gn-i-l + é‘n), and 'U.?+1/2 — %(u;}+l + u?)
The right side of (3.17) is an approximation to the left side of the following
Hugoniot condition

dr — dt[f]/[v] =0 (3.18)

at the point (£*t1/2,¢7+1/2). Since both the underlying scheme and the treat-
ment are of the first order, the accuracy for both the numerical solution u"
and the position of the discontinuity £™ are of the first order too; therefore,
the (3.16) follows. For the case in which {® moves to the right adjacent cell,
Srtl . gn = d( "Lil{/zz ;4;11//22) . .
f_glil/z - f}:’fug

—r{fit e+ (€ =z _1p) 3
o o= oo
Fimi = (€12 — gy g ) 21 e 22} + o(h?),
(3.19)
n+1/2 nt+1

where u; 3y = 2(u + u?). Again (3.16) follows. Finally, for the case in
which £* moves to the left ad;a,cent cell, a similar analysis shows that (3.16)
is also true. Thus ends the proof.
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Proof of (3.8). (3.8) can be written as follows:

(“;':'il/z —~up T )€~ Tigaye) — B

(03 =~ M (i — £ — (€ — 7))
(3.20)

+Z]:i§("?1+l — i (@i — €)' + (€~ 2)"}
= O(h?),

where u}}; ), = 3(u}, +u}) and u], ) = 3(u" +u4,). Denote by @
the last two terms on the left in (3.20), and we have

n 1 ",-— n n n " h2
Q"= (uiT — v, — v ) (e — €V + ), (32D)
Denote by S™ the left side of (3.20), and we are going to show that (3.16)

with O(h®) being its right side is true. We still start with the case in which
£"*! remains in the original critical cell, and have

| R +1/2r+ +1f2v_
gl — §n = d(”;':ﬂ/z _u?1+1/2 )

n+41/2 n+l,— - n,+ ny—
+(¢ / —93.11+1/2)( Jl+1/z Ujit1/2 “j1+1/2+“51+1/2)

—h{gi — &)+ (@™ —Qm),

(3.22)
n+1/2, n+1, n+l1/2,— n+1,
where ”311//24- = 3 j:;-llfz 31+1/2): 3+1//2 = 3(u Ji.:‘l/2 + u:1+1/2)’ and

d and £"*/2 are defined as before. Since the underlying scheme and the
treatment are of the second order; for this reason,

“;:‘I;rll'“ = u; — Af _1":';3/2 ,u+1/2) + O(ha): (3.23)
and
n+1, . £y .
u31+ ¥ qu+ )‘(szillz it —1/2) + O(ha) (3-24)
Therefore,
n+l,— n., A -
Wiliie = Yiigae = —5Fivap = Fi) + OB, (3.25)
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and

n A s £
”j,‘ili'-;z u,u,ilﬂ E(f;:’-ta/z - jl':l:1/2) + O(hs)- (3.26)
Moreover, we have
n d2 b3 T
(m.1'1+1/2 ~¢ +1)2 = I + d(f 1 $51+1/2) + (5 i $i1+1/2)2? (327)
and _
(@12 — & )= d(fnﬂl — Tj4a/2) + (f"+1/2 - $j1+1/2)2- (3.28)
Therefore,
n+11/2 n+1/2,4 ur}+11/2.— _ o, nt1/2
Qn+l - Qn — d( Uji4 - b1 _ ht . 71 )(€n+1/2 _ 3:51+1/2)
+RM/2
(3.29)
where, .
R/? = {(u;.i-{-l_ - Hl) (”314-1 - uj)
n n+1, y
m(u.‘l;{:i-ll J]-:'l+) + ( Ui 41 u.f1+)} (330)
1 d* A?

