q0-29

Parallel Preconditioned Conjugate Gradient Methods

for Elliptic Partial Differential Equations

by

Charles Hok-shun Tong

TABLE OF CONTENTS

1 Imtroduction 1
1.1 Statement of Problem 1
1.2 Linear Algebra Techniques for Elliptic PDEs 2

121 Direct Methods, . 2
1.2.2 Tterative Methods 3
1.3 Parallel Scientific Computations. . . ., 4
1.4 Contribution of this Research 6
1.5 Organization of this Dissertation 8

2 Preconditioned Conjugate Gradient Methods and Their CM Per-

formance e 9
21 Infroduction. 9
2.2 Preconditioned Conjugate Gradient Methods 11

92.1 The Conjugate Gradient (CG) Algorithm 11
2.2.2 Model problems and orderings 12
2.2.3 Survey of Preconditioners 15
2.3 Implementation 24
2.3.1 The Connection Machine 24
2.3.2 Processor mappingt i e e 24
2.3.3 The Preconditioned Conjugate Gradient Method on the CM 26
234 Experiments 31
2.4 Resultsand Discussion 33

2.4.2 Connection Machine Statistics 37
243 Discussion e e e e 39

3 Survey of Multilevel Preconditioners 41
3.1 Classification of Preconditioners. 11
3.1.1 Global Preconditioners Using Local Updates 41
3.1.2 Local Preconditioners Using Local Updates 42
3.1.3 Global Preconditioners Using Global Updates 42

3.2 Previous Work on Multilevel Methods 44
3.2.1 Multilevel Preconditioners 44

3.2.2 Concurrent Iteration Multilevel Methods 50
3.2.3 Convergence Acceleration Multilevel Methods 50

4 Multilevel Filtering Preconditioning - analysis and experments 52

4.1 Idea of MF Preconditioning 52
4.1.1 Eigendecomposition of the 1D Laplacian 53
4.1.2 Spectral Band Decomposition of the 1D Laplacian 54
4.1.3 Approximation 1 : Constant Band Eigenvalues 54
4.1.4 Construction of Ideal Bandpass Filters P’s 57
4.1.5 Construction of Ideal Lowpass Filters Qs 58
4.1.6 Approximation 2 : Replace Bandpass by Lowpass Filters . 59

4.1.7 Approximation 3 : The Use of Nonideal Elementary Filters 60
4.1.8 Fourier analysis and higher dimensional cases 684
4.1.9 Multigrid multilevel filtering (MGMF) preconditioners . . . 66

4.2 Numerical Results 70

i1

5 Extension of MF to More General Elliptic Problems 80

5.1 MF Preconditioners for Anisotropic Problems 80
5.2 MF Preconditioners for Positive Definite Helmholtz Equation . .. 84
5.3 MTF Preconditioners for Convection-diffusion Equation 87

5.3.1 MF Preconditioners for Symmetrized Systems 88

5.3.2 MF Preconditioners for Normal Equation 90
5.4 MF Preconditioners for Biharmonic Equation 91
5.5 MF Preconditioners for Problems with Locally Refined Grids . .. 96
56 Conclusion 100

6 Multilevel Preconditioners and Domain Decomposition Methods103

6.1 Introduction. 103

6.2 The Multilevel Nodal Basis Algorithm and Domain Decomposition

Methods e 105
6.2.1 The Multilevel Nodal Basis Algorithm 105
6.2.2 Domain Decomposition Methods 108

6.2.3 Multilevel Nodal Basis Domain Decomposition Preconditioner109

6.3 Numerical Results 113
6.3.1 Two-subdomain Example 113

6.3.2 Many-subdomain Example 114

7 Performance Analysis of MF preconditioners on the CM 117
71 Introduction., 117
7.2 Implementation of MF Preconditioners onthe CM 118
7.2.1 The Conjugate Gradient Method on the CM ., 118

