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Appllcatlon to Tubular Chemical Reactors

Charles G. Lange* and Hubertus J. Weinitschke'

Abstract

Singular perturbation techniques are used to study solutions of certain nonlin-
ear boundary value problems defined on domains with a circular hole of radius ¢,
in the Hmit e—0. Asymptotic expansions are constructed to describe the behav-
ior of solutions at and near simple and double limit points (cusps). In particular,
the behavior of axisymmetric solutions in an annular domain at limit points is
investigated. The results are applied to two model problems arising in chemical
reactor theory. The asymptotic analysis predicts a surprisingly large sensitivity
of limit points to the ¢ -domain perturbation considered here.

1 Introduction

Let u(z, A) be the solution of a boundary value problem (BVP), where g is & point
in a plane bounded domain D C R?, depending on a real parameter A. Of particular
interest are certain critical values of A where a solution branch becomes singular,
such as Hmit points (turning points) Ay, or bifurcation points Ap. Let D be modified
by piercing a small circular hole of radius ¢ centered at z,, that is, the domain D, is
obtained by subtracting from D a ball {z € D,| z~z, |< €}. In addition, a boundary
condition like u = 0 is imposed at the hole. This ¢ - domain perturbation will result in
singular points Ar(e), Ag(e). In this paper we are interested in asymptotic expressions
for Az(e) — Ap for small . Bifurcation points are considered in a companion paper

).

This problem is not only of intrinsic mathematical interest, also for D € R, n > 2,
but there are applications in a number of different areas. One is the buckling of plates
and shells with small holes. Both snapping (limit points) and buckling (bifurcation
points} are known to occur in such structures, where it is usually simpler to calculate
critical points for the structure without hole. Therefore, it is of interest to assess
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analytically, for small e, the effect of the singular domain perturbation on the critical
load. Another area of potential application is chemical reactor problems, in particular
tubular reactors with both external and internal cooling. In these applications the
domain D in question is usually two-dimensional.

We shall not address the problem in any generality in this paper. Rather, we shall
show for a specific class of semilinear elliptic problems of the reaction-diffusion type
how singular perturbation techniques can be applied to yield asymptotic expressions
for Ap(e). We restrict ourselves in the subsequent analysis to circular domains with a
centrally located hole, that is, an annular domain, where € := a/b is small {a=inner
radius, b=outer radius). In that case, positive radially symmetric solutions are of
particular interest. We study the variation of limit points with ¢ for a class of
nonlinear boundary value problems of second order in some detail. It is shown in [1]
how the results can be extended to noncircular domains with one or several small
holes.

We are not aware of any previous asymptotic treatment of limit point problems
for domains with small holes. Considering problems of the form Au+Af(z,u) =0, in
annular domains D, and assuming a linear boundary condition at the outer, Dirichlet
boundary condition at the inner boundary of D,, we obtain an asymptotic expansion
for simple {quadratic) limit points of the form

AL(e) = A+ A+ X674 0(8° §—0 1.1
)

where

§ = 8(c) = (log %)ﬂ (1.2)

For the special cases f(u) = expu and f(u) = exp(u/1l + pu), which occur in the
modelling of thermal ignition problems in tubular reactors (e.g. see [2]}, the first two
terms of the asymptotic expansion of the solution are worked out in detail. We also
treat the asymptotic behavior as e — 0 at a double (cubic) limit point Ap that results
from the coalescence of two simple hmit points. This situation occurs, for example,
in the case f(u) = ezp{u/(1 + pu)) at some value up. Again we find

Ap(e) = Ap+ Mé+ A8% +0(6%)
-0 (1.3)
pple) = pp+ pib + 28 4+ 0(8%).

The evaluation of the coefficients in (1.1) and (1.3) shows that a small hole can have
a remarkably large influence on the location of the perturbed limit points.

Semilinear elliptic problems in annular domains D, € IR" have been studied in a
series of recent papers by Bandle, Coffman, Marcus and others, including the limit



situation € — 0 (e.g., see [3], where further references are given). However, the
assumption is n > 3. The analytical techniques (reduction to a generalized Emden-
Fowler equation and phase-plane methods) do not seem to be applicable to the case
n = 2. Moreover, growth conditions on f{z,u) for u — oo are assumed that exclude
the tubular reactor examples given above.

The problems to be analyzed in this paper bear some resemblance to the following
model problem in the asymptotic theory of incompressible flow at low Reynolds
numbers, originally introduced by Kaplun and Lagerstrom in 1957. Let y(r;e) be
defined by [4,5]

dy n-—1dy dy
pr AR A

y=0atr=¢ y=1latr=o0. (1.4)

The first two terms represent the Laplacian of an axisymmetric function in n dimen-
sions, say the temperature, r being the radial variable (yy’ may be considered as a
heat loss). In the absence of the hole the equilibrium temperature is y = 1 every-
where, For n = 2, the introduction of a cylindrical cooling rod of radius e constitutes
a perturbation, which is expected to be small if € « 1, except near the surface of
the rod, as y = 0 at r = . Hence, the convergence of y{r;e) as ¢ tends to zero is
nonuniform and we have a singular perturbation problem of the layer-type, where
the boundary layer occurs at r = €. An asymptotic solution of (1.4) was given in [4],
it is described in more detail in {5] and {6]. The outer and inner expansions y and
y; for y(r;e) are of the form (n=2)

yo(r;e) = 1— E(r)é+ 0(6%), E{r) = [Ft e ldt
yi(rie) = dlogs+ 0(6%), s = rfe.

A different treatment of a generalization of (1.4) is found in [7]. Unlike the problems
treated in what follows, the solution of BVP (1.4) is unique [8].

The paper is organized as follows. The formulation of the problem is given in
Section 2, which also contains a brief review of the asymptotic expansion at regular
points [1,8]. In Section 3, the simple limit point problem is treated. Asymptotic
expansions of the solution are constructed at and near the himit point. In Section
4, the double limit point problem is treated for a class of BVPs depending on two
parameters A and p. In Section 5, the results of Sections 2 and 3 are applied to
the case f(u) = ezpu, which can be solved exactly. In Section 6, the asymptotic
results of Section 2,3 and 4 are applied to the case f{u) = exp(u/(1 + pu)), which is
considered a more realistic model for certain exothermic reactions and for which an
analytic solution is not known. The results of the perturbation method are compared
with exact and accurate numerical solutions in order to confirm the validity of our
asymptotic solutions.



2 Formulation of the class of problems

We propose to study the effect of the e-domain perturbation defined in the introduc-
tion for certain nonlinear model problems involving the Laplacian and c¢ylindrically
symimetric solutions. We begin by describing the problem and the conditions which
define limit points.

2.1 The basic equations

The problems we wish to consider can be viewed as originating from the two-
dimensional BVP in the unit disk

AU+ Mf(r,Usp) = 0, 0<r<l, 0<6<27

a"é";;-}-U = 0 on r=1

where r is the radial variable, A, 4, and « are parameters; and f is a smooth nonlinear
function of r, U and p. Cylindrically symmetric branches of solutions U(r, A) of (2.1),
for fixed p and «, are obtained from

U+ iU +Af(r,U;p) =0 0<r<i
BVP(I) (2.2)
U'(0,0) =0 = al'(1) + U(1),

primes denoting differentiation with respect to r,

Associated with BVP(I) is a linear ‘variational equation’ obtained by differen-
tiating BVP(1) with respect to A. It is well-known (e.g. [10,11]) that a necessary
condition for a solution branch of BVP(I) to have a simple (quadratic) limit point
at A = Ag is that the homogeneous variational equation has a nontrivial solution
Vo(r) satisfying the boundary conditions in (2.3). We assume that this is the case.
Hence, for A=Ay Up(r):= U(r, Ao) is a solution of BVP(I) and V,(r) is a nontrivial
{smooth) solution of

Var(I) LeVo=0, 0<r <1, V,(0)=0=aV,(1)+ Vo(l)=: BV(1) (2.3)

where

I

Lu=L(\ U = u" + “? F Ml Uy, Lo = L{Ae, Ug).
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Without loss of generality we tnay assume that V5(0) = 1.