{ st (€2 — 25 0 )%)

Obviously, R*/2 = O(h ) Substltute (3.23)-(3.30) into (3.22), we have
n+1/2 n4+1/2,4

— U
grtlt — §r = d{”;tzl/f; + JTH 7 2 (€2 — 25, 44p0)
nt+1/2,— n+1/2
+1/2- _ ¥hn T Yy
“‘u?;-!-l//z ) | - Y (€n+1/2 . 3’::'1+1/2)}
f""i.a 2’""'f?.:1-2
T{f.‘h'i-lﬁ kL /2h j-1/ (£n+1/2 _ mj1+1/2)

A

£y f!;'_ - fr;': n
i = LA E I — g )} 4 O()
(3.31)
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the right side of which is again an approximation to the left side of the Hugo-
niot condition (3.18) at the point (£*+1/2,¢"+1/2), Since both the underlying
scheme and the treatment are of the second order, the accuracy for both
the numerical solution and the position of the discontinuity is of the second
order too, and also f7 1f2 = Flomajpyppammtiss + O(h?). Thus, the conclusion
follows.

For the case in which £"*! moves to the left adjacent cell,

(u"}'l'l — Lt

S §r = A 4 (N g ) e
H(enH /2 _ Zj41/2) ('Mr.’,‘1 +12; u?1»+)
gl (gip g 0 W2 ~2h ufth)
— (g2 — $j1+1/2)£1%a““m:"@}
T{f31—1/2 (fn+1/22h J1_3/2)(5ﬂ+1’2 Zj-1/2)

o (fo “a2) o
B L Sicys (€~ 2512)} + O(R),

2h
(3.32)
3 -~ el 2 )
where i, = 2(UT_11/2 + U2 ,) and @ nﬂ/ * = 2(“?1""_11/"*2 3,+1/2)

For the ca,se in which €™ moves to the right a,d;acent cell, a similar equation
holds. Therefore, the conclusion is true for these two cases too by the same
analysis. Thus ends the proof.

The following theorem is similar to the Lax-Wendroff theorem in [10].

Theorem 3.2 Assume that as h and 7 tend to zero with A = 7/h 2
co > 0, the numerical solution computed by the first or second order underly-
ing scheme with the first or second order treatment, which involves a single
discontinuity, converges boundedly to some function u(z,t), then u(z,t) is ¢
weak solution of (2.1).

Proof. Multiply (3.1) by any test function ¢, sum with respect to j and

nt1/2,-
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n, and by almost the same argument in {10}, we get the indentity

n—1

¢’? ¥y n Per = ¢,? n
EZ:{ . - —u} + ’Hh : 5+1/2}"'h+2“2¢?
w2 2

(3.33)

ot — ¢n1 167, —¢F
=22 (7 — “jmmh "y} h + 456
LA |

Since the numerical solution converges to u(z,t), the left side of (3.33) tends
to the the left side of (1.2) as A and 7 tend to zero. Since p* and ¢* are
nonzero only in the vicinity of the critical cell, and ¢” is uniformly bounded,
which implies that p™ is uniformly bounded too, the right side of (3.33) tends
to zero. Thus the conclusion follows.

The critical point in the proof is that the artificial terms p” and ¢* are
uniformly bounded and locally (i.e. only in the vicinity of the critical cell)
nonzero, which indicates that the algorithm using the treatment deviates
from a conservative scheme only by a difference that tends to zero when the
mesh size tends to zero. The latter sections will show that this is also true
for more general cases.

4. Treatment for Interactions of Discontinuities

Till now only the treatment for a single discontinuity has been studied.
Nevertheless, the solution to (2.1) may have several discontinuities, which
may interact with each other. This section describes the treatment for the
interaction of discontinuities. Only the interaction of two discontinuities is
considered, and the method applies to more general cases.

Assume [z;,,%;41]} and [z;,,Z;,41] are two critical cells on the level n,
which divide the whole z region into three parts, the left, right, and middle
parts. The numerical solution in each part is supposed to be smooth (as
shown in Figure 4.1). First, when the two critical cells get close to each
other, the stencil of the numerical flux at some grid points in the middle part
might cover both of the two critical cells. As a result, the following numerical
flux X

P W g T ) (1)
might have to be used at these points since we insist that the computation in
each part use information only from the same part, where the data with“4"
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and “—" are the extrapolated data from the middle part to the left and right
respectively. Also the order of the extrapolation used in step 1) and step
3) might have to be lowered since we might not have enough points in the
middle part to keep the same order when the two critical cells get close to
each other.

When the two critical cells moves to a same cell, a handling about when
and how to merge them to form a new critical cell is needed. The treatment
in [11] merges the two critical cells immediately after they get together;
nevertheless, the positions of this two discontinuities usually still have a
short distance between them at this moment. This means that the mergence
takes place a little early. In this paper, a more precise way is described to
handle the case.

