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The linear stability is examined of a stratified sheet pinch in a rapidly rotating fluid lying
hydrostatically in a gravitational field, g, perpendicular to the sheet. The sheet pinch
is a horizontal layer of inviscid, Boussinesq fluid of electrical conductivity o, magnetic
permeability 4, and almost uniform density pg, confined between two perfectly conducting
planes z = 0, d, where z is height. The prevailing magnetic field, By(2), is horizontal; it
is unidirectional at each z level, but that direction depends on z. The layer rotates about
the vertical with a large angular velocity, Q2: O > Vy /d, where V4 = By/\/(tpo) is the
Alfvén velocity and u is the magnetic permeability, The Elsasser number, A = o BZ/2Q p,,
measures o, A (modified) Rayleigh number, R = ¢Ad? /poV}, measures the buoyancy
force, where f is the imposed density gradient, antiparallel to gravity.

The gravitationless case, R = 0, was studied in Part 1 of this series. It was shown
that “resistive instabilities”, known as “tearing modes”, exist when A is large enough,
the horizontal wavenumber, k, of the instability is small enough, and when at least one
“critical level” exists within the layer, this a value of z at which B is perpendicular to the
horizontal wavevector, k. When R is sufficiently large, instability occurs for any k; critical
layers need not exist; k need not be small. For each k, a critical value, R.(k), exists such
that if B > R, the layer is ideally unstable (i.e. unstable for A = oo); when a critical
level exists, R, is independent of k. When A # oo, the growth rate, s, of instability
becomes that of the ideal mode as A — o0, but for R < R, resistive instabilities arise,
i.e. those mn whichs — +0as A — oco. These “g-modes” are the main topic of this study.
When critical levels are absent, they grow no more rapidly (except near R = R,) than the
rate at which B itself evolves ohmically; when a critical level exists, and especially when
k is large (the so-called “fast g-modes”, also studied here), they grow more rapidly, When
A > 1 and one or more critical levels exist, s is determined entirely by the structure of
the “critical layer” surrounding a critical level. :

When R > 0, instability is always “direct” (S5 = 0), but when R < 0, overstability
may occur (¥s # 0, ®s > 0). Since such a mode bifurcates from a tearing instability,
it exists only if A is enough, % is small enough, and a critical level exists.

The principal example studied here is force-free (Jo x By = 0) since the chosen electric

current density, Jo = VxBg/g, is a multiple of By. Both are of constant strength, but
turn uniformly in direction with height.

KEY WORDS: resistive instability, tearing mode, rotating magnetohydrodynamics.
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I. INTRODUCTION

This is the second paper of a series devoted to resistive instabilities of sheared magnetic
fields in rapidly rotating fluid systems of high electrical conductivity. As such, the series
represents a generalization of the better-known magnetohydrodynamic (“MHD”) studies
of non-rotating systems (e.g. Furth ef al, 1963), studies that have aimed at a better
understanding of the nature of instabilities to which a magnetically confined laboratory
plasma may be prone. Although these “classical” investigations are usually, because of the
importance of Coriolis forces, not directly relevant to systems of cosmic scale, there are sig-
nificant similarities. In this series, we reopen the study of instability mechanisms, with the
crucial, “non-classical” difference that the Coriolis forces provide the dominant part of the
inertial forces in the equation of fluid motion. There are two immediate consequences, one
physical and one mathematical: physically, instability is postponed and, when it occurs, it
takes longer to develop; mathematically, the differential system to be analysed is of higher
differential order. The underlying energy sources for the instabilities are, of course, the
same in both cases. This has already been seen in the study of the tearing mode to which
the first paper in this series was devoted (Kuang and Roberts, 1990, hereafter referred to
as “Part 17); it will also emerge from the present study of the g-mode.

Although the model considered here is highly idealized, it is perhaps the canonical ex-
ample of an instability that may well be relevant in geophysical and astrophysical contexts,
It is highly desirable for the development of geodynamo theory to understand the nature
and timescales of all MHD instabilities to which the highly rotating, stratified fluid core
may be subject, and this paper forms a modest addition to the rapidly growing literature
devoted to those questions. We refer the reader to recent reviews by Braginsky (1989) and
Fearn (1989), in which references to earlier work are given.

“Tearing” is the present participle used to describe a purely magnetic instability that
draws its energy from the reconnection of the field lines of an ambient magnetic field, By,
that is “sheared”, i.e. turns in direction, e.g.

Bg = Bgz(Z)i+Bgy(Z)5/, (11)

where (2,y, z) are Cartesian coordinates and % and ¥ are the unit vectors parallel to Oz
and Oy. In Part 1 we supposed that the angular velocity, €2, is in the z-direction, and we
focussed attention on the simplest example of (1.1), namely a field of constant strength,
By, which turns continuously in direction about the vertical: we supposed that

Bo = By[k cos(gz/d) + § sin(gz/d)], (1.2)

in a layer confined by two impermeable walls, z = 0and z = d. For convenience, these
walls were supposed to be perfect electrical conductors.

Relying as it does on field line reconnection, tearing can occur only in a fluid of finite
electrical conductivity, o, i.e. for finite Elsasser numbers,

o B2 V2
—L = 4 (1.3)
where pg is the fluid density, assumed constant. Here Va = By/\/(1topo) is the Alfvén
velocity, n = 1/uqo is the magnetic diffusivity and pg is the permeability of free space
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(3.1 units). As discussed in Part 1, the Elsasser number is the ratio, Tp/Ts, of the diffusive
timescale 7, = d?/n and the dynamic timescale, which (in the case of the rapidly rotating
systems studied here, in which @ > V,/d) is the so-called “slow MHD timescale”,
Ts = 20d?/V3.

The g-mode studied here relies on gravitational energy release, through the presence of
a uniform gravitational acceleration, g = -g¢% and a uniform adverse density gradient,
B; in the undisturbed equilibrium state: Vs = Pz; po is no longer constant, but varies

so little that the Boussinesq approximation is justified. Buoyancy forces introduce a new

timescale, ,
Py M
s o= [ £9 ) (14
! (Qﬁ) )

which, if the layer were bottom heavy, would be the reciprocal of the Brunt frequency.
The strength of the buoyancy forces is measured by a dimensionless “Rayleigh number”,
which in this paper is taken to be the ratio, (74/7,)? where 14 = d/Va4, so that

2
R = 29
poVi

(1.5)

The magnetic field constrains gravitational overturning, a constraint that is particularly
stringent when the fluid is perfectly conducting (6 = A = oo) and cannot by Alfvén’s
theorem detach itself from the lines of force on which it lies, The distortion of field involved
in overturning the layer is massive, and can be accomplished only if gravitational energy
is available to supply the necessary added magnetic energy. Consequently, the system can
become unstable only if R exceeds a certain critical threshold value, R.; see Section 3. A
finitely conducting fluid is not strictly constrained by Alfvén’s theorem, and can detach
itself from field lines at a rate proportional to the resistivity and the field gradients. It can
therefore overturn by drifting through the field lines, which are not required to overturn
with it and need not be massively distorted. Thus, when A # oo, instability occurs when
R is less than R.. Indeed when density diffusion is ignored, as it is in this paper, such
“resistive instabilities” occur for all positive R. Since the instability depends on detaching
fluid from field lines, it proceeds at a rate that (except for disturbances of small wavelength
— see Section 4) vanishes in the limit A — oo,

As in the case of tearing, critical layers have a particular significance for g-mode in-
stability. Critical levels occur at any and all heights, 2, at which the wave vector, k, of
the perturbation is perpendicular to By, and at which therefore the overturning motions
“interchange” lines of force of By as a whole without bending them in a circulation that
releases gravitational energy in the “critical layer” surrounding the critical level.