Later we shall make use of the fact that the homogeneous differential equation
Lu = 0, which has a smooth solution V satisfying V'(0) = 0, has a second, linear

-t -

LIS [P P | P,
LIUCPCIIUCLLL DULULIWVLL

sty =V [ o (2.4)

which, in view of the smoothness of V(r), can be written in the form

2

S(r)=V(r)logr + R(r), ~ with LR=--

Vi(r) (2.5)
and R(0) = R'(0) = 0. With the normalization V(0) = 1, S satisfies the asymptotic
relation

S(r)y=logr+o(l) as r—0+. (2.6)

When a set of solution branches U(r, A; ), for different values of u, has two or
more simple Hmit points, a coalescence of two such limit points to one double limit
point may occur at a critical value of u. The condition that a solution branch of
BVP(I) has a double limit point, also called a simple cubic limit point (cusp) at
(A, 1) = (Ao, o) is that a ‘second variational equation’ has a solution W(r) defined
below [12,13]. Hence, for A = Ao, it = o Ua(r):= U(r, Ao) 1s a solution of BVP(I)
for p = pg, Vo{r) is a nontrivial (smooth) solution of Var{l) and W (r} is a nontrivial
(smooth) solution of

LW =W" + %W’ + ofulr, Us; 10)W = =Xofuulr, Uo; po} Ve
W'(0) = 0 = BW(1).

—_—
!\')
-1

p—

Again without loss of generality we may assume that W(0) = 1.

The modified problem consists of deleting a small circular hole of radius € from
the center of the unit disk and imposing the condition u = @ on the boundary r = ¢.
Let u(r, A;e) denote the cylindrically symmetric solution of this modified problem.
Then u satisfies

u”-l—%u'—i—)\f(r,u;p):(} e<r <1
BV P(II) (2.8)
u(e, Aje) =T, Bu(l,\e) =0

We want to study the behavior of the solution branches u{r, ;) as € — 0.



Let U(r,A) denote a solution branch of BVP(I) with a simple limit point at
A = Xo, U = Uy, Under suitable conditions BVP(I1} will have a nearby solution
branch u(r, A; €) satisfying

lir%u(r, ey =U(r,A), r fixed, (2.9)

for each 0 < r < 1. Of course we don’t expect the convergence in (2.9) to be uniform
near r = 0 (unless & = U(0).) Moreover, for sufficiently small e > 0, we expect the
solution branch u{r, A\;¢) to have a family of simple limit points

A = Aole), uo(r; €) 1= u(r, Aole); €), (2.10)

satisfying
lin% Aole) = Ao, lir% up(r; ) = Up(r), (2.11)

foreachr, 0 <r < 1.

It is apparent that the existence of this family of limit points requires the existence
of a family of nontrivial solutions vo(r;e) of the variational problem

Lovo = vy + 30+ dale) fu(ruo oo =0 e <r <1
Var(II) (2.12)
vole;e) = 0 = Bug{l;e).

Consistent with the limits in {2.11) we expect the function vo(r; ) to satisfy

lim vo(rie) = Vo(r), r fixed, (2.13)

foreachr, 0 < r < 1.

Similarly, if BVP(I) has a double limit point at A = Ag, U = Us(r), for g4 = o
then under suitable conditions on f(r,u; 1) BVP(1l) will also have a nearby solution
branch u(r, A;&) satisfying (2.9), and for sufficiently small ¢ > 0, we expect this
solution branch to have a family of double limit points

A=Xo(e), p=upole), wuolr;e):=ul(r,Aole);e) (2.14)

satisfying Ao(e) — Ao, pole) — po, and ug(rje) — Up(r) as e — O for each r,
0 < r £ 1. The existence of these double limit points requires the existence of
nontrivial solutions vy(r;€) satisfying (2.12), and of solutions w(r; €} of the modified

BVP (2.7), that is



Low = —=Aofuu(r, uos po)vg, € <r <1,
(2.15)
w(e;e) = 0 = Bw(l;¢),

with the property w(r;e) = W(r) for e — 0, r fixed, for each r, 0 < r < 1.

2.2 Branches of regular solutions

Asymptotic expansions of solutions u(r, A; €) of BVP(II) for fixed A # Ag are obtained
by following the procedure in [1]. A first approximation for the outer solution is, for
e€r<l,

u(rie) ~ U(r) + ¢(e)ii(r) (2.16)

where U(r) satisfles (2.2). The dependence on A (and y) is dropped for convenience.
#(e) is an asymptotic scale to be determined, with ¢{e) — 0ase — 0. We don’t expect
the outer approximation to be valid near r = e. Introducing an inner coordinate
s = r/e, the differential equation in (2.8) is transformed into

d? 1d
d—;:+;d—:+62)\f(es,u) =0, s>1 (2.17)
Moreover, u must satisfy u = @ for s = 1. Hence, for sufficiently smooth f the

derivative terms dominate in {2.17) and we conclude that a first approximation for
the inner solution is

u(s;e) ~u + v(e)log s[C + o{1)], e—0 (2.18)

with s > 1 fixed. The order function v(e) will be found below by a leading order
matching.

An equation for 4(r) is found by substituting (2.16} into (2.8) and carrying out
the standard lmit process. We obtain for ¢ — 0

Li=0, Bi(l)=0

4 is seen to be a solution of the variational equation, therefore

i=CV(r) + CaS(r)

with V and S defined as in Section 2.1. The boundary condition at » = 1 requires



¢y = —C;BS(1)/BV(1)

Since BVP (2.3) does not have a nontrivial solution at a regular point U, A, it follows
that BV (1) # 0. For small r we find, in view of (2.6) and V(0) = 1,

BS(1)

u(rie) = U(0) +o(1) + $()Cs logr — Zr8

+o(1)!.
Matching this with the inner solution (2.18),

u(r;e) = u + v(e)(logr —loge)[C + o(1)]

we deduce that

1

loge

We) = ——— =1 6(e), Co=C=U0)—T, ¢c)=25).

Hence the leading term outer solution is

u(r,e) ~ U(r) + 6(e)U(0) —7) |S(r) — gi((ll)) Vir)|. (2.19)

Following the procedure in [1], we now assume an outer asymptotic expansion of
the form

u{r,e) ~ U(r) + i up ()65 (e), (2.20)

k=1

as ¢ — 0, for fixed r, 0 < r <1, and an inner asymptotic expansion

u(r,e) ~T+logs D aré*(e) {2.21)

k=1

as € — 0, with s = r/e > 1 fixed. The functions ux(r} are obtained by substituting
(2.20) into the differential equation (2.8) and equating coefficients of powers of é to
zero. The appropriate boundary conditions are Bui(1) = 0. The constants a; in
(2.21) and the constants of integration in u(r) are determined by a straightforward
matching.



3 Singular perturbation of simple limit points

When A approaches a limit point Ag, the asymptotic expansions (2.20), {2.21) break
down, the solution branch u(r, A; €} deviates appreciable from the unperturbed solu-
tion branch U(r, A), the difference exceeds the order 0(§). In this section we study
the sensitivity of simple limit points with respect to the e-domain perturbation for
the class of problems defined by (2.2).

In constructing asymptotic approximations to the perturbed family of limit points
Ao(e), we must solve both parts of the extended system formed by BVP(II} and
Var(Il) simultaneously. Understanding the interplay between these two BVPs is
crucial to obtaining the correct form of the inner and outer expansions for ug(r;e)
and vo(r;e). To make this interplay more transparent we shall first consider simple
(two terms) approximations to Ag, up and vy, as in Section 2.2.

