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MAGNETCHYDRCDYNAMIC SHOCK WAVES REVISITED

C. K. Chu*, C. C, Wu**, UCLA
Introduction

The equations of ideal fluid magnetohydrodynamics i.e., the flow
of a fluid with no viscosity, heat conductivity, or electrical
resistivity, form a set of hyperbolic conservation laws, and
they approximate the motion of hot ionized gases or plasmas in
stars, solar wind, earth's magnetosphere, or fusion experiments,
The discontinuous solutions that form are called
magnetohydrodynamic shocks, and they bear the same relations to
the basic equations as do ordinary gas dynamic shocks to the
Euler equations. :

However, in the 1960's, it was discovered that there are toco
many such discontinuous solutions that all satisfy the
{(thermodynamic) entropy increase condition. Thus, the solutions
to the piston problems, Riemann problems, etc. will all become
nonunique, see e.g. [1]. Additional criteria were proposed to

select the admissible shocks, based either on stability of the
linearized perturbation problem (evolutionary) or on the
existence of structure with reasonably arbitrary dissipation
included. With these criteria, the extraneous shocks (usually

called intermediate shocks) were eliminated, and the solution
to initial and mixed initial-boundary value problems again
appear unique. In some numerical experiments, Chu and

Taussig[2] showed the connection between structure and
evolutionarity.

More recently, Wu and Brio [3] noticed the formation of
intermediate shocks in many numerical calculations. They
suggested that the existence of these shocks and the resulting
nonunigueness of initial value problems are a consequence of the
nonconvexity of the hyperbolic system, an important feature
hitherto unnoticed. Wu then reconsidered many of the properties
of MHD shocks, and reached many new conclusions: the instability
of the Alfven wave, the stability of the intermediate shocks,
the existence of noncoplanar shocks, and the occurrence of
shocks that do not satisfy Hugoniot conditions (e.g. [4]).

This paper presents some results of new numerical experiments,
with the aid of which we strengthen several of the earlier
conclusions of Wu on the occurrence of the intermediate shocks;
in particular, we show further the history-dependent nature of
these shocks., We also confirm the existence of noncoplanar
shocks. For the Alfven wave and the nonstaticnary shocks, we
offer an alternate interpretation that does not regquire the
abandoning of the Hugoniot conditions. This paper is dedicated
to H. 0. Kreiss on his 60th birthday as a token of friendship
and admiration.
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The equations of i1deal fluid magnetohydrodynamics, generally
known as the Lundgquist equations, are expressible in simple form
in one space dimension

JdUu/ot + A 9U/9x = 0

where U = (p,p,u,v,w,By,Bz), with p and p the density and
pressure, u, v, w the x, y, z compcnents of the velocity, and
By, Bz the y and z components of the magnetic field. A= A(U)
is a 7 x 7 coefficient matrix. The seven equations are,
respectively, the conservation of mass, conservation of energy,
conservation of momentum (three components), and the two

components of the Maxwell's equation 9B/dt - curl E = 0,

The electric field E does not appear, because the Ohm's law for
a perfectly conducting moving fluid E + u x B = 0 permits its
elimination. The current density 3§ does not appear, because
by neglecting the displacement current, the Maxwell's equation
jJ = curl B permits the elimination of j. Also, Bx 1is not an
unknown; because of the Maxwell's equation dlv B =0, it only
appears in the A matrix as a constant.

The characteristics are the magnetohydrodynamic wave speeds.
Because of the presence of the magnetic field B, they are highly
anisotropic, and are best presented in a Friedrichs diagram,
Fig. 1 [5]. Here a is the usuwal sound speed, and A =
(.’f_%z/up)l/2 is the Alfven speed. The three MHD wave speeds are
represented by the three intersections of the ray in the x-
direction, the direction of the wave front normal, and they are
called the fast MHD wave, Alfven wave, and slow Alfven wave
respectively, (There is also the usual particle path). The
eigenspaces of these waves are disjoint: the fast and slow waves
have changes in velocities, transverse field magnitudes, and
density and pressure, while the Alfven waves have only a
rotation of the transverse field and transverse velocity, but no
changes in their magnitudes and no changes in the density or
pressure.

The system can be written in the usual conservation form

JdU/ot + OF (U) /9x = 0

from which one derives Hugoniot conditions for discontinuities.
The solution of these nonlinear algebraic equations are the MHD
shock waves. Particular cases of these shocks have been studied
in the early 1950's, but the first systematic study of MHD waves
and shocks from the viewpoint of quasilinear hyperbolic
equations was made by Friedrichs in 1954 ([5].