First, we must avoid to having the two critical cells to move across each
other, i.e. we can not let the case (c) in Figure 4.2 happen. When it happens
in the third step of the treatment, we change the algorithm by holding one
of the critical cells, even though its position of the discontinuity moves out
of the corresponding cell.

When the two critical cells get together in a same cell with their positions
of discontinuities satisfying £} < £, they are not going to be merged, but
are still reguarded as two individual critical cells with a middle state between
them. In other words, they are considered to be overlapped by each other
in the same cell. The middle state, which does not appear in the numerical
solution, stands as the right state for the left critical cell and the left state
for the right one; that is to say, the computation proceeds as the left critical
cell has the middle state on its right and the right critical cell has the middle
state on its left. The middle state can be defined in a proper way. For
example, in the cases (a) and (b) in Figure 4.2, The un-updated datum of
the numerical solution at the grid point (zj,, ") before the fourth step can
be chosen as the middle state on the level n + 1.

The two overlapped critical cells coexist until £ > ¢7, then they have to
be merged to form a new critical cell. The position of the discontinuity for
the new one is computed as follows:

o = 5) (5 — )

n —an !
Uji+1 — Uy,

(4.2)

where u, is the middle state in between, Denote by s7~!, s3~! and s™ the

exact positions of the discontinuities for the left and right critical cells on the
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level n — 1 and the new critical cell on the level n respectively. The following
theorem shows that the treatment has a second order accuracy.

Theorem 4.1 Assume that {§7* and £ are ezact on the level n — 1,
to be precise, £ = 877! and £ = s§7Y, then

¢ = s" + O(h?) (4.3)

if both the underlying scheme and the treatment are at least of the first order.

Proof. First we prove that £" computed by (4.2) is exact when the nu-
merical solution in each of the three parts is constant. Since the solution is
_ piecewise constant, both the discontinuities starting from the level n — 1 are
straight lines. They start at (7~ and £57" on the level n — 1, with speeds s,
and sz, meet at a point (£*,¢*), and then merge to form a new one, with a
speed sg, which reachs the level n at s (as shown in Figure 4.3). Extend the
left and right discontinuities starting from the level n — 1 to the level n at £}
and £ respectively, which are the positions of the discontinuities computed
without considering interaction. Now we are going to show that £, £ and
s™ satisfy (4.2) with s" standing for £".

Obviously,

s" =&+ (" —t")so, (4.4a)

£ =&+ (1" —t")sy, (4.4b)

&=+ —1)s, (4.4¢)

where

op = Tl = Flu) (4.50)
Up — Y

5 = w, (4.55)
Uy — U

8y = —f(u;) : i(u*) ) (4.5¢)

u, ty, and u, are the the constants for the left, right and middle parts of the
numerical solution respectively. It is easy to obtain

oo = (e — )8y + (4, — u,)s; (4.6)

U, — U
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from (4.5); thus, by(4.4)
& = §r (us — ) + & (ur — ”t)’ (4.7)

Uy — Uy

which means that (4.2} is exact now.

Now we prove that £ has the second order accuracy if the numerical
solution is piecewise smooth. As we argued before, the numerical solution
in each of the three parts has at least a first order accuracy since both the
underlying scheme and the treatment are at least of the first order. As a
result, each identity in (4.5) has an error at least of O(h); therefore, each
identity in (4.4) has an error at least of O(h?). Thus the theorem follows.

The treatment also can be analysed in terms of p™ and ¢™ to show its
conservative feature. Assume that the two critical cells merge on the level
n and the local conservation errors for them before they merge are g7, ; and
q%, ; respectively.

Theorem 4.2 If both the underlying scheme and the trealment are of
the first order, (3.7) holds for the new-formed critical cell on the level n
with ¢, + ¢}, o standing for ¢f,. If both the underlying scheme and the
treatment are of the second order, (3.8) holds for the new-formed critical cell
with ¢}, y + ¢}, ; standing for ¢}, .