3.1 The leading terms of the asymptotic expansion

Based on the limits (2.11) and {2.13) we attempt simple outer approximations ug, vq
in the form

uo(rie) ~ Uo(r) + ¢{e)i(r),  wvolr;e) ~ Vo(r) +(e)i(r) (3.1)

for e — 0 with r fixed, 0 < r < 1. An analogous expression for Ag{c) is given by

dole) ~ Ao+ x(€)A,  e— 0. (3.2)

Here ¢, 3 and x are unknown o(1) order functions; further unknown quantities are
@(r), O(r) and the constant A.

Near r = & the solution must be represented by an inner approximation. With
the inner coordinate s = e/r, the differential equation in (2.8) transforms into (2.17)
for v = up(r;e). Hence the inner approximation has the form (2.18). By a similar
argument based on the form of (2.12) we find that the inner approximation for vg
satisfies

vo(r;e) = v(e)log s[l + o(1)], e—0 (3.3)

3

with s > 1 fixed. In deriving (3.3) we have made use of V5(0) = 1.

Equations for the correction terms % and 9 are obtained by substituting (3.1) and
(3.2} into (2.8) and (2.12) and carrying out the usual limit process. We obtain



L X)) 5 501 o
and
v = 1 () T T
Lov = [}:-—90 t‘b( )] /\fu( U[))Vo( )
¢(c) r, Uo)a(r)Vo(r), Bi(1) =
[g i e )} Nofun(r, Uo)a(r)Vo(r), Bi(1) =0, (3.5)

First we focus on (3.4). Since f(r,U) £ 0, we can rule out the possibility that
X > ¢ as € — 0. Suppose x = 0(¢), say

i X(8)
o) "
Then (3.4) becomes )
Lot = —Af(r,Up), Ba(1) = 0. (3.6}

It proves convenient to express a particular solution of (3.6) in terms of the solution
of the related initial-value problem

Loz = ~ f(r,Us), r > 0, 2(0) = z'(0) = 0, (3.7)

For smooth f (3.7) has a smooth solution z(r). We can write the solution of (3.6) as

So(r)
i(ry =V A|-B:z(1 3.8
( ) ! G(T)+ [ ( )BSO( ) (T)} ( )
where Sp is a solution of LySy = 0 satisfying (2.6) and ¢; is an arbitrary constant.
To gain further information we must carry out a matching with the inner expansion
(2.18). For small r, the outer approximation in (3.1) satisfies

€)= [0(0) + o(1)] + 8(0) A ZaTogry + o] (09)

as € — 0 with ¢ < r € 1. Matching of this expression with the inner approximation
as in Section (2.2) requires a; = Up{0) — 4,

¢le) ~ b(e), v(e) ~ 8(e), e—0 {3.10)

10



and

BSe(1)

A=- Bz(1)

[Uo(0) — 7). (3.11)

(If B2(1) = 0, we are dealing with a higher order limit point.)
An interesting feature of this partial result is that it provides a first correction
to the value of the limit point Ag(e) without any input from the variational problem

(3.5). However, in order to determine the constant ¢; in (3.8) we have to solve (3.5)
for o.

There is a second, more subtle way in which the companion variational problem
influences the form of the expansion for uo. We have yet to consider the possibility
that

. xle)
T

In this event (3.4} becomes Lott = 0, Ba(1) = 0, which has the solution i(r) =
d,Vo(r), with d; an arbitrary constant. The outer approximation (3.1) then becomes

(3.12)

uo(r; €) ~ Uo(r) + ¢()dr Vo(r),

as € — 0 with 0 < r < 1 fixed. Since Vy(r) is smooth for all r this expression is
consistent with the inner approximation for ug(r,¢) so long as

6le) € gle) < 1 as  e— 0 (3.13)

Without recourse to the variational problem we cannot say anything further about
.

Since vy satisfies a homogeneous BVP we may assume that @ in (3.1) is not simply
a multiple of V5. Thus, we assume that

P(e) ~ dle)  as e— 0, (3.14)

with the consequence that (3.5) becomes

Lot = —Aody fuu(r, Uo) Ve, B#{1) = 0. (3.15)

At this point our argument proceeds as before for #. The inhomogeneous term in
(3.15) forces ¥ to have logr behavior for small 7. But with § € +(¢) < 1 ase — 0,
we can’t match the resulting outer expansion for vg in (3.1) with the inner expansion
(3.3). Thus we conclude that the limit (3.12), and consequently (3.13), is not possible.

11



The only viable choice is (3.10) and (3.11). It then becomes apparent that we must
take () ~ 8(¢) as € — 0, so that (3.5) becomes

Lﬂﬁ = —i_fu(‘f'! U[])Vn — )\g}fuu('f', Ug)ﬁ%, Bﬁ(l) = O (316)

Substituting (3.8) into (3.16), it is seen that the solution ¥ may be obtained in the
form

b= k1V6(T’) + ]CQSD(T') + C12‘1(T‘) -+ Zg(?‘) (317)
where
Lony = _’\Dfuu(rg UO)VBZ
(3.18)
Lozy = —=Mu(r,Uo)Vo — Aafuu(r, Uo)Vol(Us(0) — ) Sy(r) + Xz},

with z;(0) = 2;(0) = 0 j = 1,2 and 2(r) defined in (3.7). Setting ki = 0 (see below),
and matching to order 0(§) with the inner expansion (3.3}, we obtain ky = 1, while
the boundary condition at r = 1 yields

¢y = —(Bz (1)) BSo(1) + Bzy(1)] (3.19}
Thus we have completed our determination of the leading-order corrections for the

family of limit points.

3.2 Asymptotic expansions at a limit point

Motivated by these preliminary results we assume that full expansions for the family
of limit points have the form

Aole) ~ Ao+ Z Ak5k(£) as € — 0 (3.20)
k=1

with outer and inner expansions for ug(r;e) given in the form (2.20) and (2.21),
respectively, U(r) in (2.20) being replaced by Up(r). These expansions must be sup-
plemented by outer and inner expansions for vo(r;e), that is,

wlri ) ~ Valr) + 32 ()6 (<) (3.21)
k...-»

=]

12



vo(r;e) ~ log s Y bi6*(e) (3.22)
k=1

e = Y A NS 5 SRR I B o Y P fn Aty Lo _“:L}A Y S P BN B 1 1 W,
as € = U WILLL 7 lIXCU, U <. T > (.ol ) alitd WILLL 5 == F/e .~ 1 LIIXCd 11l {J.24 ), dildd

i
with Ay = 5\, uy = 4, and v; = 4.

A few remarks are in order regarding the form of these expansions. An induction
argument based on our preceding analysis can be employed to verify that no interme-
diate terms, e.g. 0(6%?), have been missed. On the other hand, our expansions fail to
account for 0(e) effects because such terms are transcendentally small compared to
0(6) terms. As a consequence, the effect of the nonlinearity never appears in the inner
expansions. The constants a; and b, are determined by a straightforward matching.
It can be shown that the outer expansions contain the inner expansions.

