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Singular Perturbation Analysis of Integral Equations—Part II

By Charles G. Lange* and Donald R. Smith**

Abstract. Singularly perturbed linear Volterra or Fredholm integral equations with
kernels possessing jump discontinuities in a derivative are discussed within the framework
of [5]. An intriguing and remarkable feature of such equations is that in general the
leading order outer solution does not satisfy the unperturbed integral equation. Moreover
the solution usually exhibits large amplitude boundary layer behavior at one or both
endpoints. Our perturbation technique, which is based on an efficient asymptotic splitting
of the integral equation, clearly reveals the rich asymptotic solution structure for this class
of equations.
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Section 1. Introduction

Singular perturbation methods have played an important role in the study of differ-
ential equations. However, the potential usefulness of these methods for other types of
functional equations involving small parameters has not received the same attention. In
Part I (throughout this paper [5] is referred to as Part I) we initiated a program to further
demonstrate that singular perturbation methods do indeed provide a powerful analytical
tool for the study of integral and integrodifferential equations. In the present Part I we
continue this program by focusing on an important class of scalar integral equations with
kernels possessing jump discontinuities in a derivative, of the form

/: K(z,s)w(s)ds = h{z,€e) + ew(z), 0<ec <1 (1.1}

or

Kw=~h+ew (1.2)
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for small positive values of . The forcing function h is assumed to be smooth and to have
an asymptotic expansion in powers of ¢, while the kernel X' = K(z, s) is assumed to have
jump-order v across the diagonal ¢ = s for some positive integer v. That is, K can be

.
o

gl'\-].l as
K {(z,s) for0<s<z<1
K(m’s)u{K"'(z,s) for1>s>2>0

for smooth functions K~ and K+, and the jumps J of 8 K/0z* satisfy

(1.3)

J[%{.{](m)zﬁ forall 0<z<1 andfor +1=0,1,---,v~1, (1.4)
T
while K
<zg<
J[amy](m)%ﬂ for 0<a<l, (1.5)

where the jump operator J is defined for any suitable function f = f(z, s) by the formula

Jfl(z) == flz,27) — f(=, 33+)
= lim f(z,s) — lim f(z, s). (1.6)

a<m a>x

It is possible to recast a scalar equation (1.1} of jump-order v > 0 as a (v - 1)-
dimensional vector integral equation of jump-order 0 (cf. Section 7). Vector equations of
jump-order § were studied in Part I. However, we prefer to treat (1.1) without recasting
as a vector equation because our perturbation method is more direct and eflicient for
a scalar equation. Our approach clearly reveals the important role played by the jump-
order in determining the asymptotic structure of the solution, particularly the scalings and
amplitudes in the boundary layers and the generic form of the appropriate outer equation.
Scalar equations of positive jump-order occur prominently in applications. For example,
singularly perturbed boundary value problems for ODE’s such as the beam problem (1.39)
are often reformulated as in (1.1) using the Green function for the principal part of the
differential operator.

We now discuss briefly several elementary examples to introduce the ideas. A simple
scalar example with jump-order 0 is

[ wlsdas +2 [ wlo)ds = ¢+ cuf) (.7

with h(z) = e?% and

_J1 fors<e
K(m,s)m{2 for s > z, (1.8)



so that K has the jump J{K]| = —1. The equation (1.7) always has a unique solution (for
every choice of the parameter § and for every € > 0), and the solution satisfies (see (1.11)
of Part I)

wlz) = w(z,€) ~ 1(23‘3 — 1)872’15 — BeP® (1.9)
€

as € — 0. The first term on the right side of (1.9) represents a boundary-layer correction
with O(1/€) amplitude at z = 0, while the last term represents a slowly-varying outer
solution w*(x, €) with

w*(z,0) = —Bef>. (1.10)

An intriguing and remarkable feature of the present class of singularly perturbed integral
equations is that in general this lowest-order outer solution w*(z,0) does not satisfy the
corresponding reduced equation

/ﬂmw(s)ds +2[ w(s)ds = P (1.11)

obtained by putting € = 0 in {1.7). One checks directly here that w*(z,0) satisfies

/z w(s)ds + 2 fl w(s)ds = eP® 1 (1- 28'6), (1.12)

which is in agreement with the appropriate outer equation provided by our technique. This
latter equation coincides with (1.11) if and only if # = In 1 which is also the condition of
solvability of (1.11). In this latter case (8 = In ;) the solution of (1.7) is uniformly O(1)
as € — 0 since the O(1/e) term vanishes in the boundary layer (see (1.9)).

This example illustrates an important feature of scalar equations of jump-order 0 for
which J[K](z) # 0 for 0 < z < 1, pamely, there is a layer only at one endpoint, The
following examples illustrate the point that there are generally layers at both endpoints
for equations of jump-order v > 1.

A scalar example with jump-order 1 is

fo " sw(s)ds + / " sw(s)ds = ¢ + cu(a) (1.13)

with k(z) = €% and

_Jz fors<ze :
K(e,s) = {3 for s > 2. (1.14)

This kernel is continuous on [0,1] x [0,1], but the first derivative 8K/8z exhibits a jump

J[K,)] = 1. (1.15)



The integral equation (1.13) can be differentiated twice to obtain a second order differential
equation which implies that any solution w must be of the form

2
w(z. €) = -——)E-?———e'ﬁz —f-clem/‘/g—!- cze"z/‘/g (1.16)
A Y r 1 H-—Eﬁz AN £

for suitable constants ¢;, ¢; which are determined uniquely by inserting (1.16) into (1.13).
The resulting solution is easily seen to satisfy

w(z,€) ~ —%eﬂ/ﬁ ;L= ";/g)eﬁ R f;z eh* (1.17)

as ¢ — 07. The first two terms on the right side of (1.17) represent boundary-layer
corrections with O(1/+/€) amplitudes near the respective endpoints z = 0 and z = 1, while
the last term represents a slowly-varying outer solution w*{z, €) with

w*(z,0) = f2ef". (1.18)

A direct calculation shows that this w*(z,0) satisfies

/: zw(s)ds + -/z sw(s)ds = e”* + (8 — 1)e® — Bz, (1.19)

which will be seen in Section 2 to agree with the appropriate outer equation provided by
our technique. Again (1.19) does not coincide with the following reduced equation obtained

by putting € = 0 in (1.13),

f: mw(s)ds—i—/: sw(s)ds = ¢*, (1.20)

and indeed (1.20) fails to have a solution because the function ¢’® appearing on the right
side of (1.20) is not in the range of the integral operator represented by the left side, and
this is true for every 8. The amplitude of the layer at ¢ = 0 is generally large, of order 1/4/,
except in the special case § = 0 when the layer-amplitude is O(1). Note that it follows
directly upon differentiation of (1.13) that w satisfies w'(0,¢) = —8/e which foretells the
special nature of the case § = 0 for the layer-amplitude at 2 = 0. An analogous situation
holds for the amplitude of the layer at the right endpoint z = 1 in the case § = 1. As an
aside we note that if the forcing function € in (1.13) is replaced by a general differentiable
function h = h(z), then the conditions

R'(0)=0 and A'(1)-kR(1)=0 (1.21)



are necessary and sufficent for the unique solvability of the resulting reduced equation
fol K(z,s8)w(s)ds = h(z). This further explains the special nature of the cases § = 0 and
B = 1 for the particular forcing term h(z) = eP®. Note that the actual outer equation
(1.19) has a forcing term h*(z) = €”® + (@ — 1)e” — Bz that satisfies the conditions of
(1.21).

An example with jump-order 2 is

/: i ('2 ~5) w(e)ds - /: f;‘”(s)ds =&’* + ew(z) (1.22)

with
a:(%—s) fors <z

K(z,s) = (1.23)

a.‘l

—% for s > z.

Both K and K, are continuous on [0,1} x [0,1] but the second derivative has the jump
J[Kzz] = 1. (1.24)

Equation (1.22) can be solved by reducing the integral equation to an associated third
order differential equation. A routine calculation shows that the problem has a unique
solution w(z) = w(z, €) which satisfies

w(m’e)wl(ﬁ +£) cos @Jri( £ + ﬁz)si ‘fm] —z/(28/%)

2/3 1/3 9¢1/3 ﬁ 2/3 1/3 2¢1/3

(_2+2ﬁ_ﬁ2) eﬁ] e(l—z)/el’r:3 +/33e,6:n +0 (61/3)

(1.25)

Q¢ — 2¢2/3 4 €1/3

as € — 07. The amplitude of the layer near ¢ = 1 is O(1/¢/®), while the amplitude is
O(1/€*/*) near = = 0 where the solution is a linear combination of two exponentially de-
caying sinusoidal oscillations. Away from the endpoints the solution is well-approximated
by the leading-order outer solution

w*(z,0) = B3eP° (1.26)

which satisfies the equation

/0= T (g - .5) w(s)ds — ./: gw(s)ds =ef* (—1 +8- %ﬁz) e’ — Be — %ﬁziﬂz. (1.27)

It will be clear from the discussion in Section 4 that (1.27) coincides thh the proper outer
equation provided by our technique.



The examples (1.7), (1.13), and (1.22) can all be solved directly by reduction to
associated differential equations obtained by differentiation of the integral equations. Such
reduction to a differential equation is generally not possible, as illustrated by (1.1) with

such kernels as R v
_J1/Q+=z+s or s <
K(z,s) = { 1/(1 + 2z) for & > e, (1.28)

and
1/(1 +2s —(1/2)s?) fors <z

K(s,s) = {1%1 + (1/2)5:2/) *) for s > . (1.29)
The kernel (1.28) has jump-order 1 just as (1.14), while (1.29) has jump-order 2. In
such cases as (1.28) and (1.29) we cannot obtain a simple differential equation from the
integral equation (1.1) (cf. the integrodifferential equation (1.35)) and we do not have any
simple exact expression for the solution of the integral equation in these cases. Moreover
a direct numerical approach for the solution of such integral equations presents formidable
difficulties in the case of small e. We show below that the asymptotic techniques of Part |
suffice for the study of a broad class of equations including integral equations with kernels
such as (1.28) and (1.29). For such a class of equations we obtain existence and uniqueness
of solutions of boundary-layer type and we obtain precise information on the resulting
solutions. For the kernel (1.28) we find a solution of (1.1) exhibiting similar qualitative
features as the explicitly known solution of (1.13). Similarly for (1.29) we find a solution
exhibiting the properties of the solution of (1.22).

The width of the layers is generally O(e) in the case of jump-order 0 as for (1.7)-(1.9},
while the layers have the thicker width O (61/2) for jump-order 1 as in (1.13)-(1.17). In the
case of jump-order 2 the layers have the width O (61/3) as occurs for (1.22)-(1.25). More
generally the layers have width O (61 / (”+1)) for jump-order v. Hence it is often convenient
to replace € = €14 in (1.1) by

€= €new = (€o1a) /Y, (1.30)

in which case, for example, (1.13) would be rewritten as (with v = 1)

[ ot & [ swtis = 5+ e am

while (1.22) becomes

./: ’ (g B ") w(s)ds - /1 %w(s)ds = ¢* + lu(z) (1.32)

T

The general equation (1.1) or (1.2) with jump-order v can be rewritten with (1.30)
as

Kw = h+ 1w, - (1.33)

6



where we assume that h = h(z, €} has an asymptotic expansion of the form

h(z,e) ~ > hj(z)e for 0<a<1 (1.34)

j=o

as € — 0. (The case where the expansion for h(z, €) involves a finite number of negative
powers of € can be reduced to (1.32)-(1.33) by multiplying the integral equation by a
suitable power of ¢ and then relabeling or rescaling w.} The integral equation (1.33) can
be differentiated v + 1 times to yield the integrodifferential equation (cf. (1.4)-(1.5))

g 2w 'K y 1ot K (e, 8
vt T~ J[azv 1(2:)10 = —h{rH)(g) +/ﬂ W—;:E:Y“lw(s)ds. (1.35)

We show that the leading-order layer-correction equation will be given by (1.35) with
right side equal to zero and with the jump J evaluated on the left side at the appropriate
endpoint (cf. (5.6), (5.10)). It will follow then that the boundary-layer width is generally
O(¢) for the integral equation (1.33) of jump-order v.

For simplicity we restrict consideration here to the special class of equations (1.33)
(with jump-order v} which satisfy the boundary-layer stability condition

|Re p(z)| > x>0 (1.36)

for some fixed positive constant &, uniformly for all 0 < z <1 and for all roots p = p(z)
of the equation

prtl = J[6° K /82" (). (1.37)

In the vector case the right side of {1.37) is replaced by A, and (1.36) must hold for all
eigenvalues A = A(z) of the jump matrix J [* K/8z"], for 0 < z < 1. This condition (1.36)
coincides with the condition of Part I in the case » = 0. For odd v the condition (1.36)
eliminates the case of purely oscillatory solutions as occurs, for example, for the kernel

K@) ={] fiss (159
which has jump-order 1 but with J{K,] = —1 instead of J[K,| > 0 as in the earlier
examples (1.14) and (1.28). The uniformity in z of the condition (1.36) along with the
assumed smoothness of the jump appearing on the right side of (1.37) also eliminate interior
layers. The ideas and techniques of Part I can be more broadly applied, but we are able
to obtain rigorous results in a clear and simple manner for a special class of equations
satisfying the assumption (1.36). We shall discuss related problems involving interior
layers in a separate work.