Mechanisms of this type will be studied in Section 4 below. Ideal and resistive instabili-
ties arising when k-Bg is nowhere zero are of less interest, but are studied for completeness
in Sections 3 and 4. In Section 5 we report on another instability to which field (1.2) is
subject when A is large enough, an instability that arises for negative R, corresponding
to a bottom-heavy equilibrium. Section 2 is devoted %o the basic equations and boundary
conditions. As in Part 1, only questions of linear stability are studied here.



2. BASIC EQUATIONS AND BOUNDARY CONDITIONS

As in Part 1, we suppose that the rotation of the system is large, ie. @ > V,/d.
We therefore adopt the magnetostrophic approximation, in which the equation of motion
reduces to

2p00XV = =VP + IJxB + pCg, (2.1)
where V' is the fluid velocity, P is the reduced pressure (pressure divided by py and

including centrifugal forces), J (= u~'WxB) is the electric current density, and ' =
Ap/po measures the density excess, A p, of the stratification. The remaining equations are

oB = Vx(VxB) + 7V’B, (2.2)
(& + VV)C = 0, (2.3)
VV=0, VB=0. (2.4, 2.5)

(Here 8y stands for the Eulerian time derivative.)

It will be seen that diffusive processes are included only in the electromagnetic induction
equation (2.2). There is no viscosity in (2.1), and there is no diffusion of density differences
in (2.3), an equation that states that the mass contained in each fluid element is preserved
in the isochoric motion assumed in the Boussinesq approximation (2.4).

The basic state whose stability is studied is one of rest in the prevailing field (1.1),
Vi = 0, By = By.x + BgyS’, Cy = —-ﬁz/pu, ey (26)

and its linear stability is decided from the equations obtained by writing

V=V0+V, B=Bo+b, C:C’-—]—C, .y (2.7)
substituting into (2.1) - (2.5), and discarding all squares and products of the perturbed
variables, v, b, ¢, .... The resulting linear system is solved subject to appropriate bound-
ary conditions at z = 0 and z = d (see below).

It transpires that the question of linear stability can be decided through a study of the
normal modes in which b has the form

b = b(z)expli(k.z + kyy) + sf], (2.8)

and similarly for v, ¢,... If ®s > 0 for any such mode, the system is unstable; if ®s < 0

for all modes, it is linearly stable. (The carat * on b and other perturbed quantities will
henceforward be omitted.)



In (2.8) and what follows, we transform to dimensionless variables, as defined in Part 1.
We then have

z =

{%.(Dz ~ ) - s}b,,, (2.9)

jzz

| g My -

b — =D [%—{%(D2 _ Ry — s}] by, (2.10)
w, = K%{?D (;) Db, + D? (;) b,,}

_%{%(1}2 - &) - 3} %D [%—{%(Dg - k%) - S}bz} :

(2.11)
I 2 2 2 RE?
Do, = i[F(D* ~ ¥) = D*Flb, + —v, = 0, (2.12)
wherew = Vxv is the vorticity, D = d/dz, k = /(k? + kZ), and
F'=kyBos + kyBoy,  F = kyJog + kyJoy = D(kyBoy — k. Byy) . (2.13)

The system (2.9) - (2.12) differs from that solved in Part 1 only by the presence of the
last term on the left-hand side of (2.12), but this difference is crucial. Tt accounts for the
essentially dissimilar character of the g-modes, both physically and mathematically. One
immediate distinction is apparent from (2.12): when R # 0, there can be no transition
from instability to stability via a direct mode.

As in Part 1, the governing system is of sixth order, and to close the problem we shall
apply the same three boundary conditions at each wall:

vy =0, =Dj, =90, at z=0,1. (2.14)

By elimination we find that

DH-;—{%(D2--192)—-3} %D{%{%(Dzmkz)—s}bz}ﬂ

10k {op (%) Db, + D? (g) b.}] + E @ - Koy — (02,

RE® (1, ., ., :
where
b, = D%, = D*, — AFFDb, — %—g{%(Dz—kz)—s}Dbz =0, at z = 0,1.
(2.16)
If we write
k: = —ksin$, ky = kcosd, (2.17)



we have, for the field (1.2),
F = F/qg = ksing(z — z.), where  z. = 8/q, (2.18)

and the first combination of terms on the right-hand side of (2.11) is absent, as are the
F terms in (2.15). The F' term remaining in (2.16) nevertheless destroys the symmetry
or antisymmetry of the eigenfunctions even when F is symmetric about the mid-plane
[F(z) = F(1 — z)]. This is particularly evident when j, is graphed; see below and also
the discussion in Part 1.

In what follows, as in Part 1, much hinges on the behavior of the solutions in the “critical
layers”, regions that are narrow when A is large, and which surround the “critical levels”
at which F' vanishes, We may distinguish four possibilities:

(a) there are no critical levels; F' has no zero in 0 < z < 1;

(b) there is one critical level in 0 < z < 1, namely z = 2z

(c) there are two critical levels in 0 < z < 1, namely z = z.and z = z, + =7/q,

corresponding to # and § + = in (2.18), directions of k that are both orthogonal to
Byg. [Without loss of generality, we may take z, to be the lower of these two levels.];

(d) there are three or more critical levels in 0 < z < 1.

Tearing instabilities cannot occur in case (a), and also cannot arise in the other cases
unless k is small enough. Attention was therefore focussed in Part 1 on cases (b) and (c);
case (d) was excluded because it added complications without enlightenment. Of course,
tearing instabilities are governed by the present theory when R = 0, and instabilities very
similar to the tearing modes arise when R is sufficiently small. We aim to avoid going over
the same ground as that covered in Part 1. We shall therefore mainly investigate situations
in which the the magnetic field is not the main source of energy for the instabilities, as for
example in case (a), or in case (b) at moderate or large k. We shall examine some resistive
g-modes in case (c) but only briefly; we shall not look at case (d) at all.

3. IDEAL MODES

In this section we study the ideal fluid: A = oo. To motivate (3.2) below, we first consider
briefly the limit A — oo, The system (2.9) - (2.12) becomes of second order,

2
D [(Fz + %) Dv,] + KR — F*w, = 0, (3.1)

and not all conditions (2.14) can be satisfied. Boundary layers can, however, be constructed
that are vanishingly thin in the limit A — oo and are passive, i.e. that affect neither
the “outer solution” (3.1) nor the eigenvalue sq to leading order; it is necessary only that
solutions to (3.1) obey

v.{0) = v, (1) = 0. . (3.2)

In this Section we shall suppose that (3.1) is satisfied everywherein 0 < z < 1,i.e. we
shall suppose that A = oo, rather than A — oo, In the latter case there is, in case (b),
a diffusive critical layer surrounding the critical level z = Z.; in case (a), a diffusive layer
appears at a boundary. In both cases, the structure of the solutions and the growth rates
may be, as we shall see in Section 4, radically different from the one we consider here.
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In case (a), (3.1) has no singularities in 0 < z < 1, and the task of finding nontrivial
solutions obeying (3.2) is a straightforward numerical operation. Indeed, the solution can
be obtained analytically when k& > 1, as is shown at the end of this Section. Table 1
shows s as a function of R for one instance of case (2), namely ¢ = ir, ky, = ky, = 1.
It may be seen that inequality (3.7) is satisfed by the unstable modes

21t R Rt aiF Wlallwriicong [ %3 e WIARW UL BLARS UL O,

In case (b), the solutions of (3.1) are regular even at the critical point and Dv, JF? s
bounded there. But (3.1) possesses regular singularities not only at z = 2z, but also at
the four roots of

Ft -+ Sg = 0. (33)

If 53 is real and negative, two of these roots lie on the real axig, and the solutions of (3.1)
are logarithmic in their neighborhood. 1t is then impossible to satisfy (3.2). This, stable
discrete modes can exist, but only if their frequencies exceed F2,.. We shall consider the

case s§ < 0 no further here, but shall be particularly interested in the unstable modes

for which (see below) sy > 0.
In case (a), it follows quickly from (3.1) and (3.2) that

1 2
/0 K}ﬂ +- %95) |Dv,|> + EX(F? - R)v,|?| dz = 0. (3.4)
This is also true in case (b) since Dv,/F is regular at z = z,. It follows in both cases

that s? is real, and that a necessary condition for instability (s2 > 0)is

R > F% . (3.5)
The tearing modes (R = 0) are therefore not unstable. According to (2.18), a nonzero
minimum of F*? [case (a)] can occur for model (1.2)onlyat z = Qorz = 1.