In order to determine equations for the unknowns Ay, uy and v, one simply sub-
stitutes (3.20) {2.20) and (3.21) into the system of differential equations {2.8) for
u = up and (2.12), and equates coefficients of powers of § to zero. Assuming the
implied smoothness of f holds we find

0(6) : LUU} - _Alf('r) Uﬂ)a
(3.23)
Lovi = —MVofulr,Uo) — Ao Vo fuu(r, Us),
1
0(62) . LUUQ = '—)\Qf(i"‘, UO) e /\fl.'.]fu(?‘, U[]) —_ ;)\Ouffw(r, Uo),
LOU? = —‘)\?lfofu(r} UO) - }‘l[vlfu(r: UO) + u}‘%fuu(n UU)] (3-?'4)
. 1 .
_)‘O{(UZ% + ulvl)fuu ("'1a UO) - 5“-;1?-"’(quuu(711 DU)]:
O(ék) i Loux = gk(?", Ala"':’\k)ulw"auk—l)a
(3.25)

Lgvk = hk(T‘,Al,...,)\k,ul,...,'U-k,'l)l,...,'b’;;_l),

where g, and hy are functions of the indicated arguments. The appropriate outer
boundary conditions are

Bui(l) = Bu(1) = 0, k=1,2,.... (3.26)
This system of problems must be solved in sequence. As our preliminary results

indicate, in order to determine A, k = 1,2,..., one must first determine uz_;, and
vg—1. Then, solution of the equation for uy, subject to (3.26) and subsequent matching

13



with the inner expansion (2.21) for ui_; yields Ax. The function u; will still involve
an arbitrary constant ¢ in the form

ue{r) = cVolr) + - -.

To ascertain ¢ one must solve the companion problem for ve. Analogous arbitrary
constants in v; (like k; in (3.17)) may be set to zero since vo{r;e) equals Vo(r) to
leading order and v, satisfies a homogeneous BVP (2.12). The solutions uy, vx may
be obtained by solving appropriate linear initial value problems such as (3.7) and
(3.18) for k = 1.

With a view towards later application, we list here the results of these calculations
for us, Az

ua(r) = c2Vo(r) + 1 8o(r) + Ap2(r) + 2a(r) (3.27)
d = _%(1) ey BSo(1) + Bzs(1)] (3.28)

where .
Lozz = — A1 fuur — ;/\ofu.uuf, z3(0) = 2;(0) =0 (3.29)

1
- Bzl — 3.30
C2 le(l) Z«:( )» a; = 0 ( )

Loze = —AafuVa— M(vrfu+ i Vofuu) = 30 fuu Vou?
—Aofuu [t1v1 + Vo(e1 So + Aoz + 23)],  24(0) = 3:1(0) = 0.

(3.31)

Note that LyZ = log™r, m = 1,2,..., has a particular solution that behaves like
ri(logr)™ as r — 0. Hence the above representation of uy(r) is well defined. The
same is true for z4(r). Finally, we have vao(r) = c221(r) + 24(r).

3.3 Asymptotic expansion near a limit point

The preceding analysis provides a means of constructing approximations to the limit
point itself. Constructing approximations to u{r, A; €) for values of A near a limit point
is also a relatively easy task. The expansion obtained in Section 2.2 is restricted to
values of X not too close to Ag. For ) near A, the deviation u(r, A\;e) —U(r, A), except
near r = ¢, will no longer be 0(¢). Due to the quadratic nature of the limit point,
that deviation will be appreciably larger when X is approaching Aq.
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To analyze the solution near the limit point, it is appropriate to set

A= Xo+ arb(e) + axb(e)* + -, e—0 (3.32)

and to take the outer expansion for u in the form

u(r, Aje) ~ Up(r) + f: Uk(r)zﬁk/z(a) (3.33)

k=1

as £ — 0 with r fixed, 0 < » < 1. The inner expansion also proceeds in powers of

§1/2, The coefficients Ui(r) are found in the usual manner, that is, by substituting
(3.32) and (3.33) into BVP(II). The variational BVP Var(Il} does not enter into this
calculation. One easily finds LoU; = 0 and

1
LUz = ~0y f(r,Uo) = 5 Ao fuu(r, Uo)UT (3.34)
with BU{1) = BUy(1) = 0. Regularity of Ui(r) requires Uy = B;Vy{r). The right

hand side of (3.34) shows that Us(r) can be obtained in terms of the functions z(r)
and z(r) defined by (3.7) and (3.18), respectively. Thus we have

1
Uz('r‘) = Bz%(’f‘) + DQS()(T) + 0‘12(1") 4+ -2_sz1 (T‘) (335)
The inner expansion consistent with (3.32) and (3.33) has the form

ulr, Ae) ~ T+ log s(A16 + A6 + 438 + -+ ) (3.36)

Matching the 0(6'/?) and 0{§) terms with the outer expansion yields

Al = UO(O) - EI, Ag - 31V0(0) = B],
(3.37)
D, = 4, As = B,
Applying the boundary condition BU;(1) = 0, we may solve (3.35) for By,
o2 () ety < 22200
! = o (Oo0) ~ DES() + a1Ba1)] = T - ) (339)

with A given by (3.11). Note that at the limit point a; = X, so that B; = 0, and the
fractional powers of § disappear in the expansions {3.33} and (3.36).
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In order to discuss (3.38), two cases must be distinguished. Setting go :=
Bz{1)/(Bz1(1)), we have

= +4/20n 3 —

{33 an >0 R 4
L N b 1 * - ¥ IV WA

J (3.39)

£
1

yielding two real solutions By for a; < X, that is A < Ag(e) (subcritical case), and

(22) go < g By = ﬂ:\/ —2gg(a1 e 5\) (3.40)

with two real solutions By for a; > A, that is, A > Ag() (supercritical case). Clearly
sgn qo depends on the nonlinear function f and on the constant a in the boundary
condition at 7 = 1. We have also computed a representation for Us(r) similar to
(3.35) in terms of Vj,So, 71 (defined in (3.18)) and one additional function zo(r).

4 Singular perturbation of double limit points

In this section we assume that f = f(r,U,; u) is such that BVP(I) has a double limit
point at (X, u) = (Ag, o). The conditions for the occurrence of this kind of singular
point have been given in Section 2. Thus we assume that the system (2.2}, (2.3) and
(2.7) has a solution, which is denoted by Up, Vg, W, with ¥ # 0. Assuming that the
modified problem (2.8), (2.12) and (2.15) also has a solution ug,vg,w, we propose
to construct an asymptotic expansion for ug(r;e),vo{r,e),w(r, e} for the family of
double limit points Ao(e), o(e) as € —» 0. The method largely follows the one for
simple limit points, so we merely outline the main steps.

4.1 The leading terms of the asymptotic expansion.

As in Section 3.1, we assume simple two-term outer approximations ug, vg, Ag 1n the
form (3.1) and (3.2), supplemented by

w(rie) ~ W(r) + v(eyb, po(€) ~ po + E(e) (4.1)

for € — 0. The leading term inner approximation will be of the form (2.18), (3.3),
with the additional relation

w(r;e} ~ 8(e)log s(1 + o(1)) (4.2)

Form the equations for ug and vy, we now obtain
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Loi = - [%]Oif - [%L)\gﬁf“ (4.9)
g

L’U = _l__:’(.l )\’ {/ —i“! )\f V U‘—r"‘l] )\fif (44)
U / uu u [’ .
0 J 0 0 0 l ,J 0 [TagY
where the Symbol [A/B]o means hmg_..{)[A(E)/B(E)], &Ild where f and ali deri vatives Of

f with respect to v and p are to be evaluated at r, U, po, for example f = f(r, Uo; po).
From the equation for w we obtain

LOII’ = - é (Aﬂfuuu%z + A[}fuuw)ﬁ

LV
X 2 3

— = - WA 4.5
2| (Fu¥s + 17) (4.5)
6 2 7 ~ d) ¥ ~

s (fuuu% + fuu-[;[ ) )\0# e Q}\U.fuuT'D'U
LYo Vi

Consider first equation (4.3), which is analogous to (3.4). As in Section 3, several
possibilities for the o(1) order functions must be distingnished. Here we have the
following four cases

Omlm [g]e’
@ [0 [g)

The simplest case is (1). Case (4) can be ruled out by arguments parallel to those
of Section 3, where {x/é], = 0 was ruled out. But the possibilities of (2) and (3) have
yet to be considered. Further cases of order relations arise from equations (4.4) and
(4.5). A careful analysis of all possible cases has been carried out by J. Narr [14].
The calculations are not difficult but very tedious, the result being that (1) is the
only viable choice in the present analysis. Moreover, all order functions ¢,1, x, v, ¢
must be 0(8) as ¢ — 0 to render matching of outer and inner approximations [14].