Proof. According to theorem 3.1,

= & - 3’-"‘“2‘*)(”‘ Lo 16 (4.8)
and . o
na= T ”"*“’2’3(“5!“ —) 4 o) (4.9)

if the underlying scheme and the treatment are both of the first order, where
u, 18 the middle state defined as before. The first conclusion of the theorem
is obtained by adding (4.8) and (4.9) and substituting (4.2). Also according
to theorem 3.1 and its comment c),

=8 m""’*‘f)(u* ~ %) o) (4.10)
and " .
ha= & - x"‘*‘”"’z(uﬁ*" —%) 4 o) (4.12)
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if the underlying scheme and the treatment are both of the second order.
The second conclusion is obtained by the same argument and comment c).

Theorem 4.2 means that the conclusion of theorem 3.1 still holds for the
local-conservation error of the new-formed critical cell ¢7, = ¢}, y +4¢7, 5. Thus
p" and ¢" are still uniformly bounded and locally nonzero. As results, (3.9)
and the following corollary hold.

Corollary 4.1 The conclusion of theorem 3.2 is still true if the solution
is piecewise smooth with a finite number of the interactions of discontinuities

5. Treatment for Euler Equations of Gas Dynamics

The Euler equations of gas dynamics for a polytropic gas are

wt fw) =0, (5.1a)

u = (p,m, E)*, (5.1b)
f(u) = qu+(0,p,9p)", (5.1¢c)
p= (7~ 1)(E - 504", (514)

where p,q,p and E are the density, velocity, pressure and total energy re-
spectively, m = pq is the momentum and + is the ratio of specific heats. The
eigenvalues of the Jacobian matrix A(u) = 8f/0u are

ay(u) = g—u, ax{u)=g¢q, as(u)=gq+u, (5.2)

where ¢ = (yp/ p)lﬁaT is the sound speed. This section describes the extension
of the treatment to the Euler system case.

The underlying scheme is still assumed to be a general conservative
scheme defined by (2.2) with the numerical flux (2.3), only both u™ and
" are vectors, and the discussion also starts with the case involving a sin-
gle discontinuity. It is well known that there are three different kinds of
discontinuities in the Euler system, the left shock, right shock and contact
discontinuity; therefore, there should be correspondingly three different kinds
of critical cells, which are called as the left shock critical cell (LSCC), right
shock critical cell (RSCC) and contact discontinuity critical cell (CDCC).
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note by RP(u,v), has three waves and two (left and right) middle states (as
shown in Figure 5.1). An LSCC is a critical cell that the left shock in the
RP(ufn,ufn) is much stronger than the other two waves, where u}, and uf.
are defined as in §2. The RSCC and CDCC can be defined in similar ways.

The treatment for a single critical cell still proceeds in the four steps
described in §2; i.e., 1) compute the extrapolated data on the two sides of
the critical cell; 2) compute the numerical solution on the two sides of the
critical cell; 3) compute the speed of the discontinuity; and 4) determine the
critical cell on the new level and update the data of the numerical solution
on some grid points if it is needed. However, the system case has some
particular feature the scalar case does not have, which obstructs us from
naively extending the treatment. Let’s take the left shock as an example.
It is well known that the left shock is associated to the first characteristic
field. In a flow, it catches the first characteristic lines and let off the other
two characteristic lines. Hence, the information carried by the other two
characteristic lines on the left side of the shock will be propagated across the
shock to the right side. However, the extrapolated data on the right side of
the critical cell does not contain this information; therefore, if we still use
the extrapolated data in step 2), 3) and 4) on the right side, we will miss the
information going from the left side to the right side. For this problem, the
traditional shock tracking treats the discontinuity as a moving boundary by
solving Riemann problems and imposing boundary conditions on it; however,
the treatment in this paper treats it in a much simpler way.

For an LSCC, we replace the original extrapolated data by some other
data as follows: In step 2), we solve Riemann problems RP(u?,uj") for all

J1—k <7 < J; to get a set of left middle states, which we denote by «[u_1 s
and use them to replace the original extra.polated data in computing the
numerical solution, In step 3), we solve a Riemann problem RP(un,uln) to

get a left middle state ”E and use it to replace the u}. in computing the
speed of the shock. In step 4), if the datum of the numerical solution at the

point z; needs to be updated, we solve a Riemann problem RP(u}*?, u}1t)

to get a left middle state u;"': ! and updated the u2t! by it. In domg 8o, the
critical cell only keeps the information that will be catched by the shock and
let off the information that will be propagated to the right. The extrapolated

data from the left to the right in an RSCC and the extrapolated data on two
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sides in a CDCC are replaced by the corresponding middle states in the same
'way as it is done for an LSCC. The following theorem provides a theoretical
basis for such a handling with replaced data.