Suppose that R > 0 and that the system is unstable : s > 0. For the growing mode
sg > 0, we have

1 2 1 1
/ <F2 + %%) Iszlz dz > 2.50/ [szlz dz 2271‘2.39/ v dz, (3.6)
0 0 0 .

so that by (3.4)

¥

1
[27%so + K*(FZ;, — R)] / lv.[*dz < 0, (3.7)
0
from which a bound on the growth rate follows:
< B 2
S0 & '2_71_2"(R - Fmin)' (38)

The transition, R -+ R,, towards stability may be investigated by considering the limit
sj — 0+, in which (3.1) becomes

D(F*Dv,) + ¥*(R — F¥v, = 0, (3.9)
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In case (a), this equation is non-singular in 0 < 2z < 1, and R.(k) is located by
straightforward integration?® linked to a search for nontrivial solutions that obey (3.2). For
¢ = trandk, = ky = 1, we find that R, ~ 8.5904; see also Table 1. Although the
system is ideally stable for R < R,, it is resistively unstable, as we shall see in the next
Section.

In case (b) the limit s§ — 0+ requires asymptotic analysis. Equation (3.9) possesses a
regular singularity at z = 2, and it is easy to establish by the method of Frobenius that

vz ~ A{(z - ZC):I + A‘éﬁ(z - zC):2! Z ZC+? i (3.10)
Al(zc——z)1+A2(zc——z) 2, Z =z,
where 12
o 1 1 1
. 1 R 3.11
0:2} 5 + (4 r) 5 + m, say , (3.11)
are the roots of
alee + 1) + r = 0, (3.12)
and .
k*R
r = F"2 . (313)

The singularity (3.10) is removed by an “inner layer”, of thickness ls(l)/ 2 /F,|, surrounding,
z = 2z,

To determine sq it is required to express Ay and A; as linear combinations of AF
and A7, in order to be able to discover how solutions of (3.9) “pass through” the critical
point. For this purpose it is necessary to solve the critical layer equation that governs the
“inner solution”, This problem is considered in Appendix A, where it is shown that the
configuration is unstable if m is imaginary, i.e. if

> T, where  r, = I; (3.14, 3.15)

It is also shown that
s = O (exp [—27’!’(7‘ - %)"1/2]) : as  r — 1. (3.16)

The layer is, however, resistively unstable when r < ;1-, as will be shown in the next
Section, where the quite different critical layer equation that arises when A # oo (but

A > 1) is investigated. It may be seen that, since F'is proportional to k, r is independent
of k. For example, for model (1.2) we have

R
r o= &—- ie. R, = i—qz, (3.17)

®The fact that (3.9) can be transformed for model (1.2) into Legendre’s equation is not generally helpful,

since its solutions in the ranges of interest to us have not been tabulated. One case, in which the Legendre
functions simplify, is considered in Appendix A



Condition (3.14) holds for all k, even for & > 1. This is not true in case (a), for which
B 1s k-dependent. {In the case k > 1, see (3.24) below.)

Table 2 shows sy as a function of R for one instance of case (b), namely ¢ = g—:'r,
ks = ky = 4, in which the critical level is the mid-plane, z, = 3. According to (3.17),

R, ~ 5.5517. The exponential dependence of 3 shown in (3.16) wmakes it very difficult to
find solutions numerically when R is near R., but the results shown are clearly consistent
with (3.14). Inequality (3.8) is again obeyed.

Finally, we consider the limit & — oo, first in case (a). We restrict attention to R in
the neighborhood of R,; more precisely, we suppose that |[R/R, — 1| <« 1. As already
noted, F2, arises eitheratz = Qor z = 1; let us suppose the former. The eigenfunction
is negligibly small everywhere in 0 < 2z « 1 compared with its values in a thin boundary
layer, of thickness ¢ = Q(k=*/ }),on z = 0. Within this layer we may therefore write

F2 = Flgiin + 2FmiﬂFx§1inz1 (318)
and to leading order (3.1) becomes Airy’s equation

d?v,(€) _
2 = o), (3.19)

where £ is the stretched coordinate,

£ = (2 — z)/e, ‘ (3.20)

and

2 1/3 — 2
0 )] oz = o B (3.21)

€ = [ ! FZ,. +
T\ 2Fun|F k2 \"min T R 2Pl FL ]

min

Since v, must vanish outside the boundary layer, we must chose the Airy function solution

of (3.19):

v:({) = Ai(¢), (3.22)
and to satisfy the first of (3.2) we must take
E&) = Zp, (323)
where —¢; is one of the zeros of Ai(£), all of which are negative. From (3.21) and (3.23),
we obtain )
k
2 = R — F2 8 _ pt 3.24
o 463F;nin2 ( mm) min ¥ ( )
which implies that
9\ 2/3 1/3
Re = Fin + (Z) boFaly (Fx’ninz) : (3.25)
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In case (b), R, is independent of %, as noted above. It is easily seen that, for moderate
R, such that |so| = o(]F!|/k)?, the inner layer mentioned above (and considered in greater
depth in Appendix A) is contained within an outer layer, of thickness O(k™1), in which
v, is governed to leading order by (3.9); since k¥ > 1, solutions to (3.9) are no longer
spread out over the interval and we may replace F' by Fi{z — z.) in (3.9), so obtaining the
modified spherical Bessel equation:

D[(z — 2.)*Dv,] — [kz(z —z)? + m? - i—] v, = 0. (3.26)

Since solutions must vanish away from the outer layer, we must select K,,, the modified
Bessel functions of the second kind, in solving (3.26):

{C+(z - ZC)Hllsz(k(z = 2)), Z > Zg,
v, =

B C™ (2 — z)_l/sz(k(zc — z)), z < Z. (3.27)

By using standard expansions of KX,, about the origin, we can recover (3.11) from (3.27),
and can evaluate the four constants appearing in (3.11) in terms of constants C+ and C'~.

4. FAST AND SLOW ¢-MODES

We now focus attention on solutions of the full sixth-order system (2.9) — (2.14) for the
particular model (1.2) in which (2.18) holds. We shall be particularly interested in the
limit A — oo, and will confine attention almost completely to cases (a) and (b).

Consider first case (a). Figures 1 show s as a function of A in a log-log plot for ¢ = inr,
ks = ky = 1,andfor (a) R = 8.6 and (b) R = 8.5, values that straddle R.for A = oo,
according to the last Section, The circles mark values obtained from integrations of the
full sixth-order system. The full lines are asymptotes, which in the case (a) corresponds
to the unstable mode s; = 0.04891, as given in Table 1 for A = oo, More surprisingly
perhaps, the system is (resistively) unstable for R = 8.5 < R,. Nevertheless, s — 0
as A — oo, consistent with the absence of ideal instabilities for A = oo. It may also be
noticed that s is asymptotically proportional to A~ in fact, the full line in Figure 1(b) is
(see below) s ~ 1129.3A-1,

Figures 2 compare (a) v, and (b) w, for unstable cases (R = 8.6 > R,) obtained
from the theory of Section 3 with (c) and (d), the corresponding solutions for A = 106
obtained by integration of the full equations.* Figures 3 make the same comparisons but
for R = 8.5 < R, for which the ideal modes are purely oscillatory according to Section
3, and for which (resistive) instabilities exist for finite A; again Figures 3(c) and (d) were
computed for A = 10°%. Whereas the differences between w; in Figures 2(b) and (d) are
two small to be easily detected, those between Figures 3(b) and (d) are dramatic, and well

illustrate the even qualitative differences that a small electrical resistance can make, In
both Figures 2 and 3, ¢ = im k, = ky = 1.