7.22 Implementation of Filters 119

it

7.2.3 Implementation of Interpolation 120
7.2.4 Selection of Active Processors 121
7.3 Timing Resultsonthe CM 121

7.4 Performance Analysis for 2D Second-order Self-Adjoint Elliptic Prob-

lems e 125
741 Techniques for Performance Improvements. 125
742 TimingModel. e 126
7.5 Improved Timing Model 129
7.5.1 Optimal Number of Processor 130
7.6 Performance Analysis for Biharmonic Equation 131
7.6.1 Improved Timing Model 131
7.6.2 Optimal Number of Processor 133
T7 Summary . .. v e e e e 133
FFT as a Massively Parallel Multilevel Algorithm 139
8.1 Overview e 139
8.1.1 Overview on Massively Parallel Multilevel Algorithms . .. 139
8.1.2 Overviewon Ordered FFT 141
8.2 Parallel Hypercube FFTs 143
8.2.1 Introduction 143
8.2.2 'The Standard-order FF'T 149
8.2.3 The Cycliccorder FFT 149
824 TheAlgorithm, 154
8.3 Computing the Trigonometric Coefficients 154
8.4 Performance of the Parallel Hypercube FFTs on the CM-2. 159
8.4.1 Performance results for the CMSSL FFT 159

iv

8.4.2 Performance of a CM FORTRAN version of the standard-
order FET o o 161
8.4.3 A Comparison of three FFTsonthe CM . . ., 163

8.5 Error Analysis of the New Method for Computing Trigonometric

factors . . . o 164

8.6 Summary and Conclusion 171

9 Conclusion. 174
Bibliography 176

LIST OF FIGURES

2.1 (a) Diagonal and (b) parallel red/black orderings

2.2 Stencils of local operators for SSOR for 2D Poisson Problem

4.1 Spectrum of Laplacian divided into Bands and Scalings(n=256) . .
4.2 Preconditioned Spectrum for Laplacian Using Ideal Filters (n=256)
4.3 Preconditioned Spectrum for Laplacian with J=1 Filter (n=256) .
4.4 Preconditioned Spectrum for Laplacian with J=3 Filter (n=256)

4.5 Condition Numbers for M;'A with J=1 Filters
4.6 Condition Numbers for M7'A with J=3 PFilters

5.1 Locally Refined Grids - An Example
6.1 Multilevel Nodal Basis Fuactions

7.1 Tteration Count versus no. of levels used (n=256)
7.2 CM Time versus no. of levels used (n=256)
7.3 Predicted and Observed Times for Poisson Problem(n=256) .

7.4 Predicted and Observed Times for Poisson Problem(n=1024) .

7.5 Predicted CM Times for Poisson Equation(n=256)
7.6 Predicted CM Times for Poisson Equation{(n=1024)
7.7 CM Times for Biharmonic Equation with MGMF1(n=256)

7.8 CM Times for Biharmonic Equation with MGMF2(n=256)

7.9 Predicted Times for Biharmonic Eqn. with MGMF1 (n=256) . . .
7.10 Predicted Times for Biharmonic Eqn. with MGMF 2(n=256)

vi

ACKNOWLEDGEMENTS

Financial support for this work has been provided in part by the National
Science Foundation under contract NSF-DMS87-14612 and BBS87 14206, the De-
partment of Energy under contract DE-FG03-87TER25037, the Army Research Of-
fice under contract DAAL 03-88-K-0085, the 1989 summer support from Research
Institute for Advanced Computer Science (RIACS) under Cooperative Agreement
NCC 2-387, and by the a DARPA-sponsored Graduate Research Assistantship

(award no, 26947G) through UMIACS at the University of Maryland.

vii

ABSTRACT

Parallel Preconditioned Conjugate Gradient Methods

for Elliptic Partial Differential Equations

by

Charles Hok-shun Tong

"This thesis considers the development of multilevel preconditioners in conjunc-
tion with the conjugate gradient method for the solution of elliptic partial differ-
ential equations (PDEs) and their implementation on a massively parallel mul-
tiprocessor. Since there is global dependence inherent in the physical processes
described by the elliptic PDEs, we believe that a ‘good’ preconditioner must ac-
count for such global coupling in order to give fast convergence rates. Moreover,
with the advent of affordable massively parallel computers, a ‘good’ preconditioner
should also exhibit high degree of parallelism. However, we show that many clas-
sical preconditioners in general do not possess both properties. Therefore there
is a fundamental tradeoff between convergence rate and amount of parallelism to
achieve optimal performance. The tradeoff is confirmed by our numerical experi-
ments on the Connection Machine (CM).