MHD Shock Waves == Classical Theory

We summarize very briefly the state of knowledge of MHD shocks
through the middle 1960's. The discontinuous solutions from the
Hugoniot conditions must first satisfy the thermodynamic



entropy rise (or at least, nondecrease) condition. This
condition eliminates all the expansion shocks, exactly as in
ordinary gas dynamics, but no more. The remaining admissible
solutions can be classified into many families, which is most
easlily achieved by refering to Fig., 1, where we define the four
regions 1 - 4 of fluid velocity as super-fast, sub-fast but
super-Alfven, sub-Alfven but super-slow, or sub-slow
respectively. FEach MHD shock represents a transition of the
fluid velocity from one of these four regions into another; the
Friedrichs diagrams on the two sides of the shock are different,
put each has these four regions uniguely defined.

For all subsequent discussion, it is most convenient to make a
Galilean transformation to align the fileld and velocity:; the
continuity of tangential E field across the front insures that
this can be done for both sides simultaneously. MHD shock waves
can be classified thus: (1} Fast shocks: the velocity changes
from region 1 to region 2, (Fig. 1) and (together with the
magnetic field) bends away from the normal (Fig. 2). (2} Slow
shocks: the velocity changes from region 3 to region 4, and
bends toward the normal. (3) Intermediate or trans-Alfvenic
shocks: the velocity changes from 1 or 2 to 3 or 4, thereby
crossing the Alfven wave circle, and bends beyond the normal.
These are all compressive and entropy increasing solutions. In
addition, there are: (4) the usual contact discontinuities, in
which normal stress (pressure plus magnetic) and normal
velocities must be continuous, but the density, temperature,
etc. can have arbitrary jumps, and (5) Alfven discontinuities,
or finite amplitude Alfven waves, with transverse field and
velocity rotation but no changes in thermodynamic state. The
former three classes of shocks are nonlinear, but the latter two
classes of discontinuities are linear and do not steepen. This
fact for the Alfven discontinuity will have important
implications later on.

With these discontinuities, the solutions to piston problems,
Riemann problems, etc. are nonunique. There are too many
shocks. To overcome this nonunigueness, additional criteria
must be invoked.

The more common and simple criterion was introduced by many
Soviet workers (e.g. Akhiezer, Polovin, [6] etc.) and detailed in
[(11. It is usually called evolutionarity, and requires that a
linearized perturbation of the shock possess a unique solution.
This immediately translates into counting characteristics, that
the number emanating from the shock path in the x-t plane should
be one less than the number of Hugoniot conditions (the unknowns
are the linearized Riemann invariants outgoing from the shock
path and the perturbed shock speed). Under this criterion, the
intermediate shocks were rejected, and all the others remain;
the solutions to initial value problems then became unique.

The other criterion, introduced by Germain [7]}, is that with
reasonably arbitrary dissipation coefficients, the
discontinuities should have a structure. The intermediate
shocks again turn out to have structure only for special values
of dissipation coefficients, or to have nonunique structure, and
again were rejected.



The only exception not answered by either criterion was the
switch-on or switch-off shock, where the field (and velocity) is
normal to the shock on one side and obligque on the other side.
This was a limiting case for the evolutionarity criterion, and
could not be answered by the structure criterxrion. In 1966, Chu
and Taussigl2] resolved this problem by numerical
experimentation. They showed that in the case of intermediate
shocks, the nonunique shock structure depends on the history of
the perturbations that the shock has experienced: since there
are not enough characteristics to carry away the perturbing
field, the field builds up inside the structurxe to different
levels, then saturates and splits the shock. In the case of the
switch-on shock, the perturbations repolarize the plane of the
shock, but does not break up the shock; in fact the
thermodynamic structure of the shock is stable. Thus, by the
late 1960's, the nature of MHD shocks has been completely
understood.

Recent Conclusions

In 1985, Brio and Wu [3] found the existence of intermediate
shocks in numerical calculations of the MHD Riemann problemn,
using many different schemes. They also noticed the important
fact that the MHD equations are not genuinely nonlinear, since
the coefficient matrix lacks convexity. They suggested that the
nonevolutionarity of the intermediate shocks and the
nonconvexity of the equations are related. 1In a long serles of
papers [4], Wu made detailed studies of MHD shocks, and came to
many new surprising conclusions, which we summarize very
briefly:

1. The MHD equations are not genuinely nonlinear, because of
the nonconvexity.

2. Intermediate shocks should not be rejected, as recommended
in the classical theory. All of the transitions, from regions

153, 253, 1-4, 2—4, can be formed from steepening. Their
structure is dissipation dependent and history dependent.