(3]

*Since any solution of an eigenvalue problem can be multiplied by a constant, a question of the scaling
arises here. After the numerical integrations leading to Figures 2(a) and (b) had converged, the greatest
numerical value taken by v, orw, n 0 < 2 < 1 (which here was vz(é—)) was scaled to unity, The
same scaling factor was used for all values of vz and w;. The same procedure was applied to v, and w, in

Figures 2(c} and (d). The comparisons displayed in Figures 3, 4, 6, 7 and 9 below were also made in this
way.
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We now consider, for R < R, in case (a), solutions in the imit A — oo, As indicated
above, we suppose that

s = S/A, where S = 0(1). (4.1)
By (2.11), w; = O{A™?), so that (2.9) and (2.12) give to leading order
Y 2
= (D - 82 - S, 4.9
Uy AF(D k S)b (4.2)
. k2
[F(D?* — k*) — D2?F)b, + ZA? v, = 0, (4.3)

which imply that

R
SF

This second order system is required to obey

[F(D* — &%) — D*Fb, — (D* — K — S%, = 0. (4.4)

b:(0) = b,(1) = 0, (4.5)

the remaining conditions (3.14) requiring boundary layers to be constructed at z = 0 and
z = 1. It is easy to show that

. F(SF — D*F)
2 2 2 2 =
so that if § > 0 then, for model (1.2),
RE*
§ > FI (4.7)

Table 3 shows the results of numerical integrations of (4.2) and (4.3) subject to (4.5) for
qg = %w, kr = ky = 1. The corresponding eigenfunctions, Av, and b,, for R = 8.5 are
shown in Figure 4(a), where where they are compared with the corresponding fields (b)
obtained by integrating the full sixth-order system for A = 109,

Consider next case (b). Figures 5 show s as a function of A in a log-log plot for ¢ = Zn,
kz = ky = 4,and for (a)r > r, and (b} r < re. The circles mark values obtained
from integrations of the full sixth-order system. The full lines are asymptotes, which in the
case (a} corresponds to the unstable mode s, = 0.38884, as given for R = 12 in Table 2
for A = co. More surprisingly perhaps, the system is (resistively) unstable for r < r,.
Nevertheless, s — 0 as A — oo, consistent with the absence of ideal instabilities for
A = co. It may also be noticed that s is asymptotically proportional to A='/%; in fact,
the full line in Figure 5(b) is (see below) s ~ 1.6323A1/2,

Figures 6 compare (a) v, and (b) w; for 7 > r, as given by the theory of Section 3

with (c) and (d), the corresponding solutions for A = 10° obtained by integration of the
full equations.
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We now consider, for 0 < r < I the solutions in case (b) in the limit A — oo.
Since s — 0, the outer solution obeys (3.9) and (3.2) to leading order. As z — =z, it
assumes the asymptotic forms (3.10) and, as in Section 3, it is required to express Al and

A, as linear combinations of Ai" and A7, in order to be able to discover how solutions of

& n 11 3 3 o canwer b oandera $1 et 1
(3.8) “pass through” the critical point, For this purpose i} is nccessary to solve the critical

layer equation that governs the “inner solution”, and to match its solutions to (3.10). This
critical layer is resistively dominated, and all fields within it have structures completely
different from those considered in Appendix A for the case A = oo.

To derive the inner solution to leading order, we introduced in Part 1 the stretched
coordinate (,

z = 2z + (6, (4.8)
where ¢ is the thickness of the critical layer:
§ = — 1 (4.9)

A1/4[Fcrll/2'

We also defined _
p = sA&%, a = ~F,/F. (4.10)

"The same transformation gives here
ey 2 1 Y 2
D E(D - K* ~ p)ED E(D — K* —p)b,

o _lm éf__ 2 g2 _ T2 g2
+ 2aD [CZD(C>] + ¢(D K*)b, PC(D ¢ p)b,, @)

where now D = d/d(, and X = k§.

It is worth comparing the problem posed by (4.11) with the similar “connection problem”
encountered in Part 1, which involved (4.11) with r = 0. Small wavelength tearing
instabilities do not exist, and attention was therefore focussed in Part 1 on & — o). In
contrast, g-mode instabilities exist at all wavenumbers, even for K » 1! For the tearing
mode, X' = o(1) and, as shown in Part 1, p = O(A™'/4). Thus the p terms on the
left-hand side of (4.11) can then be treated as perturbations. In a similar way, the term
on the right-hand side of (4.11), which is nonzero for the g-modes, is a perturbation of the
same order if r = O(A7'/2). Such modes are merely tearing modes slightly modified by
buoyancy. We shall not consider them here, and shall henceforward assume that r(< )
is O(1).

Suppose first that K = o(1), so that the K2 terms can be omitted from (4.11). Solutions

to (4.11) must be found that match, as [{[ — oo, to the outer solutions for which, by
(3.10),

b, ~ B;'(Z — zc)al-}.l + B;(Z - zc)a2+1: z = 2zt (4 12)
‘ Bl (z, — z)"‘l'Irl + By {z, — z)“”’l, Z = Ze— . .
[In the limit A — oo, (2.9) gives b, = iFv, /s and (through F) b, contains an additional

power of z — z;; compare (3.10) and (4.12).] The ratios, By /B and BF /BF, of the
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constants appearing in (4.12) are determined by solving (3.9) subject to v,(0) = 0 and
vz(1) = 0 respectively, and are in gemeral both O(1). When (4.12) is expressed in terms
of the inner variable, {, in preparation for matching to the solutions of (4.11), we obtain

fBii-écv1+1Ca1+l 4 B;-é‘ﬂ’g‘{'lgaz‘i-l, {: — Lo

TTAS

b, ~ 4.13
iBl—aal-i-l(mC)al-}-l 4 B2—6ag+1(_c)o’z+1, C —_— —00. ( )

Since0 < r < %, ay and az(< a;) are real, so that @11/t gags A — oo,
Since B; /BT and Bf /B are both O(1), (4.13) is to leading order

Btgoaztl faatl
by ~ { 2 070G, ¢ = oo, (4.14)

‘82_6“2+1("C)a2+1: C - T00.
The WKBJ method shows that, for the general solution of (4.11)
b, ~ aj-cax-i-l + ag—caz+1 + ag-e(l-l-i)(;”/z\/z + aieu—i)c?/z\/z
+ a;e—(1+i)C2/2\/2 + ag-e—(l—i)ti’/hﬂ, ¢ — +oo,
bo ~ af (=) F 4 ay (—¢)2H 4 a7 I /2VE ay (=022
+ ag‘“e—(l"ri)cg/?\/z + a;e——(l-—-i)cz/Z\/?, ¢ — —oo,

(4.15)
In order to match to (4.14), we require that
of =af =af = af =af =a] = 0. (4.16)

These six conditions suffice to determine the eigenvalues, p, from the sixth order equation
(4.11). Interestingly, the leading order growth rate is determined entirely by the structure

of the critical layer and is totally independent of the exterior solution, It transpires that,
in the imit A — oo,

p=0(), ie s=0A"%  for k= 0(1). (4.17)

This agrees with the integrations of the full equations shown in Figure 5(b).

Table 4 shows the results of numerical integrations of (4.11) subject to (4.16) for ¢ = in,
kz = k, = 4. The corresponding eigenfunctions for R = 4 are shown in Figures 7(a)
- (d), where they are compared with the corresponding fields [(¢) — (h)] obtained by
integrating the full sixth-order system for A = 108. Only the right-hand portions of the
eigenfunctions in the critical layer, from the critical level itself to ¢ = 5, are shown in
Figures 7[(a) - (d)]; the abscissae are in the stretched coordinate ¢ defined by (4.8) and
(4.9). These eigenfunctions should be compared with the right-hand halves of the solutions
near z = % derived by integrating the full equations; see Figures 7(e) — (h). In these,
the full z-interval is used and the neighborhood of z = %— is therefore highly compressed
in comparison with the corresponding Figures 7(a) — (d). It is nevertheless easy o see
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that the structure of the eigenfunctions is the same in each case. As noted below (2.18)

— see also Part 1 — the solutions of the full equations are not symmetric about z == %-,
although the critical layer solutions are symmetric about ¢ = 0. The lack of symmetry
about z = % is particularly evident in j,, shown in Figure 7(h).