We then study and develop multilevel preconditioners that offer high degree

viil

of parallelism and account for global coupling. In particular, we develop a class
of multilevel filtering (MF) preconditioners. This thesis presents both analytical
and numerical results when these preconditioners are applied to some self-adjoint
elliptic problems in two- and three-dimension. Fourier method is used as a tool to
understand the preconditioners for model problems on uniform grids. However, it
should be emphasized that the MF method can be applied to more general prob-
lems such as discontinuous coefficient problems and on irregular grids. Numerical
experiments show the effectiveness of the MF preconditioners when applied to
variable and discontinuous coefficient problems. We then show how to extend this
class of preconditioners to more general elliptic problems which include anisotropic
problems, biharmonic equation, second-order self-adjoint problem with local mesh
refinement, interface operators in domain decomposition problems, etc. Again,
Fourier method is used to explore insights into the behavior of the preconditioners
on model problems and numerical experiments show that the preconditioners are
indeed effective. A performance analysis of the MF on the CM is also included.
We also study another multilevel algorithm, the Fast Fourier Transform (FFT),
which is useful in the solution of many PDEs. We describe an ordered FFT algo-
rithm which optimizes the amount of interprocessor communication on massively
parallel distributed-memory multiprocessors. In addition, a parallel method for

calculating the trigonometric factors is proposed and an error analysis is included.

ix

CHAPTER 1

Introduction

1.1 Statement of Problem

This research develops parallel numerical methods for solving linear systems
arising from the discretization of elliptic partial differential equations (PDEs) on
massively paraliel computers. In particular, we are interested in solving second-
order self-adjoint elliptic PDEs of the form

g(%arg—; -+ b.,-gj—i) teu=f in Q=][0,1)¢
where d = 2 and 3 for the two- and three-dimensional problems. Here a;, b;, and
c can depend on ;,7 = 1,...,d. For example, when a; =1, b, = 0, ¢ = 0 for all

¢ we have the Poisson problem. We are also interested in solving the fourth order

biharmonic equation in two- dimension, namely
Alu= f(z,y)in @ =[0,1)2,
subject to boundary conditions

u= f(z,y) and g—% = g(z,y) for (z1,25) € 00

where 3/8n denotes differentiation in an outward normal direction to the boundary
o1,

These problems find wide applications in many areas of science and engineering
including oil reservoir simulation, semiconductor device simulation, computational

fluid dynamics, etc. Moreover, these problems are computation-intensive and it is

not an overstatement to claim that the need to solve these problems fast is a main

driving force for the development of supercomputers.

1.2 Linear Algebra Techniques for Elliptic PDE’s

The discretization of the elliptic partial differential equations mentioned in the
last section using finite difference or finite elements gives rise to linear systems of
the form

Au=f

where A is a large, sparse, and symmetric positive definite matrix. Techniques for
solving such linear systems can be classified as either direct methods or iterative

methods.

1.2.1 Direct Methods

Many direct methods are based on Gaussian elimination. Examples of direct
methods are the LU factorization, Cholesky factorization {18], fast Poisson solvers
using fast Fourier transform (FFT), etc. If exact arithmetic is used (i.e. no round-
off}, the maximum number of arithmetic operations needed is known in advance
as a function of the problem size, N.

Direct methods are most suitable for dense systems as well as banded systems,
but they encounter the notorious “fill-in” problem when applied to general sparse
systems. “Fill-in” arises when many more non-zero entries are created during the
process of Gaussian elimination, so that the I and U factors are less sparse than
A. The consequences are more storage needed and higher computational cost.
For example, the operation counts for solving elliptic problems on two- and three-

dimensional domains (n X n and n X n X n) using band elimination are O(n4) and

O(n") respectively. Efforts have been made to alleviate this problem by exploring
different types of orderings and techniques such as graph-theoretic approach and

nested dissection [47].

1.2.2 TIterative Methods

Iterative methods start with an initial guess 2° and algorithmically update =z
to obtain a sequence 2, z1, z2, ... z*, ..., of approximate solutions intended to
be successively closer to the true solution z. Examples of iterative methods are
Jacobi, Gauss-Seidel (GS), Successive Over-relaxation (SOR) [110, 105], alternate
direction implicit (ADI) [105], Chebyshev semi-iterative (CSI) [110, 56], precondi-
tioned conjugate gradient (PCG) [29], multigrid (MG) [24, 14], etc. Some of these
methods can further be classified according to the types of orderings used, such as
natural ordering, red/black ordering, multi-color ordering [1], and etc.