The differential equations for #,%, and @ are now obtained from (4.3)-(4.5) by
setting all [A/B],-limits to unity. In addition, 4,7, and ¥ must satisfy the boundary
conditions at » = 1. The solution of (4.3) can be written as

i(r) = a1 Vo(r) + diSo(r) 4 Az(r) + i(r) (4.6)
where z(r) is defined by (3.7) and {(r} is the solution of the initial value problem
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LOC = -'/\Uf.u(T& UO;.UO)a r> 0: C(O) = CJ(O) =0 (47)
Applying Buy(1) = 0 and matching with the terms of orders élogr and 6% of the

inner expansion, we obtain d; = Up(0) — T, a; = ¢;, and a first equation for the
determination of A, iz, viz,

ABz(1) + #B({(1) = —(Us(0) — @) BSe(1) (4.8)
Similarly, the solutions of (4.4) and (4.5) can be constructed by extending the scheme
used for the calculation of ¥ at the end of Section 3.1, which yield a second equation

for calculating A and /i and the yet unknown coefficient c;. Inserting (4.6) into (4.4),
we have

LO'D = — )\Ofuu%g - S\VE](fu + /\ofuuZ) - ﬁ)\GI/O(fuuC + fu,u) - A(Jdl.ﬁ.m'I;GSU (49)

Hence, the solution can be obtained in the form

5(r) = kaSo(r) + /W (r) 4+ Azr(r) + 2G(r) + 25(r) (4.10)
where
Lozy =  ~Vo{fu + dofunz), 2(0) = 2(0) = 0, (4.11)
Loty = —XVo(fuul + fun)y  G(0)=G(0) =0, (4.12)
Loza = —Xods fuuVoSo, 75(0) = 2,(0) = 0, (4.13)

and use has been made of (2.7). Matching with the inner expansion for ¥ and applyving
the boundary condition B#(1) = 0 leads to k; =1, b = ;W(0) = q,, and

ABzi(1) 4 B¢ (1) = ~Bzy(1) — BSo(1). (4.14)
The coefficients A and ji can now be determined by solving (4.8) and (4.14). In order
to find ¢;, equation (4.5) must be solved for @. Inserting (4.6) and (4.10) into {(4.5),

an equation of similar structure as (4.9) is obtained, from which it is apparent that
the solution can be written in the form

B(r) = kSo(r) + (3 X)W (r) + erz3(r) + z4(r) (4.15)
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where

2
L0z3 = ”—AOI/()(afuuW + fuuu% ) (416)
LQZ4 = '—)\quYF - /‘\ofuu[ﬁ'r(dls(} + }\Z ""r* ,('_VLC) -i— 21”0(5{) —"r r‘\Z] -%— ;"\fl + 22)}

ot (FuuW + fuunVel) = Mo fuua VE(dr So + Az + jiC) (4.17)

with 2(0) = 2,(0) = 0, i = 3,4, Matching with (4.2) and applying Bw¥(1) = 0 one
finds k; = 1, and

1
" Bz(1)

[BSo(1) + Bzy(1)). (4.18)

Cy =

This completes the determination of the leading-order corrections for the set of double
limit points.

4.2 Asymptotic expansions at and near a double limit point

It is obvious that the simple approximations given in the preceding section can be
extended to full asymptotic expansions for the family of double limit points i1 the
form

Aole) ~ Ao + i Mb5(e),  pole) ~ o+ i pid*(e),

k=1 k=1

with outer and inner expansions for ue(r;e), vo(r;€) of the form (2.20), (2.21}, (3.21)
and {3.22), supplemented by corresponding expansions for w{r;e). The coeflicients
functions uix(r), vi(r) and wi(7), ¥ = 1,2,... in the outer expansions are obtained
from differential equations and boundary conditions analogous to (3.23)-(3.26). The
remarks near the end of Section 3.2 concerning the sequential solution of these equa-
tions and the determination of the constants of integration also apply here.

We list here the results of the straightforward but lengthy calculations of the
second order correction terms for later application.

UQ(T‘) = Cg%(?") + CISO(?‘) + /\22 + ‘LLQC + z5 (419)
A B2{1)+ poB((1) = —Bz;(1) — 1 BSy(1)

- (4.20)
AgBZl(}) + ,UgBC](].) = '—BZf;(l) — ClBSQ(l)
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where the initial value problems defining 25, zg and z7 (see (4.21)) uniquely are given
in the Appendix. The coefficients A; and p2 can be determined from (4.20). In order
to compute ¢y, the BVP for w; must be solved. The result is

1 A1
ey "XEBS”(I)+BZT(1) : (421)

Ca =

As in the case of simple limit points, expansions for values A, y near Ag, po can
be constructed along the lines given in Section 3.3. In view of the cubic nature of
the double limit point, the appropriate form for the outer expansion for u will be

ulr, A, p;e) ~ Up(r) + i U(r)6¥(e)

k=1

as ¢ — 0, with r fixed, 0 < r < 1. The inner expansion will then also proceed 1n
powers of §/2, One finds Uy = B;Vy(r) and Uy = ByWo{r) + Bi1; where V; is a
solution of

LoVi = —(A0/2) fuu(r, Uo; o)V,  BVA(1) = 0.

The constant a; in (3.32) enters first in the differential equation for Us(r). We omit
further discussion of the asymptotic solution, as it closely parallels the solution near
a simple limit point.

5 Application to a simple thermal ignition model

Limit points play a prominent role in the study of reactors involving a selfheating
chemical! whose reaction velocity follows the Arrhenius law and which dissipates en-
ergy by conduction only. When the exothermicity of the reactant mixture, measured
by a parameter A, reaches a limit point Ay a thermal explosion can occur. A reactor
must be designed such as to avoid reactor runaways. Exothermic reactions in tubular
reactors of finite length have recently been considered by Hagan et al [15]-[17].

In this and the following section we address the following problem. A reacting
material is confined to an ‘infinite’ circular cylinder of radius normalized to one, the
heat flux across the boundary is governed by Newtonian cooling. Such a situation
would determine a limit point Ag. Now suppose one were to place a ‘cooling’ rod of
radius € along the axis of the reactor and to maintain the temperature at a constant
value on this inner cylinder. Clearly the presence of such a rod will have an effect
on the limit point. The problem is to estimate this effect for small e. We shall show
that it is quite dramatic.
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We first take up the limiting situation of infinite ‘activation energy’, the resulting
model is usually called the Frank-Kamenetzkii approximation (see [18] for a derivation
of the basic equations). In nondimensional form the BVP for this model is given by

AU+XY = 0 for 0<r<l 0<6<2n (5.1)
U
a(—9;-+U = 0 on r=1 (5.2)

where U is proportional to the deviation of the temperature in the vessel from the
temperature on the boundary, @ = 1/B1 and Bt is the Biot number. This BVP is of
the form (2.1) with f(r,U) = eV. Radially symmetric solutions I/(r, A} satisfy

U'+ iU 42 =0 0<r<l
BVP(I)] , (5.3)
U'(0,0) = 0 = aU'(1,A) + U(1, A).