Consider next the instabilities for £ > 1. In the range & = o(A"/?), the outer solution
becomes compressed about the critical point, and is negligible except in the outer layer
described at the end of Section 3. Since k™! > 6, the critical layer governed by (4.11)
is then an inner layer buried within that outer region. The matching to (4.16) proceeds

much as before, and the growth rate is once more determined completely by solving (4.11)
with K = 0; (4.17) is replaced by

p=0(l), ie s = OkA™YY),  for k = o(Al/?), (4.18)

Comparing this with (4.17) we see that these instabilities grow more rapidly than the
k =0(1) modes; moreover, s increases monotonically with k.

When k = O(A'/?), the outer and inner layers have the same thickness [6 =0(k™) =
O(A=*?)], and must be considered together. We may regard this as the “critical” case.
The composite layer is governed by (4.11), where now K = O(1). Solutions no longer
behave asymptotically as in (4.14) at the “edge” of this layer; as indicated by the behavior
of the Bessel functions in (3.27), v, is exponentially small for |¢| — oo. This requirement
again determines the eigensolution, and we have

p=0(1), ie s=0(), for k= O(AV?), (4.19)

As k is increased further, s becomes monotonically increasing with A. To see this, note
that, when k& > O(A/2), the solution again develops a double structure; the critical layer
becomes an inner layer embedded in an outer layer. The outer critical layer, which is of
thickness 8, = (k/AF;?)*/%, is governed to leading order by

D, (’é."l;z'Davz> = (Cf - }S") v, (4.20)

One can seek solutions to this equation that are either symmetric or antisymmetric with

respect to (o, but the latter have larger eigenvalues, $=1. We therefore consider only the
former, requiring that

D,v,(0) = 0, v{c0) = 0. (4.21, 4.22)
Here a1
A L2/3p1/3

¢, = - 2 5 = “rFé4/3 s. (4.23, 4.24)

Condition (4.21) eliminates the solution of (4.20) that is odd in (y; (4.22) eliminates the
solution of (4.20) that grows as expg|Col® as || — oo. Conditions (4.21) and (4.22)
thus turn (4.20) into an eigenvalue problem for the scaled growth rate, S. In this way, the
outer critical layer determines s without reference to the inner critical layer, which is of
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thickness 6; = k™, and which merely serves to eliminate the singularity of w, implied by
(4.20) as (o] — 0. We see from (4.24) that

s = O((k*/A)/®), for & > 0O(AY?), (4.25)

Figures 8 show s as functions of A in log-log plots for ¢ = %w, and R = 0.5, and
for (a) ks = ky = AV (b) k, = k, = A2, and for (€) ke = k, = A%/4
The circles mark values obtained from integrations of the full sixth-order system and the
full lines are the asymptotes. The latter were obtained by integrating the critical layer
equations: (4.11) with K = 0 in case (a), (4.11) with K = O(1) in case (b), and (4.20)
in case (c); see the entries for R = 0.5 in Tables 5 and 6. It is only in the case of Figure
8(c) that the agreement between the asymptotic and full solutions is not very close. This
is because the fractional error made in deriving s from (4.20) - (4.24) is comparatively
large, namely O(A2/*%=4/%), or O(A~*/3) in this case. The eigenfunctions are shown for
the critical case k; = k, = A2 in Figures 9(a) - (d), where they are compared with
the corresponding fields [(e) - (h)] obtained by integrating the full sixth-order system for
A = 10° Only the right-hand portions of the eigenfunctions in the critical layer, from
the critical level itself to ¢ = 5, are shown in Figures 9[(a) - (d)]; the abscissae are
in the stretched coordinate ¢ defined by (4.8) and (4.9). These eigenfunctions should be
compared with the right-hand halves of the solutions near z — %- derived by integrating
the full equations; see Figures 9(e) - (h). In these, only a z-interval near z = 1 is used,
the eigenfunctions being essentially zero elsewhere; the neighborhood of z = % is still
somewhat compressed in comparison with the corresponding Figures 9(a) — (d). It is easy
to see that the structure of the eigenfunctions is the same in each case.

The tearing modes draw their energy from the magnetic energy stored in By, but this
energy can be released only by field line reconnection in critical layers. Not surprisingly,
it was found in Part 1 that s depends strongly on the number of critical levels, and is for
instance much larger in case (c) than in case (b). Although the magnetic field assists the
resistive g-modes, as can be seen for example by comparing the asymptotic forms (4.1) and
(4.17), it is far less influential. When A > 1, the growth rate is determined totally by the
solution structure in the critical layers, and this structure is determined by r alone, which
is the same for every critical layer present. Thus, in the imit A — oo, s is unaffected by
the number of critical levels, This conclusion was also tested by direct integration of the

full equations. Results for cases (b) and (c) are compared for the same R and k in Table
6.

5. OVERSTABLE MODES.

For the purposes of argument, suppose that k and A are fixed, The layer is unstable for
all sufficiently large R. It is also clear that, if R is sufficiently large and negative, the
stratification will allow the propagation of MHD gravity waves, so that s will be almost
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imaginary (& zw, say). In fact, the ideal equation (3.1) gives®

wo = O(E*(=R)/?), for R — —oo0,

8 = O(szUz), for R — +4oo, (51)
with the same constant of proportionality in the two cases. When A # 0, the gravity
waves are lightly damped by electrical resistance, i.e. Rs is small and negative for large
negative R. Between R = +oo and R = —oo, a transition from instability to stability
must occur. As noted below (2.13), such a transition can only be direct when it occurs at
R = 0; in all other cases it must take place via an oscillatory mode (Ss # 0) that passes
from overstability (Rs > 0) to a damped oscillation as R decreases. But we know from
Part 1 that, in case (b) when k < ¢ and A exceeds a certain critical value A, the layer
is unstable to a direct tearing instability, i.e. s > 0 when R = 0. In such a situation,
both direct modes and overstable modes must exist when B < 0. In all other cases the
transition from instability must occur at B = 0 as a direct mode.

Table 7 summarizes the results of some numerical integrations performed for k, = ky =
land ¢ = %7&'; in this case A. =~ 343.92, according to Part 1. Tt will be seen from the
table that overstability does occur before the system stabilizes.

6. FINAL REMARKS.S

One may regard g-modes as complicated types of Rayleigh-Taylor (“RT”) instabilities,
i.e. the instabilities that arise when a lighter fluid is accelerated into a denser one, or to
which a top-heavy layer of fluid in hydrostatic equilibrium is prone. The study of such
instabilities has a long history during which the influences of magnetic fields and rotation
have separately been investigated. An account of researches up to 1960 is given in Chapter
X of Chandrasekhar (1961).

As for any other RT instability, the g-mode problem is poorly posed mathematically in
the sense that every mode is unstable in the limit & —» o0, i.e. no matter how short its
wavelength. This difficulty is not serious; it is easily overcome by making the problem more
physically realistic. By restoring the diffusivity of C' unavoidable in physical reality, all
modes of sufficiently small wavelength are stabilized. This is also provides a mechanism for
quenching the fast g-mode instabilities and explains why, despite their large growth rate,
they are not the modes of greatest interest, We plan to report on the influence of C diffusion
in a future communication. We may note that short wavelength instabilities provide the
basic mechanism for the model of core turbulence recently proposed by Braginsky and
Meytlis (1990), and that the present paper has some implications for their theory, which
we also hope to report at a later date.