The general integral equation problem considered here includes important singularly
perturbed boundary-value problems for differential equations that can be reformulated as
integral equations of the type (1.1) with positive jump-order v > 0. For example the scalar
boundary-value problem

ety L b(z)y = f(z) for O<z <],
¥(0) = a, y'(O) = a1, Y(1)= P, y'(l) = P,

which arises in linearized beam theory, can be replaced by an equivalent integral equation
of the type (1.33) for w =y with forcing function

h(z,e€) 1= — €* [[ag + (2aq + a1)z)(1 ~ ) + [Bo + (260 — £1)(1 — m)]mz]

; j ' (e, 5)f(s) ds,

(1.39)

(1.40)

and with kernel
K(z,s) = G(z, s)b(s) (1.41)
where G = G(z, s) is the Green function for the differential operator d*/dz* (the principal

part of the operator on the left side of the differential equation of (1.39)) relative to the
boundary conditions of (1.39),

G (z,8) = ts*(1 —2)?[-3z+ (1 +2z)s] for s<=
G(z,s) = (1.42)
Gt(z,8) = 222(1 — 8)?[-3s + (1 + 28)z] for s> =.
The terms multiplying €* on the right side of (1.40) involving the boundary values can
be written as —agG,..(2,0) + a1G,4(2,0) + BoGisss(w, 1) — f1Gss(z,1). As function of s
the Green function satisfies the differential equation G,,,,(z,s) = 0 for s # z along with
the homogeneous boundary conditions G = G, = 0 for s = 0 and for s = 1, and it also
satisfies the jump condition J[G,,,}(z) = +1. The resulting kernel K of (1.41) satisfies
J K] = J[Kz] = J[Ku] = 0 while the third derivative K., possesses the nonzero jump
J I{”._.,] = —b(z), so the jump-order is 3 if the given function b is everywhere nonzero.

Olmstead & Angell [7] discuss several interesting examples of singularly perturbed
integral equations of the type (1.1)-(1.3). However, their examples and resulting scalings
for problems with layers at both endpoints correspond to very special cases, and the
general structure of solutions for (1.1) is not clearly revealed. Their classification of (1.1)
into either a Case I (where the layer amplitudes are O(1/¢)) or Case II (where the layer
amplitudes are of larger magnitude) has no inherent significance for the problem and can
be misleading since the layer amplitudes are typically o(1/€) for equations of positive jump-
order. Moreover the crucial role played by the jump-order in the scalings and in the specific
structure of the outer solution is not brought out in [7]. The asymptotic splitting procedure
introduced in Part I and used here is simpler and more efficient for the present class of
equations. We are able to provide some general insight into the widths and amplitudes
of the layers. Moreover we give a generic equation for the outer solution, and we provide
general criteria under which the integral equation (1.33) of jump-order v has a solution of
boundary-layer type.



Shubin [1] employs work of Eskin [2, 3] to study (1.1) for invertible operators K (with
trivial null space) in what we call the standard case (cf. our discussion following (2.34)).
Shubin obtains an existence theorem for (1.1), determines an asymptotic approximate
solution to leading order, and obtains a corresponding error estimate in a certain Sobolev
space. Our methods differ from those of {1]. We handle the standard and nonstandard
cases, we include both invertible and noninvertible operators (the latter having nontrivial
null spaces), and we obtain full asymptotic expansions for the solutions.

Our expansion procedure is introduced in Section 2 where it is noted that the formal

reduced equation
Kw = hg (1.43)

obtained by putting € = 0 in (1.33) is generally not the correct outer equation for such
problems as considered here. The form of the correct outer equation is discussed briefly in
Section 2 where it is seen that certain auxiliary terms must be added to (1.43) to provide
the correct equation. Some of these additional terms involve K~ (z, s) and certain of its
derivatives at s = 0, while other of the additional terms involve K*(z, s) and certain of its
derivatives at s = 1. And more generally there are yet further additional terms involving
functions contained in the null space of K, as discussed in Section 6. The perturbation
technique is illustrated in Section 3 and Section 4 for certain equations of respective jump-
order 1 and 2, and then a general discussion is given in Section 5 for an important class of
equations of jump-order v for which the outer solution is of order unity. Related equations
for which the outer solution becomes large for ¢ — 0 are discussed in Section 6 where the
relationship of these results to problems for singularly perturbed differential equations is
also discussed. Finally, questions of existence and uniqueness along with error estimates
for (1.1) are discussed briefly in Section 7. Readers who are interested primarily in the
examples can skip Section 2 and proceed directly to Section 3.

Section 2. Description of Perturbation Method

For equation {cf. (1.33))
Kw=h+e1 (2.1)

of jump-order v we represent a boundary-layer solution w(z} = w(z,€) in the form (see
(3.3) of Part I)

w(z, €) ~ $(e)ib(Z, €) + w*(z, €) + $(e)B(Z, €) (2.2)

with boundary-layer variables

Fi=- and %:= , (2.3)



where w* = w*(z, €) is a suitable outer solution, a(e)ﬁ@', €) is a lefi boundary-layer correc-
tion of amplitude ¢(e) at the left endpoint ¢ = 0, and ¢(€)i(Z, €) is a right boundary-layer
correction of amplitude (5) at the right endpoint z = 1. The boundary layer correction

S 5. Py g [ IR P Tomans v Tai s P 4Ll nnnlod wnwlnldag
FUNULIVILYD alC }_JCL!:CU. Ry uCLa_y LUJ. 1&150 Vcl...lu.ca Lex chll DLALITUL ch.la-l.u(;a,
e —~ i —~f o~ ~
w(zT,e) -0 as T - o0, and wW(F,e) =0 as T — oo. (2.4)

It is natural to inquire into the relationship, if any, between the outer solution w*
and the reduced equation
Kw = hy (2.5)

obtained by putting € = 0 in (2.1), where hy = ho(z) = h(z,0) is the leading term in
the expansion (1.34). Indeed a central challenge for this class of singularly perturbed
integral equations is to determine the structure of the solution and fo find an equation
that characterizes the leading term in a suitable expansion of the outer solution. In fact
the formal reduced equation (2.5) is generally not the correct outer equation which is given
instead by a modified equation of the type (2.13) below. This is in contrast with many
singularly perturbed problems for differential equations where the leading outer solution
generally satisfies the reduced equation.

Existence and/or uniqueness can typically fail for a Fredholm integral equation of the
first kind such as (2.5). Indeed existence will generally fail for typical problems of interest
because the function ko need not be in the range of the integral operator K, as illustrated
by the earlier examples (1.11) and (1.20). Uniqueness can fail for (2.5) because the reduced
homogeneous equation

Kw=0 (2.6)

may have nontrivial solutions [7] as occur, for example, in analogous initial value problems
and boundary value problems for singular singularly perturbed differential equations (cf.
[6]). Such nonuniqueness is discussed below in Section 6. Here we focus principally on a
class of regular (nonsingular) singularly perturbed integral equations for which the outer
solution w*(z, €) of {2.2) is of order unity with an expansion of the type

w*(z,€) ~ Zw;—‘(:c)ej, (2.7)

where (2.7) eliminates certain (singular) problems for which the expansion of the outer
solution contains additional terms of O{1/€**!), as discussed in Section 6. Similasly the
boundary-layer correction functions % and i are assumed to have expansions of the type

@(Z,€) ~ Y @;(F) and B(F,€) ~ Zw, *)e, (2.8)
i=0

Fe=0

10



where the boundary-layer amplitudes t;(e) and a(e) can be chosen, without loss of gener-
ality, to achieve the normalizations

et I e G A IGEN
wylz) EFU and welz) F (2.9)

The following matching conditions are imposed on the boundary-layer coefficient functions

(cf. (2.4))

w;(F) -0 as T o500 and W;(T) >0 as T oo (2.10)
for j =0,1,---

As will be shown, the number of independent exponentially decaying solution-components
of boundary-layer type is related to the roots of (1.37). The assumption (1.5) implies that
the roots p of (1.37) are distributed in the complex plane like the appropriate roots of
(plus or minus) unity. If n and p denote the number of roots of (1.37) respectively with
negative and positive real parts,

negative

positive real part, (2.11)

;} := number of roots of (1.37) with {

then (1.36) and the assumed smoothness of J [8* K/0z”] imply that n and p have fixed
values, the same for all 0 < ¢ < 1, given as follows:

J[6” K02¥]>0 J[8” K/82"]<0
i ( n= 13y n=tuv4+1 \
v even, with v even 32 2]
b= EV -+ 1 = EU
n=3v+1 n= 3ty (2-12)
v even, with v odd 2, 12
=3V p=3V 41
v odd . \nzpz%(w-{—l) n:p:%(v—l—l))

The integers n and p give the respective numbers of independent exponentially decaying
solution-components of boundary-layer type at the respective endpoints ¢ =0 and z = 1.

For the present class of problems our technique replaces the reduced equation (2.5)
with the following modified equation for the leading outer solution w}(z),

1 N
/0 K(z,s)wy(s)ds = ho(z) — Eckgk (2.13)

k=1

i1



for a suitable positive integer N, for suitable constants ¢y, ¢z, - - -, civ, and where g1(z), g2(2),
.+,gn(z) are certain linearly independent functions depending on K™ (z,s) and certain
of its derivatives at s = 0 along with K*(z,s) and certain of its derivatives at s = 1. The

terms involving the functions g; on the right side of {2.13) are generated by integrals of
the layer-correction terms. Specifically there will hold
N
> " crgr(z) =
k=1 2.14
- 1fe - 1/e ( ) )
layer lim |ed(e) K~ (z,€e8)W(3, €)ds + ed(e) / Kt(z,1— €§)(5,€)ds
e—+ 0 o

where layer lim denotes a certain “layer-limit” discussed in the following sections. This
layer-limit determines the appropriate functions g; = gi(z) for use in (2.13) and it also
fixes the orders of the boundary-layer amplitudes 3(6) and a(e) The added terms on the
right side of the modified outer equation (2.13) given by (2.14) acccount for the interplay
between the outer solution wj and the layer corrections, where our assumptions will imply
exponential decay for the boundary-layer correction terms.

The number N of terms appearing in the summation on the right side of (2.13) is
related to the codimension of the range of the operator K, and generally satisfles

N>v+1 (2.15)

for a kernel K of jump-order v as characterized by (1.4)-(1.5). As discussed in Section 6,
there generally holds N > v + 1 when K has a nontrivial null space. However for a wide
class of equations one has

N=n+p=v+1 (2.16)

where n and p are the respective numbers of roots of (1.37) with negative and positive
real parts as in (2.11)-(2.12). For example the integral equation (1.13) with jump-order
1 has the leading outer equation (1.19) which is of the form (2.13) with N =2 = v 4 1
(n = p = 1) and with the two functions

gi(z) =2z, g(z)=1, (2.17)

and with constants ¢; = —8,¢c; = {8 — 1) ¢#. Similarly the equation (1.22) of jump-order 2
has the leading outer equation (1.27) of the form (2.13) with N =3 =v+41(n =2, p = 1),
with functions

gi(z) =2°, g@lz) =2, g(z)=1, (2.18)
and constants ¢; = —20%,¢; = —B,¢3 = (—1 +pB - %ﬁz) e

12



It is not surprising that an important class of problems corresponds to the choice

N =v+1in (2.13),

j K(z,s)wy(s)ds = ho(z) — D crgr(z) {2.19)
0 k=1

for a kernel of jump-order v. Indeed for such a kernel, the equation (2.19) of first kind
can be differentiated repeatedly v + 1 times, and the constants ¢; (k = 1,2,..,v + 1)
can be eliminated from the resulting collection of differentiated equations to obtain an
associated, more tractable equation of second kind (if the functions g1, ..., 9,41 are linearly
independent). For example in the case ¥ = 1, the equation (2.19) and its first differentiated
equation provide the following system of 2 equations

/u K(z,3)wg(s)ds = ho(z) — [c191(%) + c292(z)]

0 (2.20)
|| Balerspwi()ds = (o) ~ 16l (o) + casi(o)],
0
where the last equation can be differentiated again to yield
1 -
J[ K (@)ws () + / Ko(z, s)wi(s)ds = hy(z) — [e197(2) + cagy (2)] (2.21)
0

with J[K](z) = 0 and J[K,](z) # 0 for jump-order 1. The system (2.20) can be solved for

the two constants ¢;, ¢y to give

(2)-w@ () - [ (Ked)wwa] o

provided that the functions g;, g» are linearly independent with invertible Wronskian ma-
trix

We) = Wion,aale) = (407 26 (223)

for 0 < ¢ € 1. In this case (2.22) can be used to eliminate the constants in (2.21) and we
find the equation of second kind,

TE@hui(e) + [ Ko, swi(s)ds = 1(s), (2.24)

with modified kernel X and forcing function h* given as

Kle1s) = Kule,) = (61(0), o407 ) (%) ) (2.25)
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and

W(e) = W(e) — (), )W) (7)) 2:26)

One sees that the procedure is effective in reducing (2.19) to the associated second-kind
equation {2.24) provided that the functions g1, g; are smooih and finearly independent.

The resulting equation (2.24) of second kind will be solvable for an important class
of problems, and one finds that a solution to {2.24) will also provide a solution to the
equation (2.19) of first kind. Indeed from (2.24)-(2.26) there follows

TIK.) ()i () + j Koo, sy (s)ds — ()

~e), @@ [ [ (£ )uiwa- (2],

while the definition of W yields the matrix result (gi(z), g4(z))W=(z) = (0, 1).
Using these results along with the identity (d/dz)W "1(z) = —W 1 (2)W'(z)}W (), one
sees easily by a direct differentiation that the following vector function

e[ () s (53)) o

has a vanishing first derivative for 0 < ¢ < 1, so that this vector function must coincide
with a constant vector, say

o[ (£ mow-(E3)] - (3) o osest om

for suitable constants ¢;, c;. Multiplying both sides of (2.29) on the left by W(z), one sees
that the first component of the resulting vector equation is

(2.27)

[ K apwi(e)ds = hofe) = 10w} + exaa(e), (2.30)

which coincides with (2.19) in the present case v = 1.

This same procedure handles the equation (2.19) with general jump-order » > 0 if
the functions g1,...,g,41 are of class C**2 and if these functions are linearly independent
with invertible Wronskian matrix

s gz o Gvnd
9 g v 9L+1

W(z)=Wlgi, g2, gvral(z) = | . . . |G (2.31)
G0 g )

9v+1

14



For the case of jump-order v one sees that equation (2.19) must be differentiated a total
of v times in order to obtain a (v + 1)-dimensional linear system with coefficient matrix
given by (2.31), analogous to (2.20). This latter system can be solved for the constants ¢;
(cf. (2.22)), and the resulting constants are then inserted into the corresponding second-
kind equation obtained by differentiating (2.19) v + 1 times using J{0*K/0z"] # 0. The
procedure is effective in reducing (2.19) to a corresponding second-kind equation analogous
to (2.24)-(2.26). Again one sees that any solution of this latter equation of second kind is
also a solution of (2.19) for suitable constants ¢;.