If & = 0, this BVP has the well-known exact solution

2
1 4 A
Ulr,A) = log (TQ_:_TY) , Y=-1+ " (1 +4/1 — 5) . (5.4)

For 0 < A < 2 (5.3) has exactly two solutions. Clearly

A=do=2,  Ulr,2)=Us(r) =log i 1)2 (5.5)
defines the limit point. If & # 0, the solution of (5.3) is [19]
1+v\° 4o
U(r,A) = log (r2 T 7) + T (5.6)
where v = () is a solution of the transcendental equation
) = .._.._§3’__6—4a/(~r+1)_ (5.7)

(y+1)

It is easily shown that (5.7) also has exactly two solutions for 0 < A < Ap which
coincide at the limit point A = Ag given by (5.7) with

o=y = 2a 4+ V14 4a? {5.8)
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and Up(r) = U(r, Xo) as in (5.6) with v = 0.

The homogeneous variational problem (2.3) for A = Ap is

{ T .. % o N N - o o~ 1
Lg¥pi= Vg T pR¥g T 73 g Yo—vu U< r<ii
Var(I) { P (M 4 0) (5.9)
Vi(0) = 0 = a¥y(1) + Vo(1).
A smooth solution of Var(l) normalized to one at 7 = 0 is given by
Yo — 17
Vo(r) = (5.10)

Yo + 72

with a second, linearly independent solution having log r behavior given by

27"2 Yo — ?"2

Solr) = -+
o(r) Yo+71?  yo+7?

logr 0<r <l (5.11)

Introducing the ‘cooling rod’ of radius € into the reactor leads to the following
perturbed problem for u(r, A;¢)

u"-i—%u'—}—)\e":(} e<r<l1
BV P(II) ule,\je) =14 (5.12)
au'(1,Xe) +u(l1, Ae) = 0.

It turns out that this BVP also has an explicit solution which can be found by the
same substitution u(r) = clogw(r) that leads to the analytic solutions (5.4) and
(5.6). With ¢ = —2, the differential equation for w is

" ) 1 ] A
—ww +{w )Q—Www +§:D‘ (5.13)
T
We attempt to find a solution of the form

w= Ar® + Brt (5.14)

where 4, B,a,b are constants. A straightforward calculation shows that (5.14) is a
solution of (5.13) if we set

a=-8, b=2+4+p, A=8(1+5)AB (5.15)

with A, B arbitrary and # determined by (5.15) in terms of A, 4 and B. The constants
A, B can be determined from the boundary conditions in (5.12). One finds
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A= B 4 Peu/2
20[fA—(2+ B)B]+2(A+ B)log(A+ B) =0.
Together with A = 8(1 + B)*AB, we thus have three nonlinear equations that deter-
mine the constants 8, A and B.

In the special case o = 0 more explicit results can be obtained. Here A4 B =1,
and the solution of {5.12) is given by

u(r) = —2log [Ar—ﬁ +(1- A)r2+ﬁ] (5.16)

e-—u/2 - g2t8

RN
A=’ —T—— 5

A=8(1+p) A1 - A). (5.17)

Elementary considerations show that A = A(#) — 0 as f — 0 and as 8 — oo, and that
A(B) has a2 maximum J,, at some value f = fB,,. This maximum represents the limit
point Ag(e). A direct numerical solution of the equation dA/38 = 0 is inconvenient,
but it is a simple matter to find B, by calculating A = A(S) near B, from (5.17).
Some numerical values of Ag(e) for @ = 0 are contained in Table 1 below.

For 7 = 0 and sufficiently small ¢, we may use the approximation 4 ~ €. Then
we still have u{1) = 0 but

u(e) ~ —2log [1 +{1- 56)52*’3] = 0(¢?) e—0 (5.18)

provided # > 0. The equation for A becomes A = 8¢8(1 — £#)(1 + #)%. Setting # =
—§logn, with § defined as in (1.2), we have

A =8n(1 —n)(1 - &logn)* 0<éxl (5.19}

Clearly, the limit point {maximum) A, is near n = 1/2. For such an n § is positive
and f§ = 0(6). Thus (5.18) is a consistent estimate. Setting 9A/9n = 0 we find

1-2n+6[(2n - 1)logn+2(n—1)] =0

Assuming n ~ (1/2) 4 én + %2 + -+, we obtain m = —1/2, n, = (log2 — 1)/2.
Substituting these values into (5.19), the result is

Amle) =24 46log2 + 26%(1 +1log?2) +0(6%) as 6 — 0. (5.20)

A similar calculation for T # 0 yields, with A ~ e%/2¢?
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Am(e) =2 — 46log (%a“”) + 267 [1 + log? (%em)} +0(6%) as -0, (5.21)

We now compare these results with our asymptotic expansions of Section 3. For
simplicity we set o = @ = 0. Then the solution of (3.7) with f = e* and Uy(r)
according to (5.5) is 2(r) = —r?/(1 + r?). Making use of (5.10) and (5.11) with
~o = 1, the leading order correction (3.11) becomes

A=)\ =2log4 (5.22)

while the outer correction @ is obtained from (3.8) as

172

~ 1
u('r‘) - ui('r) = m (CI + 5/\1 IOg 'n") . (523)

In order to determine the constant ¢; we must solve for #, which amounts to com-
puting z; and z; from (3.18). It is easily verified that z; = —2r?/(1 + r?)? and that
the equation for z; becomes

1 — 2 1 - 2 ! .
Lozy = — : (1 4 log r) = H,, 2(0) = 2,{0) = 0. (5.24)

4hy ——
Y142y 1472

We note that the solution of the equation LoZ = H(r) satisfying Z(0) = Z'(0) = 0
is given by the formula

z(r) = [ 6(r,)H(p)dp (5.25)

where

p
(1+72)1+ 0%

G(r,p) = [2(1"2 o)+ (1 -7)(1~ p2)10g£ : (5.26)

It turns out that for all functions H(r) to follow below the integration in (5.25) can
be performed explicitly, but the algebra may be quite lengthy. Alternatively, observe
that

Lo(Z(r)logr) = (logr)Lqu‘»%Z'

Lo(Z(r)log’r) = (log’r)LoZ + %Z' logr + ',%Z

24



These relations are useful for calculating z, and z3. The solution of (5.24) is 2, =
—Xr2(1 4 r?)~?logr. Substitution of z;(1) and z,(1) into (3.19) yields ¢; = 2.

To find A\, and u,(r) from (3.27)-(3.31), z3 and 24 must be calculated. Writing
Lgzz = Hs we find

2

A 1—7r
Hg(?‘) = —Zl [Hl(f‘) }.ng T+ 8"("]“-““_;:'";"{)3

where Hy = 4(1 —r?)?/(1 +r?)* and H, was defined in (5.24). From this z3 is found
to be

2

log r} + 2H,(r) — 4H,(r)

25(r) = —(log? 4)— = [log?r — %(1—&-?‘2) F220(r) + 252(r) (5.27)

( 2)2

Next A; can be calculated from (3.28) to give Ay = 2 4 2log?2 = 2.9609. Finally,
solving (8.31) for z4(r), we obtain c; = 1.614 from (3.30).

Summarizing the results to this point for the limit-point expansions, we have

do(e) = 24 6(e)2log 4 + 67(€)2(1 +log?2) + 0(6%), & — 0, (5.28)
with the inner expansion for ug given by
up{r;e) = log s {6(E)log4 +28%(e) + 0(63)] , €—0 (5.29)
with s = r/e > 1; and with the outer expansion given by

4 2
ROl
2 r),,,,,Q

+62(5){ Ty (c2+210gr)+1+ -

(2 + (log4)log r}z} + 0(8%).

ug(rie) = log 24 (log4)log ]

(5.30)

o
(14722

The approximation to Ag(e) provided by (5.28) represents the main result of this
section. It agrees with the approximate result (5.20) based on the exact solution
(5.16). The slow convergence to zero of 1/log(1/c} as € — 0 implies that even for
very thin cooling rods we can expect significant increases in the safe operating range
of A beyond the unperturbed value of Ag = 2. For example, for £ = 0.001 our formula
predicts an increase in Ag of more than twenty percent. In Table 1 we compare the
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predictions of both two and three terms of formula (5.28) with numerical calculations
of Ao(e), based on the exact solution (5.17), for several values of ¢. In each instance
three terms of (5.28) provide a better approximation than do just two terms. Even
for e = 0.1 (1/log 10 = 0.4343) the accuracy is impressive.

exact two—term three—term
analytic asymptotic asymptotic
solution for | approximation | approximation

0.1 3.80151 3.20412 3.76258
0.04 3.20030 2.86135 3.14712
0.01 2.76102 2.60206 2.74168
0.001 2.46934 2.40137 2.46342
0.0001 2.33846 2.30103 2.33593

Table 1  Comparison of exact solution (5.17) and asymptotic approxi-
mations (5.28) to the limit point Ag(e) for BVP (1I), given by (5.12),a=0

A more detailed picture of the effect of introducing a cooling rod is provided in
the bifurcation diagram in Fig. 1, where

1 —e¢

€

1 1/2
[lulf == { ! /uz('r, )\;E)dr} .