Theorem 5.1 Assume that u(z,t) is a solution to (5.1) with a single
discontinuity, on which the Hugoniot condition

3(ur (20, t) — ui(2o,2)) = f(ur (0, ) — f((20,1)) (5.3)

is satisfied, where s is the speed of the discontinuily, zo is the position of
the discontinuity at the time t, and ui(z,t) and u,(z,t) are the solution on
the left and right sides of the discontinuity. Also assume that wi(z,t) and
u,(z,1) are continuous with continuous (n + 1)th derivates on the two sides.
We eztend each of ui(z,t) and u.(z,t) to their opposite sides by an nth order
eztrapolation and still denote them by wi(x,t) and u.(x,t) respectively. Then
the following relation

S(ﬂr(ﬂio + d$,t) - ’U,{(Ig + dﬂ?,t))

= Fur(z0 + dz, 1)) — flw(zo + dz, 1)) + O(dz™) (54)
holds for any small dz.
Proof. Differentiate (5.1a) with respect to z, we get
Ugt + ft)ze = 0. (5.5)

Since the solution on each side of the discontinuity is stnooth, a jump condi-
tion concerning its z derivative at the discontinuity can be obtained in the
same way as Hugoniot condition is obtained (refer to [3]), which is

Ou, oy 3 f(ur) af(ur)
( 63’. Lc__z,-o am Ia:—mo) 3:1: Iz:wo ™ _6;—]:5:4;0- (5.6)
By the same argument, we can obtain for any 0 <: < n
6'u, 3 U _ B‘f(u,) B‘f(u,)
( ozt |=b'-z'o - oz Iw——zo) 9zt t-’b'=-'-'o - dt |=-“—'zo (5°7) .

iteratively. Multiply (5.7) by dz’, sum them over all the ¢ for 0 < ¢ < n,
by taking into account the Taylor expension of w(z,t) and u.(z,t), we get
(5.4). Thus ends the proof.
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Theorem 5.1 indicates that the middle states obtained by solving Rie-
mann problems on each side of the discontinuity are identical with the origi-
nal extrapolated data on the same side to a high order truncation error if the
solution on each side is smooth enough, from which the consistency of the
numerical flux involving middle states with the flux function f(u) follows.
However, when the solution contains weak discontinuities (such as edges of
rarefaction waves) associated with other characteristic fields, using the orig-
inal extrapolated data and using the corresponding middle states will have
different senses as we discussed before, the former may miss the information
crossing the discontinuity while the later will not.

The treatment also can be analysed in terms of p* and ¢" as we did in §3
to show the conservative feature, and the conclusion of Theorem 3.1 is still
true, only p" and q" are vectors and all the identities in the corresponding
proof are in vector forms.

Now we discuss the treatment for interactions of discontinuities and still
focus on the case involving two critical cells. When the two critical cells are
close to each other, they are handled in the same way as we described in §4
for the scalar case before they are merged. However, the handling of their
mergence is a little complicated than the scalar case since there are three
different kinds of discontinuities. Assume that the two critical cells overlap
in a cell [z;,,7;+1] with the two positions of the discontinuities satisfying
£} > £} and a hidden middle state u, between them. The treatment for their
mergence is described as follows:

1) Solve a Riemann problem RP(ul,,u},,;) and obtain two middle states
u! and u]. The waves that connect u? and u, or v} and u},; can be either
shocks or rarefaction waves; nevertheless, the wave that connects u! and u]
is always a contact discontinuity.

2) Denote by Q" the quantity (u, — uf,)¢f + (u}4; — w.)éf. Represent
Q™ as a linear combination of the vectors ul — uj, Uy — ul, and ul 4, — ul,
such as

Q=B - )+ B - )+ (G-  (58)
The representation is unique if the three vectors are linearly independent.