For the present class of equations we find a simplest case in which (2.16) holds and
the layer-limit (2.14) produces the particular layer-amplitudes

g(f)ﬁ% and  ¢(e) = lp (2.32)

3 €

where n and p are the integers introduced in {2.11), and with a resulting decomposition of
the summation (2.14) as

N n n+p
Y crgr(e) =Y argr(a) + D crgr(e) (2.33)
k=1 k=1 k=n-}1

where the first n terms in the summation are associated with the left-layer at £ = 0 while

the last p terms are associated with the right-layer at ¢ = 1. Indeed in this simplest case
there holds

k—lK—
: ?———é# . fork=1,---,n
s e
grlz) = 2.34
(=) 3]“”“"1K+(m,s) ' ( )
fork=n+1,---,n+p
fsk—mn—1 a=1

Given our assumed smoothness on the data, this simplest case occurs when then+p = v+1
functions of (2.34) are linearly independent. On the other hand when these functions are
not linearly independent, the present technique still succeeds in handling such problems
that actually possess solutions of boundary-layer type—but in this latter case the layer-
limit (2.14) produces layer-amplitudes that are generally of larger orders than indicated
by (2.32). The essential requirement is that the layer-limit (2.14) should produce an
appropriate collection of independent functions for use in (2.13). Moreover the technique
alerts us that a solution of boundary-layer type does not exist when such is the case (cf.
Example 4.4) because the layer-limit will not be capable of providing a suitable collection
of functions in such a case. These and related matters are illustrated with several examples
in the following sections where it is convenient to refer to the simplest case as the standard
case.

15



Note that it follows in the standard case from (2.12) and (2.32) that the order of
either ¢( €) or qb(e) must exceed that of the other by 1 if the jump-order v of the kernel

is even—in this case the layer amplitude must be larger at one of the endpoints than at

+hn .-.+h.“. In sarticular there will be o laver at only one endvpoint for such an soustion of
VAU ULliUl, Ll MOl viUUichl DIIULL YLLL U @ Loy UL av Uiy vas Gl gy 11V 10T s5udin an CHUaeiUIE UL

jump-order 0.

The present development for the original equation (cf. {1.1))

1
f K(z,s)w(s)ds = h{z, €) + ew(z) (2.35)
0
of jump-order v is based on the assumption {(cf. (1.36))

[Re p(z)i > x>0 (2.36)

for some fixed positive constant &, uniformly for all 0 < # <1 and for all roots p = p(z)
of the equation (1.37). This assumption serves to eliminate interior layers and it also fixes
the values of the boundary layer widths for (2.35) as (cf. (1.30), (2.3))

layer widths = O (61/<”+1>) . (2.37)

The procedure must be modified if the earlier jump condition (ef (1.5))
J [6

](m);é(] for 0<z<1, (2.38)

is weakened to permit, say, isolated zeros for this jump. There is the possibilty of an
interior layer at ¢ = z if this jump J[0* K/0z"](z) vanishes at an interior point zo. The
equation (2.35) can be differentiated v + 1 times to yield (cf. (1.35))

P HIK (2, 8)
Hpv+1

P [av w(s)ds (2.39)

e gorr ~ I | gav | @0 = —HH@) + |

where we are retaining the original small parameter here as in (1.1). If there is an isolated
zero of order m at the interior point zp, then we conjecture that the layer-correction
equation at zy is obtained by differentiating (2.39) an additional m times. For example in
the case of a simple zero (m = 1) with

J[E;;If](mo) =0, J[%;If]'(ma) £0, (2.40)

and with (2.38) holding for z # z¢, then the layer-correction equation is conjectured to be
given by differentiating (2.39) one more time to give

S 1[G ) - 1[5 (o) 1[G o)

1 9vt2K (2, 5)
— plvt+2) )
YT () +/u gz w(s) ds.

(2.41)
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If w is large in the layer, then the leading-order layer-correction equation will be given by
(2.41) with right side equal to zero and with the jump and its derivatives evaluated on the
left side with appropriate Taylor expansions about #¢. In such a case the layer width is
O (e*/(**2)) which is thicker than (2.37) in the standard case. Of course these comments

apply equaliy well to the situation where the jump vanishes at an endpoint.

Such zeros of the jump at interior or boundary points can lead to considerable com-
plications including exponential growth as illustrated in Section 2 of Part I. The case of
an isolated zero of the jump at an interior point will be considered in a future work.

Section 3. Jump-Order One

In this section we illustrate our procedure for jump-order 1, first with an example of

the standard case and then with several examples of nonstandard cases. For jump-order 1
(ef. (2.11)-(2.12))

n=p=1, (3.1)

and the standard case occurs when the two functions (cf. (2.34))
K™ (=,0), K+($’1) (3.2)

consisting of n = 1 function K~ (s,0) at the left endpoint and p = 1 function K*(s,1)
at the right endpoint are linearly independent. In such a standard case the leading-order
outer equation is {cf. (2.13), (2.16))

1
|| K su(s)ds = ho(@) - lesga(@) + cana(e) (3.3)
0
for suitable constants ¢y, ¢s, with the functions g;, g2 given as
gi(z) = K~ (2,0), ga(z) = KT (z,1), (3.4)

and where the solution amplitudes ¢, ¢ at the endpoints (cf. (2.2)-(2.3)) will be given in

this case by (2.32) as

B =Fe) ==, (3.5)

On the other hand, if one or both of the functions of (3.2) vanish, or if those two functions
are otherwise linearly dependent, then the endpoint-amplitudes é,¢ are of larger order
than indicated by (3.5).

Example 3.1: A Standard Equation of Jump-Order 1. To illustrate our perturbation tech-
nique we discuss in some detail the equation

* .w(.g) ! w(s) 2
——ds + ——ds=~Fh + €“w <z< .
./o 1—E—:c+sds fz 1+22 * (z,6) + €w(z), 0<z<1, (3.6)

17



which corresponds to equation (2.1) with kernel K given by (1.28),

!K‘(:c,s)z T bre<ae,

lK+(m:3) =

K(z,s) = (3.7)

'i"-}%i for s > =z,

with J[K](z) = 0 and J [0K/dz](z) = 1/(1 + 2z)* > 1/9, and where the two functions
gi(z) = 1/(1 + ), g2(z) = 1/(1 + 2z) of (3.4) are linearly independent. Note that there
seems to be no way to reduce the integral equation (3.6) to any associated differential
equation of any fixed order.

The decomposition (2.2)-(2.3) of w into the sum of an outer solution plus boundary-
layer corrections is inserted into (3.6) and the resulting equation can be rewritten in the
following form,

h(z,€) + Ew*(z, €)

f K(z,s)w*(s, E)ds+¢(€)]
+ L(z, €) + L(m, €)

w(s/e €)

1+z+s

P B((1—s)/e )
ds +¢ e)f 1+2 ds (3.8)

where L and L are decaying layer terms given as

O B P

Be, = -H0) @01 -2)/e )+ [ |7 |9t - /e aa,

1+2z 1+z+s

and where certain terms have been added and subtracted in (3.8)-(3.9) so as to obtain a
form that allows an asymptotic splitting as discussed in the next paragraph. We anticipate
that L(z,€) will decay exponentially as ¢ — 07 for fixed 0 < z < 1, while E(:C,t’) is
expected to decay similarly for fixed 0 < # < 1. The formulas for K ~(z,s) (s < «) and
K*(z,s) (s > z) given by (3.7) have been taken to be extended naturally for all relevant
values of z and ¢ in (3.8) and (3.9). For other examples where it may not be as natural to
extend K~ and K+ as here, we employ the related splitting procedure involving suitable
Taylor expansions described in Part 1.

(3.9)

Based on our assumptions, the layer-correction terms are expected to exhibit expo-
nential decay and so it is anticipated that the expression f(:n, €) + f(:n, €} is unimportant
in (3.8) in the outer limiting process € — 0% with fixed 0 < =z < 1. For this reason (3.8)
prompts us to take the following as the outer equation,

— « Y5 (o€ ~, [ G(a,€)
¢(E)/0 mdwﬁ(f)fu Wd]
: (3.10)

h(z,€) + ew*(z, €)

1
=/ K(z,s)w*(s,e)ds + ¢
0

18



where the changes of integration variables 8 = eo and 1 — s = eo have been made in the
respective integrals involving @ and @. It follows from (3.8) and (3.10) that the layer-
sum L(a: e) + L(m e) should vanish, where it is anticipated that L is neghg::ble near the

ol e mmoo . n+ YR S > 4 N
ICIU CLLU.PUILHJ r = U lu LI.’.C LIJ.LLI.IJJ.JJ.B PlULCbb € - WIiLLl 11XCEE nb —_— Ja/l: U \a.nu Wlbll

Z=21—%F > oo) while L is similarly negligible near the right endpomt in the limiting
process € — 07 with ﬁxed z > 0. Hence it is natural to split the null requirement on
the layer-sum L(:r; €) —I—L(z €} into the two separate boundary-layer conditions L =0and

L =0, or with (3.9),

& 1 1
w(z,e) = — 7 d 11
«B(Z, €) L [1-{—265:' 1+ ez + GO’] w(e,e)do (3.11)

and

P * 1 1 ~
ew(Z, €) = —j; lB—Zeﬁ?_ 3—55—50} w(o, €)do, (8.12)
where the common factors ¢ and ¢ from (3.9) have been cancelled in (3.11) and (3.12)
respectively, and all quantities have been rewritten in terms of the appropriate scaled
variables Z and Z of (2.3). Moreover it has been convenient to replace 1/¢ with co in the
upper limits of integration on the right sides of (3.11) and (3.12), where this replacement
anticipates a suitable exponential decay for w and W which will imply that the typical
integrals fl Je -|de involved are exponentially small and hence negligible.

We now indicate how the equations (3.10), (3.11) and (3.12) can be used to determine
the boundary-layer amplitudes ¢(¢), ¢(¢€) along with the coefficients w} ()}, w;(%), ©;(Z) in
the solution expansions of (2.7)-(2.8), subject to the matching conditions of (2.10). Note
that the anticipated exponential decay of the layer-corrections has allowed an esymptotic
splitting of the equation (3.8) into three separate equations consisting of the outer equation
(3.10) and the two boundary-layer equations (3.11) and (3.12), where these three equations
are still coupled through the boundary-layer integrals appearing on the right side of the
outer equation (3.10). It is this coupling which leads to a determination of the layer-
amplitudes ¢ and a

We first differentiate (3.11) ¥ + 1 = 2 times with respect to = to yield the integrodif-
ferential equation
1 2

~f ey e Y —
w3 ¢) (1+ 2ez)? Wz, ) Eé [(1 +2ez)® (14 ex+e0)®
and a similar integrodifferential equation is obtained for & upon differentiation of (3.12).

The expansion for i from {2.8) is inserted into (3.13) and we find (using appropriate Taylor
expansions for (1 + 2¢Z)72,(1 + 2¢z) 7, and (1 + €z + e0)™3)

> [ﬁ;’(a - Sk + 1)(—25)*aj_k(5)] &

j=0 k=0

~ E [/m ;( ~1)%(k + 1)(k + 2) [4(2%)* — (Z + 0)*] ﬁj—-l—k(?)da] o

w(o, €)do, (3.13)

(3.14)
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from which we obtain the equations
Wy (Z) —We(Z) =0 for T >0, (3.15),
and
w3 (%) — w;(2)

= S+ 1) [0 F0() — [ (428~ G )] B0
k=1 ®

(3.15);
for j = 1,2,.... The general solution of (3.15); is given as a linear combination of e™*

and e*?, but the appropriate matching condition from (2.10) eliminates e*® and so our
boundary-layer solution is

—~—

130(’5) o age”” (316)0
for a suitable constant of integration a;. The equation (3.15); then becomes

o0

wo(o)do, (3.17)

T

Wy (%) — w1(F) = —4%we (%) + 6/
which can be solved subject to the matching condition of {2.10) to give

5y(7) = [(3 - 28) a0 + ] e (3.16),

for a suitable integration constant a;. Similarly we can construct as many of the layer-
coefficients w;(Z) (for § = 0,1,---) as might be required for accuracy in the expansion
(2.8) for the layer-correction w(Z,¢) near ¢ = 0, where each additional w; introduces
an additional constant of integration a;, and where all of these layer-correction functions
exhibit the expected exponential decay as  — oo.

Beginning instead with the integrodifferential equation for % analogous to (3.13) but
obtained from (3.12), we similarly find equations for the layer-corrections at # = 1, such
as

1
B}(8) - 5B0(8) =0 and
Lo L B oy 1 -~ - 1 LT Ly > -~ (3'18)
W, (%) — -§w1(:c) = o7 42w (Z) — 6 | ibo(o)de |,

and so forth. These equations can be solved with the appropriate matching conditions of
(2.10), giving

Bo(B) = bye*/%,  ,(5) = [_ (=32 + 68) by + bl} g~*/3 (3.19)



for suitable integration constax}ﬁsﬁbo,bl. The boundary-layer integration constants a;,b;
and the boundary amplitudes ¢, ¢ along with the outer solution will be determined now
using the outer equation (3.10)}. Note that (2.9) implies the normalizations

ao #0 and b #0. (3.20)

The expansion (2.7) for w* and the expansions of (2.8) for W and % are inserted into
(3.10) and we find (using the Taylor expansion for (1 4+ z + eo)™?)