The material in Chandrasekhar (1961) relevant to the present study may be summarized
in the following way. When By = 0 and Q = 0, instabilities exist at all wavelengths:

3 This result holds in both cases (a) and (b) since, when - R is sufficiently large, the real critical points
defined by (3.3) lie outside 0 < z < 1. In the limit [R| — oo, the terms proportional to F2 in (3.1) may
be neglected, and the resulting equation solved in terms of Mathieu functions, The boundary conditions

(3.2) determine the eigenvalue s24° /K4 R or w?¢?/k*(~R), depending on whether the limit B — +oo or
R — —oco is considered.

®In this Section, we abandon dimensionless fields, and revert to physical variables.
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s > 0for all k. In fact, ignoring viscosity and adopting the Boussinesq approximation we
have, for the most unstable mode of wavenumber k,

(kd)?

(S‘Tg)2 B m.

The shorter its wavelength, the more rapidly the instability grows, but its growth rate
approaches an upper bound:

(6.1)

§ — — as k — oo. (6.2)
Tg
The presence of a vertical By imparts magnetic rigidity to the layer. When n = 0 (as
we temporarily suppose), lines of force are attached to fluid elements {Alfvén’s theorem)
and are in Faraday-Maxwell tension. T hus, By imparts magnetic rigidity to the layer,
Overturning is prevented unless 8 and k& are large enough. Instability is possible only if

R > #%, (6.3)

(corresponding to k — oo) but, even when this is satisfied, instability occurs only for

i

2
(kd)* > o

(6.4)

The upper bound on the growth rate again occurs at vanishingly small wavelengths, but
(6.2) is replaced by

a2y 1/2
8 — ;1;(1— %) , as k — oo, (6.5)
The addition of rotation about the vertical does not affect criteria (6.3) and (6.4) for

instability, nor does it alter the limit (6.5). It does however generally lengthen the time
scales of the modes.

The magnetostrophic approximation used in this paper is valid for disturbances whose
timescales are large compared with the Alfvén timescale,

T4 = d/Vy. (6.6)

We have here supposed that
Va/20d < 1, (6.7)

so that the magnetostrophic approximation js valid for instabilities that evolve on the
slow MHD timescale, 7, = 2042/ V2, but fails for inertial phenomena and also when the
buoyancy timescale is oo short, as happens when Ty < dfVa,ie. R > 1. Further, it
gives incorrect results when % is too large. Nevertheless, near onset the instability grows
slowly, so that |s| < 7. The magnetostrophic approximation therefore gives (6.3) and
(6.4) correctly, although (6.5) is not recovered.
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When By is horizontal rather than vertical, horizontal isotropy is lost: the direction of
the wave vector k of the mode is significant. If kBy = 0 and Q = 0, results (6.1)
and (6.2) again apply: Lorentz forces are not invoked and the instability grows at the
same rate as in the field-free case (Chandrasekhar, 1961, §97). In contrast, when k and
Bg are parallel (and @ = 0), the field stabilizes the layer in much the same way as
the vertical field did. In short, for preference, the fluid overcomes the rigidity of By by
overturning in rolls parallel to By; the lines of magnetic force are then “interchanged”
without bending and the concomitant expenditure of energy. It is worth observing that,
although the interchange modes are also unstable for R > R, when @ # 0, they are
not then the most unstable modes, i.e. the modes with the largest growth rate. Rolls
orientated at other angles, ¢ = cos™![k-By/kBy], to the field can make use of the Lorentz
force to offset the constraint of the Coriolis force, and so release gravitational energy more
rapidly. The optimum angle is given by cosyp = R/\/{2[(kd)? + =]},

Turning now from the well-studied situations of unidirectional By to our configuration
of sheared By, we may note at the outset that the equations controlling the g-mode for
the sheared field are identical to those governing the field-gradient instability of a unidi-
rectional field, i.e. a field of varying strength, F', but fixed direction. It is not surprising
therefore that our case (a), in which k-B, is nonzero throughout the layer, has stability
characteristics similar to those of a unidirectional By. There are, however, some crucial
differences connected with the varying direction of By in the sheet pinch. For example,
in our case (b) there are regions, the critical layers, in which k-By is very small and in
which the magnetic field scarcely stabilizes the configuration. In these regions, the mode
interchanges the field lines almost without bending them. At finite k, any nascent insta-
bility generated within a critical layer is required also to overcome the magnetic rigidity of
the regions surrounding the critical layer in which B and k are not parallel. This inhibits
the growth of the instability. The shorter the wavelength of the disturbance however, the

less the fluid beyond the critical levels is involved in the motion, and the more rapidly the
instability can develop., ‘

We now turn to the effect of magnetic diffusion first for the case of horizontal By when
kBy # 0. We indicated above why, when 5 = 0, the rigidity of By could prevent
instability unless 8 crosses a certain threshhold value. That rigidity depended on the
attachment of the field lines to the fluid elements (Alfvén’s theorem). When n # 0,
a relative motion between fluid elements and field lines beomes possible, at a rate that
increases with Ty 1. Thus, the fluid can byepass the rigidity of the field lines by drifting
through them. In short, instability occurs even for B < R, but its growthrate is then
diffusively controlled and vanishes in the limit n — 0,ie. a “resistive” instability exists.

The situation for our case of sheared By is similar., The resistive instabilies of case
(a) are similar to those that arise when B, is vertical; those of case (b) resemble those
occuring when Bg is horizontal and k-B; = 0. The critical layer again controls the
resistive instabilities that now arise for all R > 0. When R is small, the instabilities
resemble the tearing modes that arise, when A is large enough, even in an unstratified
layer (R = 0). These have no parallel in the case of unidirectional By, Their existence

guarantees that instabilities (sometimes overstabilities) will occur even for bottom-heavy
stratifications,
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Finally, the reason why R, is independent of k in case (b) is of some interest. Instead of
integrating (3.1) across the entire layer, as we did to deduce (3.4), let us integrate it from
from 0 to z, so obtaining

z 2
[ {7+ 2 100 4 20 - guo} e = [ QU] o,
o U F? ’ ’
(6.8)
Consider the case in which R — +R,, so that s — 0; see Appendix A. The terms
proportional to F~2 in (6.8) are negligible except at a critical level, z = =z, Thus, if
z < zpand 29 — z > ed, wheree = 33/2/|Fé|, we have in place of (6.8)
] [F2|Dv.|* + K*(F? ~ guB)v.?] dz = F20*Dw,, (6.9)
0

as can also be obtained from (3.9), which governs the outer solution to leading order. Since
lv:] — ooasz — =z, (6.9) gives dominantly in that limit

/ [Fc’2(zc ~ 22| Du, [ — kzgpﬂ|vz]2] dz = F*:Dv,. (6.10)
A ‘

The infinite contribution from the gravitational term must be balanced by equal contribu-
tions from the magnetic term, so that Fi2(z, — z)*{Dv,[* must be of order k2guplv, |2, ie.
v, must be O(z, — z)71/2, The dominant contributions then cance] if ;i-F? = kigup,
which is equivalent to criterion (3.14). Since F is proportional to k, R, is independent of

k.
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APPENDIX A: MARGINALLY UNSTABLE IDEAL MODES

‘T'he objective of this appendix is to extend the analysis of Section 3 by finding the growth
rate, sy of the unstable ideal modes in case (b) in the limit 4 — 40, where

poo=r —

i Ll

; (A1)

in this limit sy — +0. The solution consists of outer regions, asymptotically excluding
both the critical layer surrounding z = 2, and the two boundary layers on z = 0 and
z = 1. The latter are passive, i.e. do not affect the outer solution or sp to leading order;
they will be considered no further here.

The leading order asymptotic problem is that of solving (3.9) twice, oncefor 0 < z < z,
and once for z. < 2 < 1, Each solution must satisfy whichever of (3.2) Les in its interval.