Iterative methods have the advantage that they do not incur the “fill-in” prob-
lems as seen in the direct methods, since the original matrices are not altered
during the solution process. In addition, the number of arithmetic operations
needed to solve a problem is typically O(pg) where p is the number of iterations
needed for convergence and ¢ is the number of non-zero entries in the original
matrix A, which means that these methods have the potential to be much more
eflicient than the direct methods when p and ¢ are small (fast convergence rate
and the matrix is sparse). In this dissertation, we will concentrate on one par-
ticular class of iterative method - the preconditioned conjugate gradient method
(PCG). The PCG method has been known as an efficient technique for solving
large sparse symmetric positive definite linear systems of equations. Many itera-

tive methods have the drawback that they require the estimation of parameters

for fast convergence. For example, the SOR method requires the estimation of the
relaxation parameter w, and the CSI method requires the estimation of the largest
and smallest eigenvalues of the problem matrix. The PCG method, which can be
considered as a minimization method, does not require any parameter estimation.

Moreover, the PCG method can be very competitive for computer implementation

by the use of “good” preconditioners.

1.3 Parallel Scientific Computations

In recent years there has been increasing efforts in developing parallel comput-
ers for use in scientific applications. With the advent of VLSI technology, we are
able to build more complex circuits at an affordable cost. This creates a favorable
environment for exploring different design alternatives and we have seen many cre-
ative parallel architectural designs ranging from general purpose to special purpose
architectures. Some of these novel parallel architectures are the pipeline or vector
computers such as the CDC Cyber 205 and the CRAY computers, shared memory
multiprocessors such as the Alliant Family, message passing multiple instruction
multiple data (MIMD) multiprocessors such as the Intel iPSC and the NCUBE
computers, massively parallel single instruction multiple data (SIMD) machine
such as the ICT, DAP and the Connection Machine, hybrid or cluster machines
such as the CEDAR computers developed at the University of Illinois Center for
Supercomputing Research and Development, special purpose systolic computers
such as the WARP machine developed at Carnegie-Mellon University, dataflow
computers, just to name a few. Ortega and Voigt [90] have an excellent survey on
numerical methods on vector and parallel computers and several other books such

as [63, 64] have a comprehensive description of parallel computers.

The challenge for the scientific computing community using parallel computers
is to match algorithms to parallel computers in order to obtain the best perfor-
mance. This task amounts to designing new parallel algorithms, and nnderstanding
thoroughly the architectural features of the machine so that the suitability of a
particular algorithm on a particular machine can be assessed and the computa-
tions can be arranged to fully utilize the machine. For example, given a vector
processor, it is desirable to design algorithms that have low arithmetic complexity
and many long vector operations.

Some of the commonly used performance measures are MFLOPS (million float-
ing point operations per second), efficiency, speedup, execution time, cost, etc. For
example, speedup can be defined as the ratio of the execution time using the fastest
sequential algorithm on one processor to that using the parallel algorithm on p pro-
cessors [90]. Efficiency is defined as the ratio of speedup using p processor to p.
It should be pointed out that a particular algorithm-architecture match may give
high MFLOPS but long execution time. It is up to the user to perform tradeoffs
and choose for himself the best performance measure.

This dissertation centers on developing “good” preconditioner on massively
parallel computers such as the Connection Machine (CM). By “good” we mean we
are interested in preconditioners that give the lowest execution time of the overall
solution process. We will show that the conjugate gradient method without precon-
ditioning is already very efficient on the CM. Many of the classical preconditioners
such as incomplete factorization and polynomial preconditioners which improve
performance on vector computers are shown to be unsuitable on the CM. We also

investigate the class of multilevel preconditioners and show that the multilevel pre-

conditioners are promising candidates on massively paralle] machines which have

support for efficient global communication such as hypercube interconnection.

1.4 Contribution of this Research

The emphasis of this research is on the development of parallel precondition-
ers for the conjugate gradient method suitable for implementation on massively
parallel computers. We begin with a performance study of a number of classical
preconditioners on the CM. The conclusion to the initial study is that the class of
multilevel preconditioners strikes a good balance on convergence rates and amount
of parallelism so that good performance on massively parallel architectures such
as the CM can be obtained.