[ =]

2%@m¢@%meMmﬂé

- oo 1/e _
~ €¢’(€ 2 1:2 (14 2)*+1 _/ (“U)kﬁj—k(“)dff} ¢’ (3.21)

j=0 Lk=0
+£¢5(£)1 + % ; ./9 B;(o)do| &,

where we set w} = 0 for negative j < 0. Exhibiting the dominant terms in (3.21) we have

ho(z) — /; K(z,s)wy(s)ds + .-

1/e
~wﬂ)[1 | aeyio o

1o (3.22)

" 1 1/e N
) gz [ oo

where we anticipate, upon letting ¢ — 0, that the right side should produce a linear
combination of 2 independent functions as in (2.13) with N = v + 1 = 2 and with

1 1
- K- — = Kt (zx.1) = . 2
g1(z) = K (2,0) T2 and g(z) (z,1) 1T 22 (3.23)
If we try boundary-layer amplitudes of the form
$(c) * and d(e) = : (3.24)
= a. .
= ]

for fixed constants a and 8, then either of the choices @ > 1 or § > 1 is seen to be
incompatible with the normalizations of (3.20), while either of the choices a <1 or f <1
is seen to eliminate the occurrence of one or the other of the two possible functions of
(3.23) resulting in either ¢; = 0 or ¢z = 0 in (2.13). The choices & = 1 and f = 1 provide
the maximum number of independent functions, resulting in the maximum flexibility. We
anticipate that we shall need this flexibility and so we take « = 8 = 1 with

=36 =1, | (3.25)
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yielding the layer-limit (cf. (2.14))

. — oo J
layer lim (605( €) Z {Z

1/e )
[ (—O‘)kﬁj_k(a‘)da] 4

e—0+ i=0 Lk=0 (]. + m)ﬁ:'!'.s.
~ 1 & e ; (3.26)
— S(aVdo | &
+6¢(£)1+2m§[£ 5,(0) U]e)
_ (4] Ca
14w + 142z
with " -
cy = / we(o)de (3.16) g and c; = / Wy(o)do (5.19) 3bg. (3.27)
0 0

Hence, upon letting € — 07 in (3.22), we find with (3.25)-(3.27) the following leading-

order outer equation,

 _wi(s) w (s) & &
— ———ds =h - 3.2
_/; 1+m+3d3+/z 1+ 22 * o(=) 1+m+1—2—2.’c (3.28)

where the constants ¢; and ¢y can be evaluated directly from (3.28). Indeed if we multiply
(3.28) by 1 + 2z and then differentiate with respect to z and set £ = 0 in the resulting
equation, we find

c1 = hg(0) + 2ho(0), (3.29)
while similarly if we multiply (3.28) by 1 + « and differentiate and set ¢ = 0 we find

- [44(0) + ho(0)) - [ wi(e)as. (3.30)

These last two results can be used to eliminate ¢; and ¢; in (3.28), and we find the (first-
kind Volterra) equation

T a-s N gs (g a(0)+20(0) | B(0) + Bo(0)
(1+2x)(1+x+s)“’°(")ds"h°( ) 1+e 1+ 22

(3.31)

which uniquely determines w§(z) for 0 < z < 1. Indeed, two differentiations of (3.31) lead
to a Volterra equation of second kind which is uniquely solvable. The equation (3.31),
which is regular with no e-dependency and which has a unique solution that is smooth,
will generally be solved numerically for wj. Then (3.27), (3.29) and (3.30) fix the values of
¢1,¢o and ag, by, thereby completing the specification of the leading-order layer corrections
we, Wy in (3.16)} and (3.19).
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The choices of (3.25) for the layer amplitudes can now be inserted back into (3.21)
and we are led directly to the j**-order outer equation

[ eia | a2 ]

Fs Y (E,S}w*{&'}ds = h*(s} — T {332}‘1
i j i |14z  142z]
for j = 1,2,-.-, where the function h} is defined as
j 1 o0 .
* B — . e— ————— — ~l .
RI(z) 1= hj(z) + w]_y (@) g s o /0 (055 (o) do (3.33),
and where the constants c;1,c; 5 are given as
cj1 = f w;(o)de and cj3 = / w;{o)do. (3.34);
0 0

Note that the function h} as given by (3.33); is defined in terms of earlier coeflicient
functions w},w for k < j. Hence the above procedure that led to the determination of
the leading-order terms w}, Wy, Wy can be continued recursively to obtain further terms in
the expansions of (2.7)-(2.8) if desired, using the appropriate equations given above for
j=1,2,---

In particular we find for the solution of the original integral equation (3.6),

1 111
w(z,e) = - [es + O(€)] e7®/¢ + wi(2) + O(e) + - [gcz + O(e):l e~ (12)/(3¢) (3.35)
as € — 07, uniformly for 0 < z < 1, where w}(z) is determined by (3.31) and the constants
¢1,¢2 are given by (3.29), (3.30). The graph of the solution is indicated in Figure I for
the case e = 0.01 and h(z,€) = e™® with ¢; = 1,¢; = 1.9677. The asymptotic solution
(3.35) and the numerical solution obtained by a direct numerical solution of (3.6) differ by

less than the precision of the graph. The solution values at the endpoints are found to be
w(0) = 98.9 and w(1) = 64.3.

— Figure 1 Here —
Fig. 1. Solution of (3.6) with h(z,€) = €~ and € = 0.01.

We shall now consider several nonstandard examples for which at least one of the two
functions K~ (z,0), K*(z,1) of (3.2) vanishes or for which these functions are otherwise
linearly dependent. In such cases the layer-amplitudes 5((—:) and/or a(e) are of larger order
than indicated by (3.25) for the standard case.

23



Figure 1

100 = { ;s ! 100 T !
80 - - 80 —+
60 T -t 60 =+
40 T -+ 40 =+
20 + - 20 +
0 +———p—| 0 =
0 002 0.04 0.06 0.08 0.85 09 095

0.2 04 x 0.6




Example 3.2: A Nonstandard Equation (K~ (z,0) and K*(z,1) linearly dependent). The

equation
rT rl
- / (2 + 8)w(s)ds — 2z j w(s)ds = h(z,€) + w(z) for 0<2 <1, (3.36)
0 z

corresponds to (2.1) with kernel

—(z 4+ 38) fors<ue,

K(z,s) = {K“*‘(z,:g Z ~2z for s >z, (3.37)

with J[K](z) = 0 and J[K.](z) = 1. This is a nonstandard case because of the linear
dependence of K (z,0) = —z and K¥(z,1) = —2z.

The representation (2.2)-(2.3) for the solution w(z,€) as a sum of an outer solution
plus boundary-layer corrections is inserted into (3.36), and the earlier procedure that led
to (3.10)-(3.12) yields an asymptotic splitting of the problem into the outer equation

h(z,€) + Ew*(z,€) = /ﬁ K(x,s)w*(s,€)ds

- 1fe . 1/e
—€ [qu(e) A (z + eo)w(o, €)do +2¢(E)$'/0 (o, e)dcr] for 0<2z <1,

(3.38)
along with the boundary-layer equation for w,
B(E, €)= — ﬁ (5 — o)i(o, )de for 530, (3.39)

and the same equation for @(Z,¢) with ¥ and  replaced by Z and @ in (3.39). These
boundary-layer equations are easily solved for decaying solutions to give

—~— ~

1‘53(5) = a_,-e""z and 13:(5) = bje”’ (3.40)

for the coeflicients of the layer expansions in (2.8), for suitable constants of integration a;

an.d bj '

The expansions of (2.7)-(2.8) are inserted into the outer equation (3.38) and we find
with (3.40),

E [[) K(m,s)w;(s)ds — hj(z) — w;_z(m)] &l
a ) oo (3.41)
~ Z [ﬁg(f) (:Bﬂ'uj + aj_l) + Zeg(f)mbj] &l
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with w} = 0for j < 0,a_; =0, and where exponentially small terms have been neglected
on the right side. Exhibiting the dominant terms we have

(3.42)
~ e [Fe)ao +28(e)bo ] = + € [B(e) (a0 + a12) + 20(e)bue] + -+,

where a linear combination of 2 independent functions must be produced by the order-unity
terms on the right side, upon letting € — 0. It is not possible to obtain 2 such indepen-
dent functions from the first term on the right side (because of the linear dependence of
K~ (z,0) = —z and K¥(z,1) = —2z) and so this term must be set to zero,

B(e)ao + 28(€)by = 0. (3.43)
Without loss we take (note that (2.9) implies ag # 0,y # 0)
$(e) = d(e), (3.44)
and then (3.43) leads to the necessary condition
ag + 2b = 0. (3.45)

Using (3.44)-(3.45) back in (3.42) we are led first to the choice

~ ~ 1
H=30=3, (3.46)
and further we are led to the lowest order outer equation
1
j (2, s)wi(s)ds = ho(2) — [c1 + c2] (3.47)
0
with
c; = —ag, c3=—(a;+2b). (3.48)

The constant c; can be evaluated from (3.47) by differentiating the equation with
respect to z and setting ¢ = 0, and similarly ¢; can be evaluated by first multiplying the

equation by 7! and then differentiating with respect to  and setting z = 1. In this way
we find

c1 = —hH(1) + ho(1) + /1 swy(s)ds
0 (3.49)

1
ez = hy(0) + 2/ wg(s)ds,
0
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which can be used to eliminate ¢; and ¢; in (3.47) to yield the equation

/ﬂ " w(s)ds + f " sl ()ds = ho(2) + Ki(1) — ho(1) — Bb(0)o. (3.50)
This equation determines wj(z) uniquely as
wi(2) = Wi(2), (3.51)
and now (3.49) and (3.51) yield the values
c1 = ho(0) and c; = 2hy(1) — ho(0). (3.52)
The constants ag, by are now determined by (3.45), (3.48) and (3.52) as
g0 = —ho(0) and o = %hg(m, (3.53)
and (3.48) and (3.52) yield also the relation (cf. (3.45))
a; + 2b; = —2h(1) + he(0) (3.54)
which would be used at the next level in determining as,5;.

We are content here to stop with the lowest order terms in the expansion for the
solution of the integral equation (3.36), given as

w(z,€) = hy(z) + O(e) + 21; [—ho(0) + O(e) e72/* )
(3.55
+ 612 [%ho([}) + O(e):l e{1—2)/¢

as € — 07, uniformly for 0 < 2 < 1. Due to the nonstandard nature nature of this example,
both boundary-layer amplitudes are larger, of order 1/€®> rather than order 1/e as in the
standard case of jump-order 1. Note that the single condition ho(0) = 0 would suffice to
reduce the layer-amplitudes by an order at both ¢ =0 and =z = 1.

The procedure can be continued to obtain further terms in the expansion, as allowed

by the smoothness of the data. For example, proceeding through terms of third order, we
find

w(z,€) = KD (z) + eh{P(z) + € [h{V(e) + BP] + 0 (&)
— 5 [ro(0) + hs(0) + & (RPU(0) + Ra(0)) + 0 ()] =+
+ 5og [Bo(0) + €(Rh(0) — 205 (1) + ha(0)) + € (REA(0) + BL(0) — 2RL(1) + ha(0))

+0 (53)] e~ (1-2)/e
' (3.56)
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Example 3.3: A Nonstandard Equation (K~ (z,0) = 0). As another example consider the
equation

al

— /: sw(s)ds — jz aw(s)ds = h(z,€) + €w(z) for 0<z <1, (8.57)

which is (2.1) with kernel

—5 fors<a

—z fors >z, (3.58)

Koo ={ ko(orn)

with J[K] = 0 and J[K,] = 1. This is a nonstandard case because of the vanishing of
K~(z,0) = 0. The layer amplitude at # = 1 will follow that of the standard case, while
the amplitude will be larger at 2 = 0. In this case the asymptotic splitting produces the
outer equation

h(z,€) + €w*(z,€) = /0 K(z,s)w*(s,€)ds
_ 1/e " ife
— € [E¢(£)./o ow(o,e)do + qb(e)a:/o (o, c)dcf]

along with the same boundary-layer equations as in example (3.36) with the boundary-

(3.59)

layer coefficients w; and ; given again by (3.40). Note the extra factor of ¢ appearing
with the ¢-term in (3.59) generated by the multiplicative factor of s in K~ (z, s).

Inserting the expansions of (2.7)-(2.8) into (3.59) we find with (3.40),

[—Ro f K(z,s)wj(s)ds] + e[—hi(=z / K(z,s)wi(s)ds] +
~ € ¢(e){ag +G1€+"']+E¢(£):ﬂ[bg + et

(3.60)

where the order-unity terms on the right side will produce a linear combination of 2
independent functions with the selections

H=7 amd Fo=2. (3.61)

€

The procedure then goes as expected. The solution has the structure
1 1
(e, ) = 5 [ho(0) + O(&)] /% + 2 [hh(1) + O(0)] 4=/ 4+ Hi(s) + O(e) (3.62)

with wi(z) = hy(z) and ag = —ho(0), by = —hg(1); details are omitted.
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Example 3.4: 4 Nonstandard Eguation (rapidly oscillating solution). As a final example
in this section consider the equation

re rl
j sw(s)ds + j zw(s)ds = hz,€) + ezw(m) (3.63)
0 z
which is (2.1} with kernel (= negative of (3.58); cf. (1.38))

_J K (2,8) =s fors<z
K(z,s) = {K+(z,5) =g fors>z, (3.64)

with J[K] = 0 and
J[Kz](z) = -1. (3.65)

The formal procedure analogous to (3.8) and (3.10)-(3.12) can be applied to this problem,
and the resulting “boundary-layer” differential equation at @ = 0 is seen to be (cf. (3.15);)

Wy (Z) + We(T) =0 for T >0, (3.66)
with general solution (with 7 = z/¢)
Wo(z/€) = ap sin{z/€) + by cos (z/e). (3.67)

Hence Wy leads to a rapid oscillation with no decay, and in fact the original problem (3.63)
is seen to be equivalent to the boundary-value problem

Ew'"(z,€) + w(z, ) = — h'(z, €)

h"(0, € R(1,e (3.68)
w(0,¢) = — (2’ ), w'(l,€) = —#,
€ €
whose solution oscillates rapidly as e — 0F. Moreover the solution is unbounded for the
values 1
e=— - n=0,1,2,--- (3.69)

(@D

which are eigenvalues of the homogeneous boundary-value problem. The problem is not of
boundary-layer type, and the assumption (1.36)-(1.37) excludes such oscillatory problems
here.