The curves were obtained directly from the exact solution {5.16)-(5.17), with w = 0.
Qualitatively these curves are very similar, but the location of the limit point Xg
(at which a thermal explosion can occur) is very sensitive to the size of the cooling
rod. It would be interesting to find out how the range of stable reactor performance
analysed in [16,17] can be improved by introducing a cooling rod.

The inner and outer approximations to up{r;e) provided by (5.29) and (5.30),
respectively, are also quite accurate. For example, in Fig. 2 we compare the exact
solution with both the two-term inner and the two-term outer approximations, which
include all terms of order 82, for ¢ = 1/25. The approximations are both very good
in their assumed regions of validity. As e is decreased the accuracy improves, in
agreement with the order of magnitude error estimates in (5.29) and (5.30).

It is also possible to combine the inner and outer approximations into uniformly
valid representations. Adding one term of {5.29) to one term of (5.30} and subtracting
out the common (overlapping) part leads to the one term composite approximation
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2 \? logr 1
u(rie) = log (r2 + 1) + (10g4)log 1/e to (log 1/5) ’

as € — 0 uniformly on € < r < 1. The same process, except taking two terms from
both (5.29) and (5.30), yields the two term composite approximation

©) = log (52 + 1 Gl (2 + (og 4)(loxr)
u(rie) = log r2+1 1+r2logl/e °8 &7

n 2logr + 1
(log1/e)? log®1/e
as ¢ — O uniformlyon e <r < 1.

In Fig.3 and 4 we compare both the one term and the two term composite ap-
proximations with the exact solutions of ug(r;e)} for e = .04 and .001, respectively.
The improvement in the accuracy of the two term approximation over the one term
approximation is readily apparent, as is the improvement in each approximation for
smaller values of £. On the other hand, the two term composite approximation is not
as accurate as either the corresponding inner or outer approximations in their regions
of validity (compare Fig. 2 and 3). This situation is common in problems where the
boundary layer terms do not decay exponentially.

6 Application to a more accurate thermal ignition
model

We now consider the thermal ignition problem under the more realistic assumption
of a finite ‘activation energy’ E. The resulting equation is ofter called the Arrhenius
equation [2] or the Bratu problem [20]. It contains an additional parameter y =
RT,/E, where T, is the surface temperature. In dimensionless variables the Arrhenius
BVP for an infinite circular cylinder can be written in the form [20]

AU + 2eV/(+eU) — for 0<r<l, 0<68<in

(6.1)
a%% +U=0 on r=1,

where U, X and & have the same meaning as in equation {5.1). In contrast to the case
¢ = 0 {Section 5) there is no finite Ay beyond which solutions no longer exist. Rather,
positive radially symmetric solutions of (6.1) exist for all positive A and p. For a = 0,
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this is proved in [21}. For small g > 0, there exists a critical value A.(u) for which
the smallest positive solution of (6.1) approaches an infinite change of temperature
with respect to A. This value A (u) is defined as the critical ignition parameter for
given u. Mathematically, A. is a simple limit point Ap(). There is a second such limit
point A, < A, connecting the unstable branch bending backwards for A < A, with an
upper branch of stable solutions (see Fig. 5). For A sufficiently large, the solution of
(6.1) is unique.

The largest value of u for which ignition can occur is another critical value p. for
the system, because the criterion for ignition disappears for ¢ > p.. This has consid-
erable practical significance, in particular for low activation energy. Mathematically,
the solution branch has a double limit point at ¢ = p, = po as defined in Section
(2.1): the two limit points A.(p) and A,(u) coalesce at p = p.. For p > p., (6.1) has
a unique solution for every A > 0. Because of its principal importance, much effort
has been devoted to the accurate determination of the critical values A, and p. for
various geometrics of the reactor vessel {e.g., see [2}, [20], [22]). As in Section 5, we
consider here the effect of introducing a central cooling rod into a tubular reactor.

6.1 Numerical solutions

The cylindrically symmetric solutions U(r, A, u) of (6.1) are defined by

U’ + %U‘ + AV =0 D<r <l
BV P(I) (6.2)
U'(0,\ u) =0= BU(1,\p)

where B is the boundary operator defined in Section 5. This BVP does not appear to
have an exact solution. At a simple limit point Ag(nt), the variational problem (2.3)
becomes

LVD = V:j“ + l";O’ + AO(#)—]-_QEU(;/(]-H:UQ)‘_,B =0
Var(I) r (1 + pUo) (6.3)
Vo (0, ho, 1) = 0 = BV(1, Ao, 1)

where Uy = U(r, Ao, ) is the solution of (6.2) for A = Ag(u). Vo(r) is a smooth
nontrivial solution with the normalization V;(0) = 1. To find the double limit point
Ao, fo, the additional BVP (2.7), which in the present example becomes

LoW = — A\, V2 Us/(14rolUo) 1 — 2p0(1 + poUs)}
Q 0Y¥g € (1 +].LDUO)4 (64)

i I/V’(O))‘GHU*O) =0= Bwj(la}‘m#(})
must be solved, with W(0) = 1.
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The perturbed problem is now obtained by introducing the ‘cooling rod’ of radius
e. This leads to BVP (II) in the same way as in the previous section. The solution is
denoted by u(r, A, p;€), obtained from (6.2) after replacing the interval 0 <r < 1 by
e <7 < 1and U'(0, ) ) = 0 by the inner boundary condition

u(e, A\, p;€) =T

In other words, u(r, A, it;€) is the solution of (5.12) where the function e* is replaced
by exp(u/(1 + pu)). Similarly, the solutions of the perturbed BVPs corresponding to
(6.3) and (6.4), needed for the calculation of the limit points Ag(p,€) and pofe) are
denoted by wvo(r, Ao, i£; €) and w(r, Ag, pio; €), respectively.

Regular solutions were found by solving (6.2) numerically by the general BVP
solver COLPAR [23,24,25]. The limit points Ag(x) and o were determined by solving
the extended system (6.2}, (6.3) and (6.2)~(6.4), respectively, also using COLPAR.
Similarly, the corresponding perturbed BVPs for ¢ > 0 were solved numericaily. It
appears that the double limit points pg and po(e) have not been calculated previously
by solving an appropriate extended system. Numerical difficulties were encountered
for very small values of e, because COLPAR is not designed to handle stiff BVPs.
A bifurcation diagram of solutions of BVP (I} is contained in Fig. 5. Similarly, for
a fixed value of y, solution branches for BVP (II) for various values of ¢ are given
in Fig. 6. These numerical solutions were generated by the continuation program
COLCON developed by Bader and Kunkel [25]. However, as the accuracy of the
solutions decreases considerably with decreasing e, solutions for ¢ = 0.001 are not
displayed in Fig. 6

6.2 Asymptotic solutions for simple limit points

We proceed to construct asymptotic expansions for small € to the same order of 6 as
in the previous section. This means we have to find uy, v, and u; in order to obtain
a three term approximation for Ao{y,e) and ug(r, A, g;€) with p fixed.