3. The Alfven discontinuity, or rotational discontinuity, is
unstable in the presence of dissipation, and breaks up into all
kinds of waves.

4, There exist non-coplanar shocks: these are shocks where the
upstream and downstream field and velocity are in the same
plane, but the field and velocity in the structure have
components out of the plane.

5, There exist time-dependent shocks, not satisfying Rankine-
Hugoniot conditions, and for these shocks, even the upstream and
downstream fields and velocities are not coplanar.

In the present paper, we perform two additional numerical
experiments, which permit us to view these features in a
different light. Essentially, we confirm and reenforce the



conclusions on the nature of intermediate shocks and non-
coplanar shocks, and offer an alternate interpretation on the
instability of the Alfven wave and the existence of non-Hugoniot
shocks.

Intermediate Shocks

The numerical experiment is a repetition of that of Chu and
Taussig [2]. The intermediate shock chosen is a normal shock
for simplicity. The shock is no different from an ordinary gas
dynamic normal shock. except for the presence of a Bx field.
The transverse conponents By, Bz, Vv, W all wvanish. The
upstream and downstream velocities are governed by the usual
Hugoniot relations of gas dynamics, as the Bx field is parallel
to u and contributes nothing to the steady state. The Bx
field is chosen so that the Alfven velocities upstream and

downstream are such that the shock represents a transition from
region 1 to region 4 in fig. 1.

A steady transverse perturbation By of 10% of Bx is applied
upstream. As seen in [2]. the transverse field is trapped in
the shock structure, and builds up in time. When the transverse
field corresponding to a switch on shock is reached, which we
denote by By*, the shock splits into a switch-on switch-off
pair. {(Fig.3) If the perturbing field is withdrawn any time
before the split, the shock remains a normal shock externally,
but contains an amount of By and v, corresponding to the total
transverse fluxes trapped up to that time. Thus, before
splitting, the structure of the shock is nonunique, even though
the external Hugoniot conditions remain valid and yield a unique
gas dynamic normal shock. This nonuniquneness in the shock
structure was discovered as early as 1958 by Ludford ([8],
though no connection is made to the history of the perturbations
that the shock has received.

It was concluded in [2] that such a shock will always split up
into a switch-on switch-off pair, because sooner or later, there
will be enough transverse flux built up in the shock structure.
Thus, the structural property and the stability (evolutilonarity)
property are shown to be linked. This conclusion, however, is
faulty, because in actual physical situations, particularly in
space plasmas, the perturbing fields are rarely steady-state,
and are nearly always stochastic. Thus, it is necessary to redo
the numerical experiment with a perturbing field which is
alternating in sign. This was done, and the results are in
Fig.3. The transverse fileld first builds up as in the steady
state case, but when the field reverses, the trapped field is
annihilated, and then builds up in the reverse direction. In
other words, most of the time, such shocks remain unsplit, but
has trapped fields in arbitrary directions depending on the
history of the perturbation.

A simple analysis clarifies this situation. Fig.5(a) is th u-
By phase plane for such shocks, taken from Ludford ([8]. The
singular points 1 and 2 refer respectively to the upstream and
downstream states, while 3 refers to the switch-on (and switch-



off) state. The straight line 1-2 represents a normal shock
with no trapped fields, the curved lines 1-2 represent the many
nonunique transitions with trapped fields, while the curve 1-3-2
represents the switch-on switch-off pair. Now splitting occurs

el R R - { 1 i
when the maxzimum By reaches By*, which is 2 function of the

upstream conditions only, i.e.
By* = f (up,ao, Ag)

On the other hand, the thickness of the shock 8 Dbefore
splitting is a function of the upstream velocity and sound
speed, and is directly proportional to the dissipation Vv, i.e.

d = Vv glupg,ap)

Hence the total transverse flux at splitting is determined:

(I)y* = const v-f{ug,ac,>o) 'g(uOraO)

Now when the shock is subject to perturbations as shown in
Fig.5(b), splitting will occur only when any one of the fluxes

in the perturbing field exceeds this value of ®y*. Otherwise,

no splitting occurs, and the intermediate shock remains stable
and thus occurs in nature.

There are claims that these shocks have been seen in the earth’s
magnetosphere regions. The present calculation not only
{llustrates but reenforces the conclusions of Bric and Wu [3],
that intermediate shocks are real and should not be rejected.
The nonuniqueness of the structure has to be resolved from a
knowledge of the history of the perturbations with dissipation,

These experiments also confirm and reenforce the conclusions of
Wu on the noncoplanar shocks. As stated earlier, noncoplanar
shocks are those with upstream and downstream £fields and
velocities spanning the same plane, e.g. x-y plane, but
transverse fields and velocities (Bz and w ) appear in the
structure. If we had taken an oblique MHD shock, instead of a
normal shock, with w = By = 0 both upstream and downstream, then
perturbed it with By and w but withdrawing the perturbations
pefore splitting occurs, we would have generated precisely such

a non-coplanar shock. Hence, the noncoplanar shocks bear the
same relation to the obligue shock as do the shocks with trapped
transverse field structures to the normal shock. Their

occurrence 1is reasconable in the same sense as the intermediate
normal shocks.