Section 4. Jump-Order Two

In this section we illustrate our procedure for jump-order 2, first with an example of
the standard case and then with several examples of nonstandard cases. The jump-order 2
case is the first instance in which oscillatory behavior can occur in a layer region. Moreover
the layer-limit procedure for the outer equation is more subtle than for the jump-order 1
case.
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For jump-order 2 eithern = 2,p = 1 or n = 1,p = 2 depending on whether J [K,;] > 0
or J [K,;] <0 (cf. (2.12)). The latter case can be transformed into the former by replacing
z with 1 — z in the integral equation, and so without loss we shall restrict consideration

to the case
TIE 1~ N LIy oo 1 f4 1Y
o 1.[1:23 ~ Uy TUIL T — P — i. \".t..l.)
The standard (and simplest) case then occurs when the three functions

K™ (=,0), K, (=,0), K+(:E,1) (4.2)

consisting of n = 2 functions K ~(z,0), K, (2,0) at the left endpoint and p = 1 function
K*(z,1) at the right endpoint are linearly independent. The resulting leading-order cuter
equation is (cf. (2.13), (2.16))

1
/ K(z,s)w(s)ds = ho(z) — [c19:(2) + c2g92(2) + c3g3(z)] (4.3)
0
for suitable constants ¢;, ¢, ¢3 with the functions g;(2), g2(z), gs(z) given as

g1(z) = K(2,0), golz) = K (2,0), gs(z)=K"(z,1), (4.4)
and where the solution amplitudes g(e), g(e) at the endpoints will be given by (2.32) as

0 :35 and as“(e)zl. (4.5)

€ €

If one or more of the functions of (4.2} vanish or if these three functions are otherwise
linearly dependent, then the results (4.4) must be modified for g;(z) ( = 1,2,3) and the
endpoint-amplitudes ¢(e), ¢(e) are of larger order than indicated by (4.5).

Example 4.1: 4 Standard Equation of Jump-Order 2. For the standard case we consider
the equation

2 1
8 w{ s
_/0 Hm,g(—_)lszds"'/z 1_§_(_12,) ds = h(z, e} + €w(z) for 0<z <1, (4.6)

which is (2.1) with kernel (cf. (1.29))

_1g2y7?
K(o,s) = (1-1-?.9 a3 ) for s < (a7
(1+ %2?) for 5 > z,

with jump-order 2 and J [K,,] = (1 + %mz)uz > g— so that (4.1) holds. Moreover the three
functions of (4.4),

5e)=1, ale)=-s md a@)=(1+3) (1)

29



are linearly independent.

We again employ the decomposition (2.2)-(2.3) of w into the sum of an outer solution
plus houndarv-layer corrections. Following the approach described in Section 3, we find

n asymptotic splitting that consists of the outer equation
1
h(z,€) + Ew*(z,€) — / K(z,s)w"(s,€)ds
0

~ 1/ w(o, e -~ e &(a,e (4.9)
=€ [qb(e)/o (=, 2 da’—l—qﬁ(e)/ﬂ ———(;—)daJ

1+ exo — 5620'2 1+5“32

for 0 < ¢ <1, and the boundary-layer correction equations

3ﬁ£0“£?[ r 1 }a@qw (4.10)

143 1232 14 €230 — z€0?
for z > 0, and

éﬂangm L !
’ - [1+(1-eB)(1—e0)— (1 —e0)? 1+ 3(1— €T)?

]ﬂmd@ (4.11)

for > 0. The equations (4.10) and (4.11) are differentiated 3 times to yield the corre-
sponding integrodifferential equations

_ 1 — 37 (2 — €232 Gelod -
w"'(m 6) mmm"'i”“;:"z—;w(x,f)-l-f ﬁ [ ( — 2 + 2~E o oy 4} w(o’,e)dff
(1—;—56:::) z (1+2 m) (1—i—ea:a—550")

(4.12)
and
1
~41] _ T
(a’ve) = ( &+ %6232)2 ( :5)
o0 . 3 3 1~ "' 1 2 o~ _ 22
+Eﬁ 6(1 — ec) - (1 €3 ( + 2€Z ::c) (o, )do.

z [(3 -2+ 2T — 1e20?) (14 1(1 - ex)?)

(4.13)

The expansion (2.8) for @ is inserted into (4.12) and we find a collection of differential
equations for the coefficient functions wy,%;,... of the form (cf. (3.15) or (5.10)-(5.11))

- ~ 0 for =10
" _ J ) )
wy' — W = {Pj(ﬁ) for 7 > 1. (4.14);
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for suitable functions ﬁj which are determined by the data recursively in terms of wy for
k < j ~ 1. For example in the case j = 1 the function P; is given as (cf. (5.11))

: oty oy AP 2 AN e f ey, [ *r 1TF5AN [m — hY " ra - e\
Py(Z) = 3J{K 0] (0)00(T) + J[Kp22)(0) j" wy({o)do = 0, (4.15),
while ﬁg is found to be given as
By(3) = —32i50(3) + 63 /~ Bo(o)do. (4.15);

The general solution of (4.14), is given as a linear combination of the functions

+z

€

\/55 .,.;/2 \/?_’EE
5 y € CO8 T,

, e~ %% sin

(4.16)

but the appropriate matching condition from (2.10) eliminates et? and so the boundary-

layer solution is
~ oy . V3z 3z
wo(Z) = e~ ?/? (Ag sin \/2—2 + By cos x/z_m) )

(4.17)q

and w; is obtained similarly from (4.14); and (4.15); as

() = e72/? (A1 sin \/2§:1: + Bj cos \/s—m) , (4.17),
for suitable constants of integration Ao, By, A1, B;. The result (4.17); can be used for
Wy in (4.15)2 and then the resulting equation (4.14), can be solved for w, subject to the
usual decay condition at infinity. One can similarly obtain as many of the functions w;
(for = 0,1,...) as may be required for accuracy, where each additional ¥; introduces two
additional constants A;, B; of integration, and where all such layer-correction functions
decay exponentially as T — oo.

Beginning instead with the integrodifferential equation (4.13), we find for the coeffi-
cient functions ; a collection of differential equations

- {0 for j =0,
i =

4
v gw QJ(E) for J > 1’ (4'18)1

for suitable functions @j which are determined recursively in terms of Wy for k < j — 1.
For example the function @), is given as

~ 16 ... 16 = _
@1(%) = — =7 0(23)-%-“‘—1\ wo(o)do. (4.19)



The general solution of (4.18), is given as a linear combination of the functions

~ - 3
e=Fz et V3 v3

, sin ﬁm, % cos 74@5, (4.20)

5= (%)1/3, (4.21)

o that the most general solution with the required decay property is

with

Bo(8) = CheF= (4.22)0

for an arbitrary constant Cy. Inserting (4.22), into (4.19) and then solving (4.18),, we
find the general decaying solution for ; to be

()= |Cy + "9'"0023 (8 —28%)| 7P (4.22)

for an arbitrary constant C;. Again one can similarly obtain as many functions i5; as
required for accuracy, where all these functions decay exponentially as  — oo.

The expansions (2.8) for w and % are inserted now in the right side of the outer
equation (4.9), and we find (through the first few orders, using the appropriate Taylor
expansions; cf. (3.21))

h(z,€) + e w*(x, €) — /ﬂ K(z,s)w"(s,€)ds

~ e3(€) [ /0 Y Golo)io + e( /0 Y (Vo — /0 Ve orﬁ;'g(fr)dcr)

+ e (fol/efv'z(a)dam . folle oy (0)do + (% +T,2) /ﬂlka ol )dg) N ]

eg(e) e e
+@[/0 wn(a)da+e/0 wy(o)do + -+,

(4.23)
or with (4.17), (4.22) and neglecting exponentially small {erms,

h(z,€) + w2, €) — f Kz, syu(s, )ds
ep(e [ (fA0+Bo)+e( (A1+BI)+-;-:::(—\/§AD+BD))
(-2- ) azfu'g(a)da-i—/owiﬁg(o')da-{» Sa(~V3d, +B1)) +}
€)

-~

)
- (% [ 6/0 [Cl + }gcoa»(s - 2ﬁa)] e Pdo + . } _

(4.24)
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A linear combination of 3 independent functions must be produced by the order-unity
terms on the right side of (4.24) upon letting ¢ — 0. Moreover, because there are 2
independent decaying solutions in the left boundary-layer list (4.16) while there is only 1
such decaying solution in the right boundary-layer list (4.20), we anticipate that we should
use 2 independent terms with coefficient $ associated with the left endpoint on the right
side of (4.24), along with 1 function associated with the a-terms at the right endpoint.
It is not possible to satisfy these requirements with the leading terms on the right side.
Moreover there must hold Cj # 0 (see (2.9)) and so we must set to zero the quantity

V34g + By = 0. (4.25)

The remaining terms suffice with the choices (cf. (4.5))

~ 1 ~ 1
Ho=% md do=1, (4.26)
and then (4.24) along with the expansion (2.7) for w* lead to the equations
[ Ko uitedds = hote) ~ [ oo+ 5] (a21)
¢, 5)wy(s)ds = ho(z) — les + e22 :
A y 8wy 0 1+ et I
with 1 1 o
c1=3(V3B41+B1), o= (-3 +Bo), = 3", (4.28)
and
1 1 o0
/ K(z,s)wi(s)ds = hi(z) — (m + :cz) / 2wy (o)do
0 2 0
; (4.29)
— |di +d :
{ 1+ d2T + n %mz}
with - 1
dy = / By(o)do, d = -2-(—J§A1 + By),
0 (4.30)

ds = / [Cl + %Cod(s - 2,30)] e P do,
0

and analogous equations for w; for j > 2. In the following we are content to compute only
the first two terms in the expansion (j = 0,1).

The equations (4.27) and (4.29) (and the related equations for higher-order terms)
are of the general form

ks
1

1+

[ o) et it [ st = fo) — [+ e (4.31)
8 ma = — T .
o 1428 — %32 14 %32 z ? e ! 2 + 22
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for a suitable given function f(z) and for suitable constants k; (i = 1,2,3) that must be
chosen in each case so that the first-kind integral equation (4.31) is solvable. The constants
can be conveniently determined as follows. The integral equation can be mulfiplied by
i+ %mg and the resuliing equation can be differentiaied with respeci to z to yield

[ [(:(cllﬂw)s(’;f:;i)] v(s)ds = ((1 + %mz) f(w))’ —kyz — ks (1 + gmz) . (4.32)

Put z = 0 in this last equation to find

ks = £'(0). (4.33)
Next differentiate the equation (4.32) and put # = 0 in the resulting equation to find
ky = f(0) + f"(0). (4.34)

Finally, to obtain ks, put z = 0 in (4.31) and use (4.34) to find

ky = — [f”(O) + fu 1 v(s)ds] . (4.35)

These results can be used to eliminate the constants in (4.31) to yield

_12_'/0-': ﬁv(s)ds = f“(ﬁ) + (1 + %32) (7(z) — £(0) — f’(O)m o f”((})], (4.36)

and this latter equation determines v = v{z) uniquely for 6 < z < 1. Indeed three
differentiations of (4.36) lead to a Volterra equation of second kind which is uniquely
solvable.

Applying these results to (4.27) for v = w§ with f = hg, we have

c1 = ho(0) + hg(0), c2=ho(0), c3=— [h{,’(o) + ful w:(s)ds} , (4.37)

with w; determined by the equation

—Ld) e 0lg  H(0)2?
* ds = —h —h . ) -
./o (2+22) (1 +2s — 1s2) wy(8)ds = ho(2) — ho(0) ~ ho(0)2 9+ 22 (4.38)
Similarly, applying the results to (4.29) with v = w} and with (cf. (4.17),)
— 1 2 * 3~
f(z) = hi(z) (2 + ) /0 oty (o)do (4.3

- hl(a:) + (1 "§* 2&32) Bo,
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we find
1
5

with w] determined by the equation

hy(0)z? 2z% B,
2422 24z

z — 8)*wi(s) _ B PN
./(2+ﬁ)1+mm~ﬁyh-hﬂﬂ ha(0) — 73 (0) (4.41)

These equations can be used to obtain the constants 4;, B;,C; appearing in the first
two layer-corrections (4.17); and (4.22); for j = 0,1. From (4.28) and (4.37),

V34 + Bo = 205(0), Co = —B [h;;(o) + fu 1 w;(s)ds] , (4.42)

which with (4.25) yield

1
t=-BC p—n), Go=-s M@+ [uia]. ey
V3 0
Turning to the case j = 1, there follows from (4.28) and (4.37)
V34; + By = 2[ho(0) + hI(0)], (4.44)
while (4.30) and (4.40) yield

~+/34; + By = 2R} (0),

1 4.45
- W+ 430+ [Cwioas] =G+ 522, (4)
From (4.43)-(4.45) we have
1 I !
A = ﬁ [ho(o) + hy (O) - hl(o)]
By = ho(0) + K(0) + K4(0) (4.46)

0= 3 [+ [ wi(oyis] g [0 + 4840) + [ witeras].

The procedure can be continued to determine as many terms as may be required for
accuracy.
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In particular we find for the solution of the given integral equation of jump-order 2,
to first-order,

i | \/!g-'ﬂ v%a: 1
w(z,€) = = | Ao sin + By cos +0(e)| e==/C9
¢ x % (4.47)

1
+wg(2) +0(€) + — [Co + O(e)] e#17=V*

uniformly for 0 < 2 <1 as € — 01, with 8 given by (4.21), with the constants Aq, Bo,Co
given by (4.43), and where the outer function w§(<c) is determined uniquely by the (regular)
equation (4.38). Similarly, to second-order we have

(Ao + €A;) sin \/iz + (Bg + €B1) cos \/25::

o= o]
+ wy(z) + ewy(z) + O(€) (4.48)

2
cl_l_gcul——a: —%Co (l—m) ] -I-O(ez)] e—B1==w)/e
€

€

1
+"[Go+6
€

where A;, By, C are given by (4.46) and the function w}(z) is determined by (4.41).

— Figure 2 Here —
Fig. 2. Solution of {4.8) with h(m, E) = e ® and € = 0.01.