When the resulting solutions are expanded for z — Z¢, expressions of the form (3.11) are
recovered with

m = iy, (A2)

In this appendix we shall write
AT = 4 exp (z',uéi) = AF*, (A3)

where the phases 6% are determined by (3.1) and (3.2). The phase difference between
At and —AF, and similarly between A7 and —A; is small for the following reason. As

1,
# — 0, thesolution in 2. < 2z < 1 that is asymptotically (z—2) 2 " for 2 — z7F

approaches the solution that is asymptotically (z — zc)_% TP their difference is O(pu).
Thus, to satisfy the boundary condition v:(1) = 0, A7 must coincide with —A} as
¢ — 0; moreover, A;’/Af + 1 must be O{y). Similar remarks apply to the solutions in
0 < z < z. Theratio, A*/A~, of moduli in (A3) cannot be determined until the two
solutions are connected across the critical layer. Such a connection is generally impossible,
but can be brought about if 4 and sg are related by a dispersion relationship, which reflects
the eigenvalue character of the problem. It is intended to find the asymptotic form of this
relationship in the limit s, — 40,

To study the critical layer, we introduce the stretched coordinate, ¢, where

72—z, = €, and e = si/?)|F). (A4)
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In terms of this variable, (3.10) and (A3) give

{26_1/2A+ ¢7Y? sin [,uln( + puét + ,ulne], ¢ — oo,
vy o~

(A5)
224 (=) sin [pln(—¢) + ps~ + plnel , ¢ = —oo,

On applying (A4) to (3.1), we find that in the critical layer v, obeys, to leading order,

(1 + ¢%) sz;; -~ %(1 - g‘*)% +r¢t, =0, (A6)

the general solution to which is
Uy = vty + agva, (A7)

where a; and a, are constants,
vi = F(3+ pim§ — Limh—¢), (A8)
v = CF(F+ pip, b - LimL—¢Y), (A9)

and F denotes the hypergeometric function; evidently v; is even and v, is odd about the
critical level ¢ = 0:

vi(—¢) = v (¢), va(—¢) = —v2(¢). (A10)

Standard theory (e.g. Abramowitz and Stegun, 1964, Eq. 15.3.7), together with (A10)
provides expressions for v; and v, that are valid at the edges of the critical layer: for real
¢ and |[¢| > 1, we have

PTG L, . | o
v = SRS (3— = T § = diw 1 — L ——) + *,
G PEhs AT A
DL Gin) ool ( . . . 1)
vz = TTUR (5 = L - Lig 1~ Ligg —— Jsgn¢ + o+,
CT TG g P s T T T Jsend

(A12)

where the asterisk on each right-hand side denotes the complex conjugate of the expression

that preceded it. For the purposes of matching to (A5), we need only the leading order
parts of (All) and (A12), namely

—ﬂ—“glﬂ—l/z sin[pln || + L], (A13)

[l (

T‘“‘TKI"W sin[uln|¢| + Lulsgn(, (A14)
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where

h = =Ly + ¢(})] ~ 3.905638318...,
b= =3[y + v (})] ~ 0.113400703....
Here 3 is the digamma function and ¥ = —(1) is Buler’s constant.

In matching the inner solution to the outer solutions, we absorb the constant prefactors
in (A13) and (Al4) into a; and gy, and multiply these constants by 2¢1/2; see (A5). After
these cosmetic changes, the matching conditions become

aysinfpln [¢| + Lip] + azsinfpln|¢| + lop] = A% sin luln|¢| + pét + plnel ,

(A15)
aysinfpln |(] + lip] —azsin(un|¢| 4 lhp] = A” sin [pn ¢4 w6~ + pln e,

(A16)

Discarding O(u?) terms as before, we obtain from (A15) and (A16) the dispersion rela-
tionship

2] Ine = —nrw -+ -21-/.1,([1 -+ Ig - (5+ - 67 :‘}:R), (Al?)

where n is a positive integer and
R =+l - b) + (6% - 67)7). (A18)
(Since we are concerned with the limits # — Oandine — =—oo, n cannot be negative
or zero.) To obtain the most rapidly growing mode, we must take n = 1 and the upper

sign in (A17). The required solution is therefore

s = Ce /1 (A19)
where
C = Flexplly + Iy — 6t -6~ + R]. (A20)
In the case of model (1.2}, two independent solutions of (3.8) are
o) = cosecq(z — z,) Pgig), v(? = cosecq(z — z.) Pgr(€), (A21)
where
§ = icot [$q(z — 2)] , B =1 - (k/qg), (A22)

and Pg denotes the Legendre function. It follows that

B+cosecq(z - Z) FPEI(E) _ Pg* (&) 2
T e | B T FEE)| e (A23)
B_cosecq(zc — z) - Pg*(=¢) _ Pg*(=¢) ,
cosecqze | F(~&) | Pp(-&)|' =P
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where

b = £(0) = —icot lgz,, §r = £(1) = icot Zq(1 — 2.). (A24)

Little useful information is available to us about Pr,‘;’ for complex «, so we consider a special
case (8 = %) in which such information is readily available:

k= 2./3q. (A25)

In place of (A23), we then have

. _ -1 —ip in]
o+ [w] : (i) - (i) .z <z<1,
sin ¢(1 — z) & 3!
Yy = " - in _#: (AZG)
' _ - — H
o [W} (_é.) — (i) , 0 g z < Ze,
s gz, i €o £o ]
so that
67 = Inlg — Intan 2q(1 — z), §7 = Inq — Intan igz.
Case (b) has been illustrated in this paper principally by the example ¢ = g-vr, 2o = %,
for which §% = §~ = —0.024325773, so that by (A20)
C = 958405.348.... (A27)

The fractional error in (A19) is of order p. It is easy in the special case (A25) to derive
a result in which the fractional error is only O(s?). This is the error made if one replaces
the hypergeometric functions in (All) and (A12) by unity but does not approximate the
gamma. functions; the O(¢™*) terms omitted are O(s?) by (A4), as are the terms lost in
deriving (A6). Using (A11) in place of (A13), one obtains instead of (A19)
ip

o= () [RHSEED T

Values derived from (A28) are shown in Table 8, as are values of sq exp(27/u), which give
some idea how much C' would vary if (A19) were taken beyond its asymptotic validity.
The asymptotic results become increasingly inaccurate as R increases from R,. Values
from numerical computation are also presented, obtained using Richardson extrapolations
of integrations with a step size of 2.5 10~4, These results become increasingly inaccurate

as R is decreased towards R.. It will be seen that there is an interval of R in which the
two methods give consistent results.

Q0| b | QO] bt
..l_
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TABLE 1

Ideal growth rates, sg, for ¢ = LIz, and k, = k, = 1.
R s? 8o
50.0 11.723 +3.4239
30.0 5.9628 +2.4419
14.0 1.4333 £1.1972
10.0 0.35871 +0.59892
8.8 0.052285 +0.22866
8.6 0.002392 +0.04891
8.5904. .. 0 0
8.5 -0.02240 +0.14968:
6.0 -0.59518 +0.77148:
TABLE 2
Ideal growth rates, sq, for ¢ = ix,and k, = ky = 4.
R s2 30
20.0 90.6781 +9.5225
16.0 10.4222 +3.2283
14.0 1.8598 +1.3638
12.0 0.15124 +0.3889
11.0 0.02573 +0.1604
10.0 0.002388 +0.0489
9.2 0.0001742 +0.0132
8.6 0.0000122 £0.0035
5.5517... 0.0 0.0
TABLE 3
Growth rates, s, in the limit A — oo, for g = 37, k; = ky = land R < R,.

R S = SQA

8.5 1129.3

8.4 529.84

8.0 162.81

7.2 62.298

5.0 16.850

3.0 6.5795

1.0 1.9875
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TABLE 4

Scaled growth rates, Al/2s, for ¢ = Sr,and ky = ky = dandr <

both for A — oo and A = 10°.

L
4!