Alfven Discontinuilties and Non-Hugoniot Shocks

The other numerical experiment we ran is also a repetition of
the previous calculation in = [2], namely, the perturbation of a
switch-on shock polarized in the x-y plane by a Bz field. More
specifically, the switch-on shock has the upstream field and
velocity Bx and u only, and the downstream field and velocity in



the x-y plane, i.e., By and v #0 ; the perturbation then is
a constant By and w upstream.

Fig. 6 shows the density, pressure, and normal velocity wu
profiles, and the By, Bz and Bt = (By4 + Bz<4)1l/4 profiles.
Clearly, the front part is the switch-on shock repolarized, and
the long rear section is an Alfven rotation wave. Note that the
pressure profile remains unchanged, while the Alfven wave is a
region of nearly constant pressure and nearly constant
transverse B field.

This very simple experiment permits us to give an alternate
interpretation to the instability of the Alfven discontinuity
and to the occurrence of the non-Hugoniot shocks. If we apply
the ideal theory naively, we might consider the solution as a
repolarized shock followed by an Alfven discontinuity; then
according to Fig. 7, taken from f4(b)], the BAlfven
discontinuity would not be stable. Moreover, in the presence of
dissipation, the region of the Alfven wave tail is not exactly
uniform, hence we are tempted to consider the entire solution as
a single shock, which satisfies no Hugoniot condition.

We first address the instability of the Alfven discontinuity.
It is true that an Alfven discontinuity will break up, as shown
in Fig. 7 ; physically it 1is quite clear, since an Alfven
discontinuity is a discontinuity in By and Bz, thus is a current
sheet of infinite current density, which in the presence of
dissipation will produce enormous heating, hence resulting in
enormous pressure built up and all kinds of waves and shocks.

The proper reinterpretation is that indeed there are no Alfven
discontinuities in. a dissipative plasma, and giving a Alfven

discontinuity as an initial condition is highly artificial. In
realistic cases, such as in the present experiment, the rotation
is achieved by a finite width Alfven wave. Thus, instead of

Alfven discontinuities, we should use finite width Alfven waves,
the exact thickness of which depends on its production mechanism
and the thickness is time-dependent.

On the other hand, the Alfven wave 1is not a strictly uniform
region, and the density and pressure, for example, can either
increase or decrease slightly depending on the speed regime and
the dissipation. Thus, it does not satisfy a Hugoniot condition
strictly. 7Yet, this is not surprising, since the Alfven wave is
a linear wave and 1is non-steepening. The situation is similar
to, but a bit more complicated than, the uniform flow of a gas.
The uniform state of constant pressure and velocity, under the
presence of dissipation, has to be changed to one in which the
pressure either rises or drops, depending on the velocity
regime.

Thus, instead of considering the entire system as a single non-
Hugoniot shock, an alternate, more appealing interpretation 1is
to consider it as a switch-on shock, which satisfies Hugoniot
conditions, and an Alfven wave, which satisfies dissipative
modifications of Hugoniot conditions. Actually, Wu had
previously suggested a similar interpretation earlier [4{c)],



previously suggested a similar interpretation earlier [4{(c)],
but the emphasis shifted to non-Hugoniot shocks. While these
different interpretations are a matter of personal taste, the
present characterisation does permit a more orderly
classification of MHD shocks and waves.

On the other hand, it must be admitted that the present case of
a switch-on shock being perturbed by an out-of-plane fileld
component is a simple case. If we had taken an oblique
intermediate shock, say a 1 - 3 or a 2 - 4 shock, with By and
B, components present both upstream and downstream, then it has
been shown in [4(c)] that instead of an Alfven wave, there now
iz a 2 - 3 intermediate shock (with fields noncoplanar upstream
and downstream), in addition to a fast 1 - 2 or slow 3 - 4
shock. The 2 - 3 intermediate shock slowly weakens into an
Alfven wave, requiring infinite time to achieve this. Thus,
this 2 - 3 shock is in one sense a non-Hugoniot shock, but in
another sense a dissipative modification of the Alfven wave.
Which interpretation one chooses is, perhaps even more than in
the previous simpler case, a matter of taste.
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