For the special case
h{z,€) = e7® = ho(z), (4.49)

the numerical solutions of (4.38) and (4.41) imply

1 1
f wi(s)ds = 2.196688 and / wh(s)ds = —21.58155, (4.50)
0 [i]
and we have
Y 2
0 ﬁ) 1 \/g
By = -1, B, =2, (4.51)

Co = —2.43953, Ci = 20.9431.
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The graph of the resulting first-order outer solution wj is indicated in Figure 2 by the
dashed curve for the case € = 0.01. The solid curve in Figure £ indicates the second-
order asymptotic approximation (4.48) which coincides (within the precision of the graph)
with the numerical solution obtained by a direct numerical solution of {4.6}. The solution
values at the endpoints are found to be w(0) = —9.8 x 10° and w(l) = —2.17 x 10%
The direct numerical solution was obtained with a finite-element scheme using a variable
mesh with 1000 grid points, on an Allient FX-80 machine. The direct numerical solution
proved to be expensive to obtain for small €, in contrast with the asymptotic solution which
was cheaply obtained. Note that the first-order asymptotic approximation is reasonably
satisfactory here, but the second-order approximation is nevertheless useful due to the
relatively larger values of A;, By, C;,w} as compared to A, By, Cy,wy. The second-order
asymptotic approximation gives excellent accuracy.

We shall now consider several examples for which at least one of the three functions
of (4.2) vanishes or for which those functions are otherwise linearly dependent. In such
cases at least one of the layer-amplitudes is of larger order than indicated by (4.26) for the
standard case.

Example 4.2: A Nonstandard Egquation (K~ (z,0),K; (z,0) and K*(z,1) linearly depen-
dent). The equation

f: (wz -5+ f;) w(s)ds + f ! (m2 -2% w) w(s)ds = h(z,¢) + fw(e)  (4.52)

corresponds to {2.1) with kernel

K~ (z,8) = (22 —2s +5%)/2 fors<z

K(z,s) = {K+(m, 8) = (2% + zs)/2 for 5 > =z, (4.58)

with » = 2 and with n and p given by (4.1). This is a nonstandard case because of
the linear dependence of the three functions of (4.2) (K~ (2,0) = z*, K (2,0) = -z,
K*(z,1) = (2% + z)/2), resulting in boundary-layer amplitudes of larger order than occur
in the standard case. Here the asymptotic splitiing produces the outer equation

h(z,€) + w*(z,€) — ./; K(z,s)w*(s,€)ds

Do 1/e 2
= eg{;(e)/ T (:1:2 - w;—:no' + -%-0'2) (o, €)do (4.54)
0

€ ~

1/e . .
+ §¢(€) /0 (2® + z — exo) (0, €)do,

along with the boundary-layer equations

o 1 oo _ _ N o0
w(Z, €) = —Eﬁ (z — 0)*(0,e)de and W(Z,€) = % ﬁ (Z — o) (o, e)do.  (4.55)
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From (4.55) we have the differential equations
w'"(z,e) —w(Z,e) =0 for z >0, w'"(Z,e) + w(Z,e) =0 for >0, (4.56)

with solutions given respectively as linear combinations of the functions

e“*';, e/ gin \/Em’ e=*/? cos \/32 (for w) (4.57)
and Jaz /3
e =, e/t gin %, et2/% cos 23:5 (for w). (4.58)

There are 2 decaying solutions in the list (4.57) associated with the left endpoint z = 0
because of the result n = 2 (c¢f. (4.1)), while there is just 1 decaying solution in the list
(4.58) because p = 1. The general solutions of the boundary-layer equations (4.55) coincide
with the general decaying solutions of the differential equations (4.56) and are

e e . /3% V3%
W(ZF, €) = e~ 2/2 e} sin €) cos
(5,9 (A() S+ B() cos ) a0

-~

w(Z,¢) = Cle)e™™

for constants A(e), B{e), C(e) that are to have asymptotic expansions in € resulting in
expansions for w, @ of the form (cf. (2.8))

w(Z, €) ~ z e_”’?/2 (AJ- sin @ + Bj cos ‘/ng) ¢
=0 (4.60)

m -~ .
(3, )~ Y e Cjel.

j=0

The expansions (2.7) and (4.60) are inserted into (4.54) and a now-routine calculation
gives

i [h_,-(m) + w;"'S(m) - '/01 K(z, s)w;(s)da] e

i=0

~ i[g(f) [(x/i’:Aj + B;‘) % + (—*/?:Aj—l + B;‘—l) Z - 35—2] (4.61)

4
a0(Z5) - () o
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with w} = 0 and A; = B; = C; =0 for j < 0. Exhibiting the dominant terms we have

1 N . R \
h@(‘m) - [ K(a:, 3)1";(‘9)‘13 +oeee e fd’(f) (\/?:Ag + B@\ %'1”‘““ + E(f’(E)CQ (cc :+M m\
Jl} \ ;2 \ 5 /

+ €4(e) ’(\/-'?Al + Bl) %i + (—\/?:Ao + Bu) ﬂ

+ €2(e) :01 (”2; "’) e (—;5)] (4.62)

+ E3(e) —(\/?:Az +B) 5+ (—VBA1 +By) S - Ba]

reda e (52) - (5)] +

and upon letting € — 0 it is not possible to obtain a linear combination of 3 independent
functions from the leading terms on the right side. Moreover the leading ¢-term involves
only 1 function. As in the earlier example with (4.24) here also we must set to zero the
quantity v/34, + By, giving again the condition (4.25). There will now be two independent
functions on the right side of (4.62) associated with the dominant (‘,;-term, but the leading
terms there still cannot produce 3 independent functions. Since Cy must not vanish, we
impose without loss the condition

Be) = 3(e) (4.6
and combine the remaining terms of (4.62) as

1
ho(z) — fu K(z,s)wg(s)ds + -

2

~ 525(5) [(\/gAl + B, + Co) ?'2‘* + (—\/?_er + By + 200) E}
2

4 (4.64)
37 T T
+ €' ¢(e) (\/ﬁAz + Bz + 6'1) 5 + (m\/ﬁAl + By +20; - 200) ;B
e
Now we obtain 3 independent functions with the conditions
V341 +B1+Co =0 (4.65)
—/34 + Bo +2C, = 0, '
and with € ¢(e) = 1, so that (4.63) gives
-~ 1 -~ 1
(e} = 5 and ¢(e) = rh . (4.66)
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With these choices we obtain from (4.61) the conditions

1
[ K(z,awj(s)ds = k(=) ~ [ej02” + €2 + 5]

v

for j = 0,1,---, with K given by (4.53), h}(z) defined by
hi(2) = hj(2) + wj_s(),

and with 1
¢j1 = 9 (‘/:;qu-z + Bjs2 + Oj+1)
1
€2 = Z (-—-\/gAj_H + B_‘H—l + 205+1 — 205)
¢js = —B;.

The constants ¢;; (3 = 1,2,3) can be evaluated from (4.67) to give

1
ej1 = % [h;:"(o) _ /0 w}‘(s)ds}
1
¢jz = h3'(0) - ] w3(s)ds
0
cj)3 = h;(O),

which can be used back in (4.67) to yield

1 ‘ 2 % % * *f l *11 2
5/0 (o — 5w} (s)ds = ki(e) — B3(0) — B5'(0) — 3" (0)s.

*

} uniquely as

w}(e) = hj" ()

This equation determines w

for § = 0,1,... which with (4.70) gives
1 #
cja = hj"(0) — 5A7"(1)

i = 3 A1)~ k"(1)]
cj3 = h;f(O).

(4.67)

(4.68)

(4.69)

(4.70)

(4.71)

(4.72)

(4.73)

These results along with (4.69) and (4.25) suffice to determine the values of the constants

A;,B;,C; appearing in the layer-corrections w, . To lowest order we find

1 \/gm \/f)Tm

w(:z:,e)ze—3 Ay sin 5 + By cos 5

1
+ 5 [Co+0()] 72 4 hy'(z) + Oe)
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uniformly for 0 < z <1 as € — 0%, with

1
Ao = Zzho(0),  Bo = ~ho(0), Co=hs(0). (4.75)

In this example the basic three functions K~ (z,0), K (z,0), K¥(z,1) of (4.2) are
linearly dependent, but the following extended list of functions

K~ (z,0)=¢?, K;(2,0)=-%, K5(z,0)=1,

. (4.76)
K+(:B,1) — £ 2 z

suffices to provide three linearly independent functions with two of these functions associ-
ated with K~ at s =0 (n = 2 in (4.1)). Due to the nonstandard nature of this example,
each of the amplitudes qS( ) = 1/€® and 95( €) = 1/€® of the solution at the endpoints is
one order larger than indicated by (4.26) in the earlier standard case (4.6). The single
condition h(0) = 0 would suffice to reduce the layer-amplitudes in (4.74) back to the
standard amplitudes.

Example 4.3: A Nonstandard Equation (K% (z,1) = 0). As another example consider the
equation

fos|

which is (2.1) with kernel

K(mjs):{(l—m)[s——l-%‘«ﬂ for s <2

a:] w(s)ds — / ( _28)2 w(s)ds = h(z,€) + w(z) (4.77)

478
mﬁ—)—l";' : , for s > z, ( )

with v = 2 and with n and p given again by (4.1). Here again the basic three functions of
(4.2) are linearly dependent, but the following extended list of functions

K~ (z,0)=

K:(:B:O):l“m, (4 79)
K*(z,1) =0, K¥(z,1)=0, Ki(zs,1)= -1 |

contains three linearly independent functions, 2 associated with the left endpoint and 1
with the right endpoint. In this case our approach reveals a larger boundary-amplitude at
¢ = 1 than at ¢ = 0, with (cf. (4.5))

1 -~ 1
"3

dle) = = and ¢le) = - (4.80)



where the amplitude follows that of the standard case (4.26) here at the left endpoint z = 0
but the boundary amplitude ¢ is two orders larger than the corresponding standard case
at the right endpoint z = 1.

In this example the asymptotic splitting produces the outer equation
1
h(z, ) + Sw* (g, ¢) — / K(z,s)w*(s, €)ds
0

1/6 1+21
|-

+ ea] w(o,€e)do (4.81)

along with the same boundary-layer equations of (4.55) with solutions @ and @ given by
(4.59)-(4.60). A routine calculation yields (4.80) along with the following leading-order

expansion
w(z,€) = eiz [Au sin ‘f_;“’ + By cos ‘/25:’ + O(e)} e=2/(2€) .
+ ';g [Co + O(e)] e 7)€ 4 Ry (2) + O(e)
with .
Ao = = Z=ho(0), Bo=ho(0),  Co = —ho(1). (4.83)

Example 4.4: A Nonstandard Equation (exponentially large solution). As a final example
in this section consider the equation '

./: %32w(3)ds + [: z (s - -;-Tf) w(s)ds = h(z, €) + ' w(z) (4.84)

which is (2.1) with kernel

2

K(z,s) = {K“(m,s) = & fors < (4.85)

Kt(z,8)=z(s— &) fors>z,

with v =2, J [K,,] = 1, and with n and p given by (4.1). Again one checks that the three
functions of (4.2) are linearly dependent. Moreover there hold

&K~ (z,s) 1 forj=2

Cr e {o for § # 2, (4.86);
and
Kt (z, 3) ::—3;- for =10
K™ (z,s
o =)z fricl (1.87);
N 0 for 3 > 2,
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so that it is not possible to produce a collection of functions analogous to (4.76) or {4.79)
containing three linearly independent functions of the type (4.86); and (4.87); with 2 (= n)
such functions associated with the left endpoint. Hence our construction of a boundary-

1aver solution must n‘PnPranv fail for this Pnnahn'n {4 Rlﬂ and it is then not annnmna that

the solution of (4. 84) in fact generally fa;lls to cxhlblt bounda.ry layer behawor

Indeed upon differentiation one sees that any solution of the integral equation (4.84)
must also satisfy the differential equation

ew'"'(z) - w(z) = ~h"(z,€), (4.88)

and the most general sclution of (4.88) can be easily represented by variation of parameters
in terms of three integration constants that can be determined by inserting the solution
back into (4.84). For example in the case

h(z,¢€) = €°® (4.89)
the resulting solution is given as
B3 ef? 2e~2/(2¢) cos 4_2\/521-»»3

w(z,€) =

1-¢€58 e (1 — e33) (2 cos )2@ + emsf(ze))

— 1-2)/(2€) 28eP(1 — €f) sin 2=
V3 (1 - e4%) (2c0 Y2 + e«»s/(ze))
Bef [f(l 4+ eB)cos L& + (1 - ¢B) sin ] + Bentem1/20)
v3e2 (1 — e38%) (2 cos Y3 4 e—s/{ze))
(1= eB) sin Y542 & (1 + o) cos Y1)
VB (1 - 6°) (2c00 ff + e—sme))

—(1-3)/e

+ BePe—(1—2)/(29)

(4.90)
This solution is generally ezponentially large for 0 < 2 < 1 except in the case 8 = 0. In
this latter case there is a layer at z = 0 and the solution is exponentially small for ¢ > 0
if cos4/3/(2¢) is bounded away from zero. The solution of the integral equation (4.84) is
generally not of the boundary-layer type (2.2)-(2.4) employed here.

Section 5. General Case

In this section we discuss briefly the general equation (cf. (1.33)-(1.34))

'[U K(z, ayw(s)ds = hz,c) + ¢ Hu(e) (5.1)

43



of jump-order v subject to the earlier assumption (cf. (1.36))
[Re p(z)| > >0 (5.2)
for the roots p = p(z) of the equation
prtt = J[6¥ K/8z" (). (5.3)

For solutions of boundary-layer type with bounded outer solution we employ the decom-
position (cf. (2.2))

w(z, ) ~ (e)ib(, €) + w* (2, €) + $(e)D(E, €) (5.4)

with layer-variables Z = ¢/e and Z = (1 — z)/e as in (2.3). The layer-corrections @ and @
are expected to decay for large values of their variables, resulting in an asymptotic splitting
of (5.1) into the outer equation

1
h(z,€) + ¢ w*(z,€) = / K(z,s)w*(s,€)ds
0

+ (e /0 K~(z, 8)ii(s/e, €)ds + B(e) /U K*(z, 8)B((1— 8)/e, €)ds

(5.5)
and the two boundary-layer equations
i3, ) = /_ K+ — K|(c8, e0) (o, €)do (5.6)
and -
@B (F, €) = — /\ (K — K)(1 - 8,1 — o) (0, ¢)do, (5.7)

where the functions K~ (z,s) (s < z) and K¥(z,s) (s > z) of (1.3) are assumed to be
extended smoothly here for all relevant values of z and s. If such extensions of K~ and
K™ are not convenient then the related splitting procedure described in Part I can be used
in terms of suitable Taylor expansions.