3) Define a CDCC on the cell [z, 2;41] with & as its position of the
contact discontinuity. When the wave connecting uj and u! is a shock, define
an LSCC with £7 as its position of the shock, which and the CDCC defined
before overlap in [z;,, 2;,41] with u! as their hidden middle state. When the
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connecting wave is a rarefaction wave, no critical cell is defined, meanwhile
u}, should be updated by u}, — & (ul —u? ). The case for the wave connecting
u, and u? ,; is handled similarly.

We update u?, when the connecting wave is a rarefaction wave, in order
to keep the conservation feature for the treatment, which will be shown in
the later discussion. A geometrical interpretation of this handling is that the
updated u}, represents where the rarefaction wave is centered and how much
it has been spanned. Denote by 3} the position of the k-wave on the level n if
it is a discontinuity, A theorem concerning the consistency of the treatment
, which corresponds to Theorem 4.1, is follows:

Theorem 5.2 Assume that {77! and £ are ezact on the level n — 1
and the k-wave in the Riemann problem is a discontinuity, then its position
of the discontinuity computed in the treatment satisfies

& =35 + O(F%) (5.9)

if both the underlying scheme and the treatment are at least of the first order.

Proof. By the same argument in the proof of Theorem 4.1, we only need
to prove that (5.9) is exact for piecewise constant solutions. We denote by
(z)x the kth term in the linear representation of a vector z by vectors ul —u,
ul — ul, and u, — ul, and adopt the notations in the proof of Theorem 4.1
and the Figure 4.3, except that the £* should be replaced by 7. Still we
have

§" =&+ (" —1")s0, (5.10a)
&=+ (" —tY)sy, (5.105)
&= 4 (" — )y, (5.10¢)
where
so(ur — )k = (f(ur) — f))s, (5.11a)
s1{ux — w) = flus) = flw), (5.11%)
sa(ur — w) = fur) — flua), (5.11¢)

Represent s;(u. — ) + s2(u, — 4.} as a linear combination of the vectors
ul —up, ul — u!, and u, — ul. It is easy to obtain that sg is the coefficient of
(4, — )k in the representation; therefore, the conclusion follows from (5.10).

A theorem concerning the conservation feature of the treatment, which
corresponding to Theorem 4.2 is follows:
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Theorem 5.3 If both the underlying scheme and the treatment are of the
first order, then if the k-wave is a discontinuity, (8.7) holds for the corre-
sponding new-formed critical cell on the level n with (g}, , + g}, 2)x standing
for g% and £ for £*. otherwise, the change of the numerical solution in
treating the rarefaction wave is (g}, ) + g7, 2)x + O(1). If both the underlying
scheme and the treatment are of the second order, then if the k-wave is a
discontinuity, (8.8) holds for the corresponding new-formed critical cell with
(g} 1 + @}, 2)r standing for ¢f, end £P for ¢*, otherwise, the change of the
numerical solution in treating the rarefaction wave is (¢7 ; + ¢} 2)r + O(h)

Proof. According to the discussion before, (4.8) and (4.9) for the first
order case and (4.10) and (4.11) for the second order case are still true.
Therefore, by noticing the way £} is computed, the conclusion for the dis-
continuity case follows almost along the same proof for Theorem 4.2. The
conclusion for the rarefaction wave follows easily from the way the numerical
solution is updated and (4.8) and (4.9) or (4.10) and (4.11).

Due to the above theorem, (3.9) is still true by the same argument in §4,
only it is in a vector form now. Finally, we have the following theorem as a
surnmary of this section.

Theorem 5.4 The conclusion of Theorem 3.2 is still true for the Euler
system case when the solution is piecewise smooth with a finite number of
interactions of discontinuities.

6. Numerical examples

The underlying scheme used for the numerical experiments in this section
is a second order TVD scheme described in [13] with a Runge-Kutta type time
discretization. Since the Runge-Kutta procedure can be described as a two
step procedure, the predicator-corrector procedure, the underlying scheme
also can be written as two step scheme, the predictor step

+1 2 ~ ~
”? = u;‘ - A(f?+1/2 - f?—1/2): (6.1a)
and the corrector step

_pt+l _ ontlf2 fnt1/2 fn+1/2
Uy = U ~ MFizf2 — ili)e ),

(6.16)

uftt = 3(u} + a7,
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with a numerical flux f satisfying

HFi = Fieajs) = flome; + O(R?) 62

The treatment is incorporated into the underlying scheme in the following
way:

1) The treatment should perform in each of the predictor and corrector
steps, however, only the predictor step moves critical cells to their adjacent
cells according to their positions of discontinuities. The corrector step does
allow critical cells to move, even though their positions of the discontinuities
are little bit out of the critical cells.