We then develop the class of multilevel filtering (MF) preconditioners which we
study both analytically and numerically on second-order self-adjoint problems. We
also show the superior performance of this class of preconditioners on the CM as
compared to many other classical preconditioners. Using the same MF framework
we are able to extend this class of preconditioners to effectively solve more gen-
eral elliptic problems such as anisotropic problems, biharmonic equation, positive-
definite Helmholtz equation, convection-diffusion equations, problems with local
mesh refinement, and interface operators arising from domain decomposition meth-
ods. Both Fourier analysis and numerical results are presented.

We also study the efficient implementation of ordered Fast Fourier Transform
(FFT), an example of massively parallel multilevel algorithm, on massively parallel
machines. FI'T is useful in, for example, solving PDEs using the spectral method.
We develop a new algorithm for ordered FFT which optimizes the amount of
interprocessor communication on massively parallel distributed-memory multipro-

cessors. Moreover, a new parallel method for calculating the trigonometric factors

is proposed. Implementation of this ordered FFT on the CM gives performance
close to 0.9 GFLOPS. An error analysis of such a scheme is also included.

The major research contributions are summarized in the following:

¢ performance studies of some classical preconditioners on the CM, the con-
clusion of which leads to the consideration of multilevel preconditioners for

massively parallel computers,

e perform numerical experiments to verify the effectiveness of MF on some
two- and three-dimensional second-order self-adjoint problems and compare

the effectiveness of MF with other preconditioners,

¢ develop efficient MF preconditioners for the following classes of elliptic prob-
lems (Fourier analysis and numerical experiments):
- anisotrbpic problems,
— biharmonic equation,
~ problems with local mesh refinement,
— positive definite Helmholtz equation,
— convection-diffusion equations,

¢ develop an efficient multilevel preconditioners for interface operators arising

from domain decomposition method,

o performance analysis of the MF preconditioners on the CM for some second-

and fourth-order problems,
¢ develop a new ordered F¥T algorithm:

— implementation on the CM (performance close to 0.9 GFLOPS),

— develop a new parallel method for computing trigonometric factors,

— error analysis of the new method.

1.5 Organization of this Dissertation

Chapter 2 presents the initial set of experiments comparing the performances of
some classical preconditioners on the CM. Chapter 3 first draws some conclusions
for the motivation of the class of multilevel preconditioners and then surveys some
of the previous works on multilevel preconditioners. Chapter 4 introduces the idea
of multilevel filtering (MF) preconditioning. Analysis as well as numerical results
are included for the two- and three-dimensional Poisson-like problems. Chapter
5 extends the idea of MF preconditioning to other more general elliptic problems
such as those listed in the last section. Chapter 6 presents a new preconditioner
based on the ideas of multilevel preconditioning and domain decomposition. Again
analysis as well as numerical results are given to show the effectiveness of the new
preconditioner. Chapter 7 describes the results of performance studies of the MF
preconditioners on the CM. Timing models are developed to study the ?fficiency
improvement of the MF preconditioners for some elliptic problems, Chapter 8 first
overviews the class of massively parallel multilevel algorithms, and then presents
an ordered Fast Fourier Transform algorithm that optimizes the communication
overhead on massively parallel computers. This algorithm includes a new parallel
method for the computation of the trigonometric factors, An error analysis of this
method will also be included. Chapter 9 summarizes this research as well as lists

some future research directions.

CHAPTER 2

Preconditioned Conjugate Gradient Methods and Their CM

Performance

2.1 Imntroduction

The conjugate gradient method, coupled with “good” preconditioning, has been
known as an efficient technique for solving large sparse symmetric positive definite
linear systems of equations such as those generated by the discretization of elliptic
partial differential equations in two or three dimensions. In the past, many pre-
conditioners have been proposed which have helped to make the preconditioned
conjugate gradient (PCG) methods very competitive for computer implementa-
tion. Some of these preconditioners offer condition number improvement of an
order of magnitude, so that the overall operation count to achieve convergence
is greatly reduced. For example, the modified incomplete Cholesky (MIC) fac-
torization and its invariant with natural ordering was widely used on sequential
computers. However, such preconditioners often have the property that they are
very much sequential. For example, the maximum degree of parallelism of the
MIC preconditioner for a n x n grids is O(n). Therefore, these sequential precon-
ditioners are unable to exploit efficiently the computational resources offered by
massively parallel computers such as the CM, as it will be shown later from ex-
perimental results. In an effort to increase the amount of parallelism, one method
is to reorder the sequence of operations to give, for example, the red/black order-