The layer equation (5.6) can be differentiated v + 1 times with respect to Z to give

dvtl _ 0K, oI gvtt 1~ ~
dzr+1 W(Z,€)— J[a }(em)w(:c,e) :ff [&Bp_‘_l [Kt — K~(eZ, e0) | ©(0, €)do. (5.8)

The expansion (cf. (2.8))

w(ZT, €} ~ ng(m (5.9)
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is inserted into (5.8) along with appropriate Taylor expansions for the data, and we find a
sequence of differential equations of the form

~ ra —~ for; =10
“'\VTU( )—J l J(@)w,(:c) = iP (%) for} > 1: (5.10);

for suitable functions ﬁ,- which are determined by the data recursively in terms of wy for
k < 7 — 1. For example in the case j = 1 the function P; is given as

SO [ wloo (511)

which depends only on @, (and on the kernel K). The assumption (5.2) implies that the
equations (5.10); can be solved recursively subject to the decay conditions of (2.10), and

we find

'K
Oz¥

P(z)=%T [ ] (0Yizy(Z) + J

T3(E) = Y ajee" O 1 W;(3) (5.12);

i=1
for arbitrary constants aj; (¢ =1,--,n), where the n+ p roots p;(z) of (5.3) are ordered
here so that (cf. (2.11)-(2.12))
Rep; <0 for 1=1,2,---,n, and

. (5.13)
Rep; >0 for 2=n+1l,n+2,---,n+p=v+1,

and where the function ﬁf'j in (5.12); can be given uniquely in terms of earlier @ for
E<j—1( >1), with
We = 0. (5.14)

The construction of the function w; of (5.12) from (5.10) and (2.10) yields directly the
exponential decay property

|5;(Z)| < Cje™® for 20 (5.15)

for a fixed constant & that can be taken to be any positive number less than all the numbers
Re[-pi(0)} fori =1, ,n.

For i we find similarly upon differentiation of (5.7) with respect to Z,

dv+1 1

v+1
= (—1)”6/; [;x""i'l [K+ —K7)(1 - €2,1 — e5)| W(o, €)do.

1 — ez2)w(T, €)

6"K
] (5.16)
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The expansion
oo
g,6) ~ Y _;(3)e (5.17)
i=o
is inserted into this equation and we are led similarly to expressions of the form

n+p

Di(@) = Y a e 4 (5) (5.18);
1=n-41

where Wo = § and where Wj is determined uniquely in terms of earlier wy, for k < 7 — 1,
for j > 1. The functions @;(Z) satisfy exponential decay properties analogous to (5.15).

The expansion (2.7) for w* is now inserted into the outer equation (5.5) along with
the expansions for h, w and w, and we find

if’[ (z) +wi_,_i(=) /K:z:.s ds}

=0

*a,

N qu ifj i:jcl—q [BkK (z, 8)] /m o+ 5;_4(0)do (5.19)
im0 k—o s=0 J0
+ ed(e) gég}:— [ak}ﬁ )]WI f:o( ) @5 k(o)do,

where appropriate Taylor expansions in € have been inserted on the right side here for
K~ (z,e0) and Kt (z,1~¢0), and where w} := 0 for negative j. As noted in Section 2, upon
letting € — 0%, we insist that the right side of (5.19) should produce a linear combination
of N = v+1 = n+p linearly independent functions so that the resulting first-kind equation

(2.19) for w§ can be reduced to a more tractable equation of the second kind analogous to
(2.24).

The standard case occurs when the following collection of functions is linearly inde-
pendent (cf. (2.34)),

k1 g —
QM fork=1,--,n
gk(m) = Bsk—1 =0 (520)
ak—“_1K+(m, s)
fgk—n—1 3=1 fork:n+1""an+p}
with &5 and ggiven as (cf. (2.32))
~ 1 N 1
oe) =5 and 9o =3 | (5.21)



Indeed with (5.21) we find, upon letting ¢ — 0 in (5.19),

1 ntp
ho(z) — j K(z,s)wj(s)ds = chgk(:v)
0

k=1

with the functions g; given by (5.20) and with the constants ¢ given as

(k—lT)s b 0" Bn_k(0)do for k=1,2,.-+,n,
cp =

Goacni Jo (=) " Mngpoi(o)doe fork=n+1,n+2,--,n+p,

provided that we impose the conditions
o
_[ o*Bi_i(o)do =0 for k=0,1,--,j
0
and for all j=0,1,.--,2— 2,

and

/ (—U)kﬁj—k(a)da =0 for k=0,1,---,5
0

and for all j=0,1,.--,p -2,

(5.22)

(5.23)

(5.24)

(5.25)

where these conditions (5.24) and (5.25) are required in this case to eliminate unbounded

terms on the right side of (5.19).

The equation (5.22) of first kind can now be replaced by an associated equation
analogous to (2.24) of second kind, and we assume that this latter equation is uniguely
solvable with solution wj. This function w§ will also solve (5.22) for suitable constants ¢y

given as (cf. (2.29))

()

= W—l(zl)[[hg(m),hﬁ(wx):'"1hgy)(m1)]T

Cn+41

\ews,/

— [ 1K (e1,9) Kalos, ), -, 8 Kan, )/ 02" i 5)as]
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for any fixed 0 < z; < 1, where the matrix function W is given by (2.31) and is invertible
because of the linear independence of the functions (5.20). One can evaluate the constants
¢ by solving (numerically) the linear system obtained by pre-multiplying (5.26) by the
matrix W(z,). Note that the right side of (5.26) is independent of the particular @, used
(see the discussion following (2.28)), and in fact a different z; = =4 may be used for each
component ¢ (k = 1,.+-,n + p) if this is convenient. Moreover if the outer equation is
uniquely solvable as assumed here, then the ¢;’s can often be eliminated from (5.22) by
several different approaches based on using different ¢} s in various differentiated versions
of (5.22), as illustrated by (3.28)-(3.31) and by (4.31)-(4.36). In this way in practice one
can sometimes obtain an alternative (though equivalent) integral equation for wj that is
simpler to handle than the general equation analogous to (2.24).

Now that the lowest order outer solution w§(z) is uniquely determined for 0 <z <1,

we can complete the determination of the lowest order layer-corrections wg and @y given
respectively by (5.12), and (5.18), as

n - n+p —~
Bo(z) = »_a;e"® and Ho(d) = Y aemH" (5.27)
=1 i=n+1

for suitable constants a; = ap; which must now be determined. Note that any complex-
valued constants will always appear in conjugate pairs (if the data & and K are real-valued)
so there are exactly n real coefficients to be determined for w, and similarly there are p
coefficients to be determined for %. Turning first to @, the choice ¥ = n in (5.23) along
with the choices k= j (for j = 0,:+-,n — 2) in (5.24) yield

: 0 forjm—Ol---n—fZ
7 _— y e 3 H
j; 7 wo(cr)da B {(’l - 1)!(:,1 forj =1 — 1, (5'28)

and a similar argument for @ yields

/ﬂ " (oY Bo(0)do = {

The constant ¢, is already determined by (5.26), and now (5.28) provides n independent
equations which uniquely fix the values of the n coeflicients for @y in (5.27). Similarly
the p equations of (5.29) serve to fix the values of the required coefficients for #,, and
the leading terms wj, wy, Wy are therefore uniquely determined. The procedure can be
continued recursively to provide as many terms in the expansions (2.7) and (2.8) as may
be required for accuracy, as illustrated in Example 3.1 and Example 4.1 of the previous
sections in the standard case.

{Orj=031)“'1p_21

0
(p—Dlepyp forj=p—1. (5.29)
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In a nonstandard case for which the functions of (5.20) are linearly dependent, it may
still be possible to obtain a linear combination of v+1 = n+ p independent functions from
the order-unity terms on the right side of (5.19) upon letting ¢ — 0 with suitable choices for
the layer-amplitudes q-; and a, with n of the resuiting independent functions associated with
the left endpoint and p associated with the right endpoint, as illustrated in Example 3.2,
Example 3.3, Example 4.2, and Example 4.3; see also the following Example 5.1. In
such cases the original integral equation can be expected to have a solution of boundary-
layer type as considered here and our technique produces a uniform approximation to the
solution for small €.

Finally, if as in Example 4.4 it is not possible simultaneously to obtain n independent
functions of the form

K~ (z,s)

5a) L for 7=0,1,2,... (5.30)
and p independent functions of the form
Kt (c,s )
——-—é—gg———)— s for j=0,1,2,.-. (5.31)

from the order-unity limiting terms on the right side of (5.19), then one can expect that
the equation has no boundary-layer solution of the type sought here.

Example 5.1: A Beam Egquation. The integral equation

%(1 — z)? j: s?[-3z + (1 + 2z)s]w(s)ds + %mz /z (1 —5)*[—3s + (1 + 2s)e]w(s)ds

= h(z,€) + fw()

(5.32)
is equivalent to the earlier boundary value problem (1.39) from linearized beam theory if
the function h is taken as in (1.40) and if there holds b(z) = 1 in (1.39). The jump-order
is 3 with J[Kz4,) = —1 so that (cf. (2.12))

n=p=2. (5.33)

The equation is not of standard type because

2 .
K- ~z(1 — z) for j =2
--mué—(;ﬁl =41~ z)2(1+22) forj=3 (5.34)
4 +=0 0 for all other j,
and ) '
9iKH(a, —(1~2)e for j =2
.___5._.(;__{). =4 2*(-3+22) forj=3 (5.35)
8 =1 0 for all other j,
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so that the n + p = 4 functions g of (5.20) all vanish. However the following functions

(5.36)

1'/+ . ) .
ll!‘\'[;’a ja=1 =

| \

g1 (ﬂ’}) - K:;(E, 8 1120 = _m( Z) gz(z) = Ksaa(m ‘s)l‘“ﬂ (}' + 23)(1 - m)zﬂ
\ [N 1o, N2
J <) L&

2 _ oy,
oL [ y4 O};l;

-
Il
oy

f
o~
&
|
[y
L

are linearly independent with 2 functions associated with each endpoint, and so our tech-
nique suffices to handle (5.32).

There holds K*(z,s) — K~ (z,8) = (z — 5)® so that (5.8) and (5.16) lead to the layer
equations
TH(E, &) + B(F,e) =0, TW(E,¢)+D(F,e) =0 (5.37)

with general, decaying solutions given by the expansions (5.9) and (5.17) with coefficients

w;(T) = e=3/V3 [Aj cos ;;_2— + B;j sin %} (5.38);
and R R
W;(3) = e—o/V2 {C’j cos —% + D; sin »—;2_;] , (5.39);

for suitable constants A;, Bj, Cj, D;. The outer equation (5.19) becomes with (5.34) and
(5.35),

o0

Z el [hj(:c) + w;u4($) — \/: K(z, s)w;(s)ds]

i=0

~ _%es [55@):;;(1 — z)? /0 ” o*Bo(o)do + ¢(e)z*(1 — @) /0 ” azﬁig(a)da]
(1— 2y fo ” Us'fu'j_;;(a)dcr}

o0

+HAY S [-20 -0 [ o Baloo +

g

)Y E

j=3

1+ 2z

‘”zzj‘ o‘zﬁj_g(a)do'—f-zmﬁ_szzf 0'3'&?:_3(0)dar} .
0 0
(5.40)

It is not possible to obtain a linear combination of v+1 = 4 functions from the leading
terms on the right side of (5.40) and so we must set those terms to zero by imposing the
conditions

f azﬁg(a)da’ =0, / aziﬁg(a')do' = 0. (5.41)
0 0

Now the leading terms of (5.40) produce a linear combination of the 4 independent func-
tions of (5.36) with the choices

$le) = d(e) = 5 A (5.42)
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Indeed (5.40), (5.41) and (5.42) lead directly to the outer equations

4

/0 K (2, 5w} (s)ds = hj(2) + wi_y(2) = 3 csuan(2) (5.43);

k=1

for j = 0,1,--+ with the functions g; given by (5.36) and with the constants c;; (k =
1,2,3,4) given as

1 7% L. 1 [ 4.
¢j1 = E/: 0?5, 41(0)do, ¢z = E./o o*;(o)do

1 1

o0 o (5.44);
cj3 = '2‘/0 o*@jy1(0)do, cju= ~Ef0 o*®;(0)do.

Putting # = 0 and then # =1 in both (5.43); and in the equation obtained by differenti-
ating (5.43);, we find that these constants can be represented as

€1 == [h;(O) + w;:'_é(g)] , €2 = hi(0) + w;f_4(0)

x . (5.45);
cjs = hi(1) + wile(1), eju =~ [h;i(1) +wj_4(1)], ’
and then (5.43); and these results determine the outer function w}(z) as
4t
wj(e) = iy [hi(e) + w5_g(2)] (5.46);

The equations (5.41), (5.44); and (5.45); can be used recursively to determine the
constants A;, B;,C;, D; in (5.38); and (5.39);. Indeed, the first equation of (5.41) along
with the equations involving ¢ 5 of (5.44)¢ and (5.45), provide the system

f o?wy(o)de =0 and j c*wy(o)de = 6ho(0). (5.47)
0 0

The expression (5.38)y for @y can be inserted into (5.47) and the resulting two equations
serve {o determine the values

Au = Bo = -—hg(O). (548)

Similarly, from the second equation of (5.41) along with the equations involving ¢ 4 of
(5.44)p and (5.45)¢, we find for the constants in (5.39)s,

Co = Dy = —ho(1). (5.49)
Similarly at the next level we find for the constants in (5.38); and (5.39);,

A; = —h1(0), B; = —hy(0) — v2k}(0)

Cr = —hi(1), D1 = —he(1) + vZRE(1). (5.50)
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For example the results for A; and B, are obtained by solving the two equations (cf.
(5.44)-(5.45))

(=]
hi(0) and f i, (o)do = 6h;
AT/ j AN J
0
The process can be continued to obtain the constants in (5.38); and (5.39); for as many
values of j as are required for accuracy in the resulting expansion for the solution of the
integral equation.