2) For a critical cell, the predictor step gives a position of the discontinuity
£7+1/2 and the corrector step gives a position of the discontinuity £**. The
position of the discontinuity on the new level is finally given by

g = (€ + E) (63)

3) When a critical cell moves to its adjacent cell in the predictor step,
at the point at which the numerical solution is updated, «} in the second
formula in (6.1b) should be replaced accordingly by the extrapolated datum
in the scalar case or the corresponding middle state in the system case.
For example, when a critical cell [z;,,z;,41] moves to its left adjacent cell

[€j,-1,2;] in the predictor step, u}, in the second formula in (6.1b) should

be replaced by u}'l"i' in the scalar case or u}‘;{* in the system case.
EXAMPLE 1. This is an example for the linear scalar case.

g+ uy =0, (6.4a)
—msin(%m‘mg) ~-l<z< __,;_

to(z +0.5) = { |sin(27z)] |z} < % ; (6.4b)

sin(3rz) 1

g o ] e 2 2

r—1 6 3 <z<l
and .

uo(z + 2) = uo(z). (6.4c)
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The exact solution to this problem contains three discontinuities and a week
discontinuity (a discontinuity of the first derivative). The second order treat-
ment is applied to the contact discontinuities as well as to the weak disconti-
nuity by a considering that taking information only from the same side will
also sharpen the corner of the weak discontinuity. The mesh ratio X is 0.5,
and a TVB modification introduced by Shu in [14] is made on the underly-
ing scheme to improve the computation near extremum points. Figure 6.1-a.
and 6.1-b. present the numerical results with k = J- (60 grid points) at ¢ = 2
and ¢ = 8 respectively. Figure 6.2-a. and Figure 6.2-b. present the numer-
ical results with h = Z (120 grid points) at ¢ = 2 and ¢ = 8 respectively.
Comparing with the results without treatment, which we didn’t present here,
Figure 6.1 and 6.2 show a quite improvement in discontinuity transition and
overall resolution.

EXAMPLE 2. This is an example for the Euler system with initial con-

ditions:
y; 0<z<(0.1
g =1 u,, 01<z<0.9 (6.5)
u, 09<z<1

and solid wall boundary conditions, where

L= pm = pr =1,
Gg=gmn=¢ =0, (6.6)
pr =103, pn, = 1072, p, = 107,

A is still 0.5 and & is 0.005 (two hundred grid points). The second order
treatment is used. The numerical results at ¢ = 0.026 and ¢ = 0.038 are
presented in Figure 6.3 and Figure 6.4 respectively, where the solid lines are
the numerical solution obtained by an ENO scheme with 800 grid points and
are reguarded as the exact solution here. At around ¢ = (.032, a very strong
rarefaction wave is generated from the interaction of a shock and a contact
discontinuity. The underlying scheme based on Roe’s approximate Riemann
solver can not span the rarefaction; therefore, the following viscosity term

Ap(AAy )]

with a coeflicient of 0.2 is added to the underlying scheme to obtain a physical
solution.
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7. Conclusions

We have introduced a treatment for discontinuities, which is a new shock
tracking technique, however, without a lower dimensional grid to resolve the
discontinuities. The main idea of the treatment is that the computation on
each side draws information that jumps at the discontinuity only from the
same side. A numerical method for ordinary differential equation is incorpo-
rated into the algorithm to compute the locations of the discontinuity. The
analysis shows that this is equivalent to record the conservation error and
compensate it in the following timesteps; therefore, the treatment still has a
conservation feature. Numerical examples shows that the treatment works
quite well in both one dimensional scalar and system cases. A paper about
the extension of the treatment to the two dimensional case is in prepara-
tion. A further development of the treatment is how to use it to capture a
spontaneous shock; in fact, some of this work has been done in [11].
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