R For A — o For A = 10°%
0.2 0.32036 0.31995
0.5 0.80598 0.80452
0.6 0.96941 0.96746

1.0 1.6323 1.6275
2.0 3.3764 3.3530
3.0 5.3165 5.2355
4.0 7.6238 7.3617

TABLE 5
Growth rates, s, for fast g-modes in the critical case ke = ky = A2
bothfor A — oo and A = 106.
Alsog = imandr < i
R For A - oo For A = 10°
0.2 0.067671 0.067615
0.5 0.16945 0.16934
0.6 0.20346 0.20333
1.0 ' 0.33990 0.33976
2.0 (.68444 0.68452
3.0 1.0348 1.0355
4.0 1.3920 1.3940
TABLE 6
Growth rates, A1/2s, of resistive g-modes when one critical level exists and when two exist.
For the former k, = ky = 4;for the latter k, = —k, = 1.

In both cases ¢ = x, A = 10% and r < L.
R One critical level Two critical levels
0.2 0.31995 0.31993
0.6 0.96746 0.96726
1.0 1.6275 1.6268
2.0 3.3530 3.3488
3.0 5.2355 5.2224
4.0 7.3617 7.3296
5.0 9.8741 9.8037
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Overstable Modes for negative R,

TABLE 7

Growth rates, Rs, and $s are given for several A and R.

350

500

1000

10000

In each case ¢

RxA
-0.02
-0.03
-10.0
-10.1
-13.0
-14.0
~28.1
-28.2
~163.
-164.
-1310.
~13240.
~7051.
-~7052.

-20300.
-20400.

= Srand k, = ky

Rs
0.0001874
0.0001399
0.0000012
~(.0000002
0.0021552
£.0021231
0.0000047
-0.0000032
0.0033593
0.0031242
0.0000032
-0.0000232
0.0010452
(.0010364
0.0000062
-0.0000010

TABLE 8

Is
0.0

+0.0000805
£0.0029460
+0.0029607

0.0
+0.00061864

=0.0098451
£0.0098624
0.0
+£0.00015158
+0.0086982
£0.0087300
0.0
£0.000015489
+0.0016621
=40.0016654

Comparison of asymptotic theory with numerical results

for the case of one critical level and small values of r — 1L
¢ = ivandk, = k, = V34

R
5.55165.. .
5.6
5.7
5.8
6.0
6.4
7.2
7.5
8.0
8.5
9.0
9.5
10.0

C

958405.35
936684.87
893978.74
854057.00
781668.30
661561.81
490890.72
443482.35
378437.85
326774.18
285102.48
251030.74
222834.71

asymptotic s
0.0

3.0912604 1033
3.6750897 1028
1.3433167 1072¢
4.8836799 10~14
7.2361873 109
4.7347138 10™°
2.719511 1071
2.29058 103
1.06019 10~
3.3909 102
8.479 102
1.783 101
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numerical s

6. 1073

2.72 10~%
2.2908 103
1.0607 102
3.3952 102
8.50055 102
1.79051 102
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Figure 1{a). Growth rate, s, as a function of A in a log-log plot for a case in which there
is no critical level in the layer: k; = k) = 1,¢ = irand B = 8.6 (> R.).
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Figure 1(b). Growth rate, s, as a function of A in a log-log plot for a case in which there
is no critical level in the layer: k, = &k, = 1,¢ = tmrand R = 8.5 (< R.).



A = 108

Figures 2. Comparisons between eigenfunctions for ideal instabilities (A = o0) [panels
(a) and (b)], and those for the corresponding instabilities for large A [panels (c) and (d)j.-
There is no critical level in the layer; in all cases k, = ky = 1,¢q¢ = %-Tr, and R = 8.6;
in panels (c) and {(d), A = 10°. The velocity perturbation, v, is shown in panels (a) and

(¢} and the vorticity perturbation, w;, in panels (b) and (d).
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Figures 3. Comparisons between eigenfunctions for stable ideal modes (A

[

A = 10°

o0) {panels

(a) and (b)], and those for the corresponding resistive instabilities for large A [panels (c)
and (d)]. There is no critical level in the layer; in all cases k; = ky, = 1,¢ = %-ﬂ', and

R = 85;

in (c) and (d), A

108. The velocity perturbation, v,, is shown in panels (a)
and (c) and the vorticity perturbation, w,, in panels (b) and (d).
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Figures 4. Comparisons between eigenfunctions for resistive instabilities in the limit of
infinite A [panels (a) and (b)}, and those for the corresponding modes for large A [panels
(c) and (d}]. There is no critical level in the layer; in all cases k, = k, = 1,¢ = im,
and R = 8.5; in panels (c) and (d}, A = 10%. The scaled velocity perturbation, Av,, is

shown in panels (a) and (c) and magnetic field perturbation, —ib, in panels (b) and (d).



1()l T L T T T TTFET T T T T T TTTT ¥ T T VT T TTTT T T T T TTTT

T T7FT1T7T
L1 1 1.1

109

LI IR L
@

Q
200040

= © 0 00 n.0ocosos GG G- B SITA D

T
<
Co
oo
oo
<O
O
1

10-1 1 1 | S N T . 5 1 1 § I W S N ) I 1 1t . 111} 1 i i 1 : 111

103 104 105 106 107

Figure 5(a). Growth rate, s, as a function of A in a log-log plot for a case in which there

is one critical level in the layer: &, = ky = 4,¢ = irand R = 12 (> R,).
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Figure 5(b). Growth rate, s, as a function of A in a log-log plot for a case in which there
is no critical level in the layer: k;, = ky, = 4,¢ = ¥rand R = 1 (< R.).



Figures 6. Comparisons between eigenfunctions for ideal instabilities (A = oo) [panels
(a) and (b)}, and those for the corresponding instabilities for large A [panels (c¢) and (d)].
There is one critical level in the layer; in all cases kb, = ky = 4,¢ = %’TF, and R = 12;
in (c) and (d), A = 10°% The velocity perturbation, v,, is shown in panels (a) and (c)
and the vorticity perturbation, w,, in panels (b} and (d).

For Figures 7 see following page.

Figures 7. Comparisons between the eigenfunctions [(a) — (d)] for the resisitive modes in
the critical layer in the limit A — oo with the eigenfunctions [(e) ~ (h)] in the entire layer
obtained by integration of the full equations. In all cases k, = k, = 4, ¢ = %'ﬂ", and
R = 4;in (e) - (h), A = 108 The velocity perturbation, v,, is shown in (a) and (e);
the vorticity perturbation, w,, in (b) and (f); the magnetic field perturbation, —ib,, in (c)
and (g); the electric current perturbation, —ij,, in (d) and (h).
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Figure 8(a). Log-log plot of the growth rate, s, of resistive instabilities as a functions of A
for fast g-modes when there is one critical level in the layer: ¢ = irand R = 0.5(< R.).

In the case shown, k; = k, = Al/4,
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Figure 8(b). Log-log plot of the growth rate, s, of resistive instabilities as a functions of A
for fast g-modes when there is one critical level in the layer: ¢ = %’n’ and R = 05(< R.).
In the (critical) case shown, k, = k, = Al/2,
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Figure 8(c), Log-log plot of the growth rate, s, of resistive instabilities as a functions of A
for fast g-modes when there is one critical level in the layer: ¢ = 3rand R = 0.5(< R.).
In the case shown, k, = k, = A3/4,

For Figures 9 see following page.

Figures 9. Comparisons between the eigenfunctions [(a) - (d)] for the fast g-mode in the
critical layer in the limit A — oo with the eigenfunctions [(e) - (h)] in the entire layer
obtained by integration of the full equations. In all cases k, = ky = AY? (a critical
case), g = %ﬂ', and B = 0.5;in (e) - (h), A = 10° The velocity perturbation, v,,
is shown in (a) and (e); the vorticity perturbation, w,, in (b) and (f); the magnetic field
perturbation, —ib;, in (c) and (g); the electric current perturbation, —ij, in (d) and (h)
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