From the unperturbed limit point solution we have numerical solutions for Up(r)
and Vo(r) defined by BVPs (6.2) and {6.3), respectively, and the value Ag = Ao{p, 0). A
second solution So(r) of LoV = 0 is computed following (2.5), that is, by numerically
solving an initial value problem for Ry(r). Similarly, calculating z(r) from (3.7}, we
have X = ); from the formula (3.11) while u;(r) is given by (3.8), up to the constant
¢1. In the special case U = a = 0 A; = —Up(0)Sy(1)/2(1). Next we substitute

fu= —1—6‘1/(1**#“), Fuw = 1—2p(1 + pu) g/ (141u)
o (1 pu)? (14 pu)




with u = Ug(r) into (3.18) and solve numerically for z;(r) and z(r), whereupon ¢; is
calculated from (3.19). Finally, we calculate A; and u, numerically from (3.27)-(3.31).
Note that So(r), 2(r),...,24(r) are all regular solutions of their defining initial value
problems, thus the numerical solutions present no difficulties and are computationally
inexpensive compared to a direct numerical solution of the perturbed BVFP (II) for
small €.

7 0.1 0.2 0.24 0.242
Ao(p,0) | 2.26128 | 2.68135 | 2.98196 | 3.00500
M{p) 3.08573 | 3.56891 | 3.87262 | 3.88038
Az(p) 3.33386 [ 3.90763 | 4.29766 | 4.44751
1=0.1 1=0.2
numerical 2-term 3-term numerical 2-term 3~term
€ solution | asymptotic | asymptotic | solution | asymptotic | asymptotic
for Ao(u,e) | expansion | expansion | for Ao(yu,e) | expansion | expansion
0.1 4.3806 3.6014 4.2302 5.1571 4,2313 4.9683
0.04 3.6041 3.2199 3.5417 4.24G63 3.7901 4.1672
0.01 3.1114 2.9313 3.0885 3.6697 3.4563 3.6406
0.001 2.7848 2.7080 2.7778 3.2888 3.1980 3.2799
Table 2 Comparison of numerical and asymptotic approximations to

the simple limit points Ao( g, £} of BVP(1I), given by (2.8) with f(r,u;u) =
exp(u/(1+ pu)) and a = = 0.

Some results are given in Table 2, which shows the exact numerical limit points
Ao = Mo(p,0) for various values of p, together with the coefficients Ay and A; of
the asymptotic expansion (3.20). Furthermore, predictions based on two-term and
three-term approximations for several values of ¢ are given for p = 0.1 and p = 0.2
and compared with numerically computed values of Ag{y,e). Only the limit points
connecting a lower solution branch with the unstable portion have been computed. In
Fig. 7, an accurate numerical solution is compared with one and two term composite
asymptotic approximations for u = 0.2 and e = 0.01.

6.3 Asymptotic solutions for double limit points

The double limit point pg for the unperturbed BVP (6.2) must be calculated numer-
ically, which yields the functions Uy, V5 and W. The function S5 also needed below is
obtained from (2.5). Again, a direct calculation of pg(e) for small € runs into seri-
ous difficulties, while an asymptotic solution is easily performed by solving a series
of initial value problems as described in Section 4. In particular, the leading term
coefficients A and /i defined in (3.2) and (4.1) are obtained from equations (4.8) and
(4.14) upon numerically solving (3.7) and (4.7) for z(r) and {(r), and (4.11)-(4.13)

30



for z;(r), (1(r) and z,(r). In addition, z3(r) and z4(r) must be computed from (4.16),
(4.17) if the function @(r) is to be determined according to (4.6). Having ¢; from
(4.18), the functions ¥ and 0 are also determined. Finally, the terms involving Ay, 1,
and up(r), which are needed for three-term asymptotic approximations, are obtained
Lo £A 10N cm A ATY Mo 220 o) dhons s 2130t wnliin okl arne Far o U |
LITOIR (4. 12 ) alld {(F.41 ). 10 LS CUU, LIICC Ul Lilitlal vdluc Hluulcma 101 £5, £g dlid

z7 have to be solved.

2—term 3—term
numerical asymptotic asymptotic
solution approximation approximation
A1=4.0297 p;=0.0118 | A\;=4.4250 po=-0.0023

€ Ao(e) | po(e) Ao(e) po(e) Aofe) tole)
0.0 3.0063 | 0.2421

0.1 5.7982 | 0.2451 4.7564 0.2472 5.5912 0.2468
0.05 | 4.9499 | 0.2448 4.3514 0.2460 4.8446 0.2458
0.01 |4.1221 | 0.2442 3.8813 0.2447 4.0900 0.2445
0.005 | 3.9460 | 0.2440 3.7669 0.2443 3.9245 0.2442
0.001 | 3.6923 | 0.2437 3.5897 0.2438 3.6824 0.2437

Table 3 Comparison of numerical and asymptotic approximations to the
double limit point Ao(e), wa(e) of BVP (II) given by (2.8) with f(r,u;p) =
exp(uf{l1 4+ pu)}y and T=a =0,

The results of these calculations are given in Table 3. Two—term and three-term
asymptotic approximations are compared with numerical solutions for small €. We
note that the critical parameter pg(e) is relatively insensitive to the presence of a
cooling rod, while the operating range given by Ag(e) shows a strong dependence
on ¢, which is also displayed in Fig. 8. Comparing a numerical solution for ¢ not
too small with a two-term asymptotic solution at A = Ao{e), p = gole), a similar
behavior as in Fig. 7 is found.

7 Concluding remarks

We conclude that our asymptotic solutions based on a three-term approximation can
safely be used for the calculation of simple and double limit points for sufficiently
small €, say € < 0.02 (see Tables 1-3). For larger values of €, numerical solutions of
acceptable accuracy can usually be obtained in the type of model problems considered
in this paper, while serious difficulties are likely to be encountered for £ < 0.01, even
with a relatively robust code such as COLPAR.
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It would also be of interest to study the dependence of the limit points on the
Biot number [20], that is, on « in the boundary condition (2.3). Furthermore, a
temperature condition u = % > 0 at the surface of the cooling rod rather than u = 0
is probably more realistic in reactor applications. We have obtained numerical and

1 1 i R e £ 1 = AN A [PERh |
asymptotic solutions for the modc! problem in Scetion 6 for @ # 0 and for an extended

range of &. We expect to publish the results elsewhere.
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Appendix

The 1nitial value problems for 25 and zg that occur in the calculation of a three term
asymptotic approximation to the double imit points Ag(e), po(e) are

Lzs = —M(uife + i fu) = [f]

Lzg = —XMvifu — fuulVo(Arur + 12080 + Aozs) + douav]
— 1 fu (M Vo + Aovr) — [fu]

Lz; = =X(W fuu + Vi Fur 1 So + Aoz + paC + 25)

—2XoVofuu(€1S0+ Aazy + paly + 26} — T

N

=
o

S
f

z(0) = 0 4=5,67

where

[f] = %AO(uffuu + Z.U']ulfu,u + #ff#}j)

T = M’Y{)\zfu + )\l(ulfuu -+ .ulfup) + [fu] + }‘GJUQf‘U.U}

+V02{/\2fuu + )\l(uifuuu + ;ulfuu;z) + [fuu] + AO,U-?fuuy}
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+2U11/0()\1fuu + )‘Uul,fuuu + )\O#Ifuu#)

+w1(A1fu + ACl'f-'tl\]rm'l.z + A()Julfuu) + onlzfuu‘

Note that u; = @, v; = #, w; = ¥ were defined by {4.6),(4.10),(4.15).
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