1) (5.51%
LI} H \ohou

If the integral equation (5.32) originates with the boundary value problem (1.39)
(with b =1 there), then the expansion (1.34) for the function A satisfies (cf. (1.40))

Sy K(z,5)f(s)ds for j =0,
hi(z) = ¢ —[ao + (200 + a1)z](1 — 2)* — [Bo + (280 — B1)(1 — =z)]e? for j =4
0 for all other j.
(5.52)

It follows with (5.48) and (5.49) that Ay = By = Cy = Dy = 0. In fact the following
constants vanish by (5.45),

CJ',; == Cj‘z —_— L‘j‘a = CJ',4 = { fOI’ J = 0, 1,2,3, (553)
and then (5.41) and (5.44) yield
Aj-—»BjZCj:Dj=0 for 7=0,1,2,3. (5.54)

The outer functions w}(x) of (5.46) are given as

f(=) fOI‘j‘: =0
W@ =3 on) g (5.55)
0 for 7 = 5,6,7,
and so forth, and then (5.44) and (5.45) yield directly
Ay =By =op— f(0},  Ci=Ds=p — f(1), (5.56)
and
As =0, Bs=+v2[a1~f(0)], Co=0, Ds=v2[-p1+f(1). (5.57)
The solution w satisfies
w(z,€) = e~ 75 {(ao _ #(0) (co.s v sin ;ie) +VEe(as — f/(0)) sin ﬁ]
+ e~ Ve [(ﬂo - f(1) (cos -1:7__"25 + sin —1—\;—2_—:) + \/ie(f'(l) — B1) sin 1\/_§:J
+f(#) +0 (),
(5.58)
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so that the layer-amplitudes and the solution are bounded in this case. The present analysis
also handles the more general problem with any smooth positive-valued coefficient function
b(z) in (1.39); details are omitted.

By way of comparison, if the forcing function in equation (5.32) is taken instead as
h(z,€) = ho(z) := €P® (5.59)

for some fixed constant 3, then the above procedure leads directly to the results

AO = _1’ BO = “11 C(j = —‘E'B, D0'= _eﬁ,
Al =y, B1 = “\/iﬁ, 01 = 0, D1 = ‘\/ﬁﬁe'ﬁ, (5 60)
A2:0, By =0, 02:0: Dy =0, .
A3=0 B3:0, 0320, D4:0,
along with
"o\ —B%eP*  for j =0, 1
wj(=) = {0 for j = 1,2,3, (5.61)
so that the solution satisfies
w(z,€) = —B*e?* 4 0 (¢*)
1 T T
—e—z/(V2e) | _ -~ _ . T 4
+ 64e { cos 73e (1-|—\/§ﬁe)sm ﬁe—l—O(e )} (5.62)

B _ _
+ %e—(l—w)/(ﬁf) [— cos 1\/2_: — (1 — \/Qﬂe) 81M 1\/5:; + 0 (64)] .

In this case the layer-amplitudes are O (1/€*) as suggested by (5.42). The result (5.62)
is in agreement with the explicitly known exact solution which can be readily obtained
in this case by solving the appropriate 4**-order boundary value problem obtained from
(5.32) by repeated differentiation.

The solution (5.58) of the integral equation (5.32) is of order unity when the forcing
function h arises from the conversion (via the Green function {1.42)) of the boundary
value problem (1.39) into the integral equation, resulting thereby in the special forcing
function (1.40). However, small errors in evaluating this forcing function during a numerical
computation of the solution of the integral equation will generally be amplified substantially
in the layer regions where such errors can be magnified by a factor of ¢ (cf. (5.62)).
Special care must therefore be taken when using such an integral equation formulation in
the numerical computation of the solution of a stiff boundary value problem.
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Section 6. Modification Due to Nontrivial Null Space

It is possible for the kernel K in (1.1) to have a nontrivial null space. Olmstead and
Angell [7] discuss the nice example

]:: 2(1 —z)(s — L)w(s)ds + / 22(2 — s)w(s)ds = h{z) + ew(z). (6.1)

In this case the kernel

_J21—2)(s—-1) fors<z
K(z,s) = {2:::(2 ~ &) for s > z (6.2)
has a 1-dimensional null space spanned by the function
v(z) =e " (Kv=0 for v#0). (6.3)

Olmstead and Angell show how to solve (6.1) and related problems having a 1-dimensional
null space using their perturbation method.

The integral equation (6.1) is equivalent to the boundary value problem

ew" + 2w' + 2w = —h”(:n) for 0<2z<l
R(0 R(1 (6.4)
w(0) = - 49, )

w(l) = '—T!

and one sees that the function v = ¢ is a solution of the reduced (e = 0) homogeneous
(h = 0) differential equation
2w' + 2w = 0. (6.5)

The dominant differential expression ew" + 2w’ in (6.4) determines the balance in the
layer and governs the scaling of the layer width, The numerical difference between the
order of the full differential equation and the order of the reduced differential equation is
1 (=2 —1), which will imply that the kernel (6.2) has jump-order 0.

A kernel K with a nontrivial null space need not be associated with a boundary
value problem for a differential equation. But it is interesting to note that such kernels
as are typically obtained by repackaging singularly perturbed boundary value problems
as integral equations will generally have this property, so that boundary value problems
provide an important source of this phenomenon for integral equations. For example, the
third-order boundary value problem

ew'" +w' —~w=f(z) for 0<az<l,

w(ﬂ) = a, 'w(l) = b, 'w'(l) =c (66)
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is equivalent to the integral equation (1.1) with forcing function h(z,¢) := 2(1 — )b —
e[(1-2)a+2z(2—2)b—a(l —z)c| — [7(1/2)(1 ~ )25 f(s)ds + f:(1/2)m{sz(m -2)—z+
25]f(s)ds and with kernel

K(a,s) = {S(Zf);m(fzfﬁ?_ 2s7) /2 E; : ; . (67)
The reduced homogeneous differential equation is
w' —w=0 (6.8)
with a 2-dimensional solution space spanned by
vi{z) =€®, wy(z)=¢"7%, (6.9)

where these same two functions v;,v, also span the null space of the kernel (6.7) with
Kv; =0 for § = 1,2. The difference between the orders of the full and reduced differential
equations is 1 (= 3 — 2), and the kernel (6.7) has jump-order 0.

As another example, the boundary value problem

ew" —w' +w=fz) for 0<z<1,

w(0)=a, w(l)=b w'(l)=c (6.10)

is equivalent to the integral equation (1.1) with forcing function h(z,€) := —¢[(1 — z)%a +
z(2 —z)b—z(1 —-z)c] — f;(l/2)(1 — )28 f(s)ds + f:(l/Z)m[sz(m —2)—=z +2s]f(s)ds and
with kernel

(1~ 2)?s(2 + 5)/2 for s <z
K(z,s) = { (-2 4+ 25+ 2z + 252 — 25 — 252)/2 for s > z. (6.11)

The reduced homogeneous differential equation here is

w —w =0 (6.12)
with 1-dimensional solution space spanned by

vi(z) = €%, (6.13)
where vy also spans the null space of the kernel (6.11). The difference between the orders

of the full and reduced differential equations is 2 (= 3 —1) which will imply that the kernel
(6.2) has jump-order 1.
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For a more general boundary value problem of boundary-layer type for the linear
scalar m**-order differential equation (for integers m > g > 0)

9
ew™ + 3 a;(zywl)(z) = f(z) for O<z<1 (6.14)
i=0

(with a4(z) # 0for 0 < z < 1, to avoid turning points), the reduced g**-order homogeneous
differential equation

g
> ai(a)wP(z) = 0 (6.15)
i=0
will have a g-dimensional solution space spanned by ¢ independent solutions

vi(z),v2(2), ..., v4(). (6.16)

The difference between the orders of the full and reduced differential equations is m — g,
and the corresponding integral equation will have kernel K with jump-order v =m —1—gq.
To see this recast (6.14) as an integral equation of the form (1.1) using the Green function
for the operator d™/dz™.

When the kernel K of jump-order v in (2.1) has a g-dimensional null space, we must
modify our ansatz (2.2) as

w(z, &) ~ HB(E ) + () Y djv;(0) +w'(2,9) + HD(B, ), (617

i=1

where the outer term w*(z) in (2.2) is supplemented here with the additional outer terms
q
¢°(e) Y djv;(), (6.18)
=1

for a suitable amplitude ¢*(¢) and for suitable coeflicients d; = d;{e) that are expected to
have asymptotic expansions in powers of ¢, with

d; = O(1). (6.19)

In the asymptotic splitting, the modified ansatz (6.17) adds the supplementary term

e1g7(e) D dvi(e) (6.20)
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to the left side of (5.5). We anticipate that these additional terms will generally be needed
to obtain a solvable equation for the leading term in w*, in which case (6.19) leads to the
amplitude choice

. 1
40 = o (6.21)
The earlier outer equation (5.22) for the leading term in w* is now modified as
1 n+p g
ho(z) — f K(z,s)wg(s)ds = Z crgr(z) + Z di(0)vi(z), (6.22)
o k=1 k=1
where the right side can be interpreted as the summation
N
3 chan(a) (6.23)
k==l
in (2.13) with
N=v+l4+g=n+p+ag, (6.24)

with the last ¢ of the ¢i’s and g;’s given in (6.23) by the appropriate d;’s and v;’s.
Uniqueness will fail for (6.22), but the resulting asymptotic approximation (6.17) will be
unique as a consequence of the choice of the d;’s.

The highest order term w(™) multiplying € in (6.14) can be replaced by a suitable,
more general m**-order differential operator applied to w, in which case the present ap-
proach based on the integral equation (1.1) generalizes known results for singularly per-
turbed boundary value problems for scalar differential equations and equivalent first order
systems (cf. [4], [8], [9], and other references given in [6]).

Finally we mention that the possibility exists for an integral equation to have a kernel
with an infinite dimensional null space. As an example consider the simple 2 x 2 (Volterra)

system )
FEDEDGE)R) o
with matrix kernel

K- = (j g) for0<s<z<1
K(z,s) = (6.26)

K*:(g g) forl1>s>e>0
-1 0

-1 0
operator with kernel (6.26) consists of vector functions of the form

v(z) (2) (6.27)
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where v = v(z) can be an arbitrary scalar function. Our asymptotic splitting can be
carried through based on the solution ansatz (cf. (6.17))

|l ]

f e £ AN - / /i AN
(=) =0 (2E) +o@@ (3)+(EET),

\
) +
and we find

(z:g: 3) _( f1(0)+6f1(0))e_”/‘( )+ (fi(=)- fz(w))( )—f{(m)(i)+0(f)’
(6.29)

where the asymptotic splitting leads to ¢*(e) = 1/e along with v(z) = fi(z) — fa(z) as
a solvability condition in the outer equation. The result (6.29) is in agreement with the
exact (unique) solution of (6.25).

Section 7. Existence, Uniqueness, and Error estimates

We show that the scalar equation (2.1) of jump-order ¥ > 0 can be reduced to a vector
system of jump-order 0 to which the methods of Part I apply, leading to an existence and
uniqueness result for (2.1) along with error estimates on the difference between the exact
solution and an approximate solution such as produced by our asymptotic splitting. For
brevity we include here only the case v = 1, for the equation

Ew(z,€) + h(z, €) = /0 K(z, s)w(s)ds (7.1)

and its differentiated equation

2w'(z,€) + K (2, €) = /0 K, (z,s)w(s)ds (7.2)

with J[K](2z) = 0 and J[K,](z) # 0for 0 <z < 1.

We introduce the vector function (cf. (7.15))

_ (ua(=, €\ _ w(z, €)
9= (00d) =< (wl (7:)
for any solution w of (7.1), and find upon integration of e?w' = u,,

(s, €) — w(0, €)] = /0 " wa(o, €)do (7.4)
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We multiply (7.4) by K+(0,s) and integrate to find

62/0 K+(0,s)w(s,e)d.9zezn(O)w(0,€)+£ k(8)uz(s, €)ds (7.5)
with }
k(s) :=/: K*(0,0)do, (7.6)

and then j;]l K*(0,8)w(s,e)ds can be eliminated between (7.6) and (7.1) evaluated at
z = 0, to yield

1
[%(0) — (0, €) = h(0,€) — 2 / (s (s)ds. (7.7)
0
The quantity x(0) — €® is nonzero for all small enough € so that (7.7) can be used to
eliminate w(0, €) in (7.4). The resulting equation gives with (7.3),
1

cus(e,6) = [<(0) - @] 7 |@h(0,9 - [

while (7.2) and (7.3) yield

(o) + [Cua(e, s, (18)

euz(z,€) + eh'(z,€) = /{; K. (z,8)ui(s, €)ds. (7.9)

It follows that the vector function u of (7.3) satisfies the system

€ (Z:Ezg) n ((e2 = EEI?‘)();,I:)%(O’E)) - f: K(z,s,¢€) (z;gg) ds (7.10)

with matrix kernel

K(z,s,¢) = Koz, 8) + K1(s,€) (7.11)
iven with
g (K‘? ) (1)) fors <z
Ko(z, ) = : 0”’3 . (7.12)
(K:'(z,.s) 0) for 3 > =,
and 1
Ki(s,€) = (g — (x(0) “062) K'('g)) ,' (7.13)

Note that X is unrelated here to the earlier K of (2.24)-(2.25). The matrix function X, is
independent of # and smooth with no jump, J{K;](z) = 0, so that

TKI@) =) = (e 0)0 (1.0
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where this latter jump matrix is smooth and invertible, uniformly for 0 < ¢ < 1. The
scalar equation (7.1) of jump-order 1 is thus equivalent, via (7.3), to the vector equation
(7.10)-(7.13) of jump-order 0. For the more general equation (2.1) of jump-order v, the
relation (7.3) is replaced by

U1 wn
Uz . ew'
u(z,€) = : =€ . . (7.15)
Upti e w)

Our asymptotic procedure can be extended so as to handle such kernels as (7.11)
depending on ¢, and then a modified version of the theorem of Section 7 of Part I holds
for the vector problem (7.10). In this way we obtain an existence and uniqueness result
including error estimates for (7.1) subject to the assumptions of Part I. Alternatively the
method of proof used in Part I can be applied directly to (7.1) without repackaging the
latter equation as the system (7.10). Details are omitted. A related theorem is given in
[1], based on the work of Eskin {2, 3].
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