ing version of the MIC preconditioner. However, experiments and analyses have

shown that these more parallel preconditioners in general have considerably slower
convergence rates compared to their more sequential counterparts. The question
is whether this gain in the amount of parallelism can compensate for the extra
iterations needed due to the loss in the convergence rates. The tradeoffs between
convergence rates and the amount of parallelism in a preconditioner pose a tremen-
dous challenge to researchers in search for better preconditioners. The paper [90]
has an excellent survey on the performance of many preconditioners on vector and
parallel computers. This chapter addresses the implementation of precondition-

ers on one particular parallel single instruction multiple data (SIMD) computer,

namely, the CM,

A number of preconditioners have been implemented on the CM using *Lisp
(one of the few languages supported on the CM) by the author and the results are
presented in [102]. This chapter presents similar results but with more efficient
implementation using the low level assembly language called PARIS. Among the
preconditioners implemented are : Relaxed Incomplete LU (RILU) with natural
ordering, m-step Neumann series and m-step least square polynomial precondition-
ers. The basic conclusion is that the time performance of these preconditioners on
massively parallel computers such as the CM are no better than the conjugate gra-
dient method without preconditioning. In section 2, the basic conjugate gradient
method, different types of orderings, as well as the detailed formulation of the pre-
conditioners are covered. In section 3, details of implementation are presented. In
section 4, the iteration counts as well as CM execution times and MFLOPS éounts
achieved on the CM for different preconditioners will be presented and observations

will be discussed.

10

2.2 Preconditioned Conjugate Gradient Methods

2.2.1 The Conjugate Gradient (CG) Algorithm

The CG algorithm for the solution of a large sparse symmetric positive definite

linear system of equations

Au=f

where A is an N X N syminetric positive definite matrix and u and f are N x 1

vectors, is given as follow :

r=f— Au ; initial residual
p=0
Repeat

z=M-1r ; preconditioning

B=new<r,z>fold<rz>

p=z+pp ; updating direction

a=new<r,z>/ <p Ap>

U =1u+ ap ; updating solution
r=r—adp ; updating the residual

until | v [, / || 7o [lo< tol

where < -,. > denotes the usual Euclidean inner product, and r and p are N x 1
residual and search direction vectors respectively.

The matrix M is called the preconditioning matrix and the speed with which
the algorithm converges depends strongly on the choice of M. It is desirable to
have M approximating A so that the condition number k(M -1 A) is smaller than

that of A alone, that M is also sparse, and that the computational overhead to

11

solve the system of equations

Mz=r

is relatively small. With the advent of massively parailel systems, it is also de-
sirable to have high degree of parallelism inherent in the preconditioners. The
parallel implementation issues for both the conjugate gradient iteration and dif-

ferent preconditioners are discussed in later sections.

2.2.2 Model problems and orderings

The model problems used in this experiment are the two- and three-dimensional
Poisson equations as well as the following two-dimensional second-order self-adjoint

variable coeflicient boundary value problem:

o ala 1)) — (M) 5 = fla) in 0= (0,11

with u(z,y) = g(z,y) for (z,y) on the boundary Q. We assume a(z,y), b(z,y)
and f(z,y) are smooth functions and a(z,y) and b(z,y) are nonnegative. The
3-point finite difference approximation of this equation on a n X n uniform grid
defined inside the domain gives rise to the difference equations

1
n+1’

— 2 ;L _
Uiy gt oty gt et g ot e o = fikh? j k=1, 0, A=
with

Qy = Qip1/3my 2= O 1fam Q3= bl,m+1/2: Q; = bt,m—1/2,

and

4
Oy = E i
EESH]
where u;; is used to approximate the value of u(jh, kh). A collection of n x n

difference equations, together with the way that the grid points are ordered, form

the coefficient matrix A.

12

The ordering of grid points on a two-dimensional grid determines the form of
the coefficient matrix A and also that of the preconditioners. Using the natural
ordering, grid points are ordered in row-wise (or column-wise) manner. And using
the red/black ordering, grid points are first partitioned into red and black groups
such that a grid point (4, k) is red if j -+ k is even and black if it is odd. Then the
grid points within the red group are ordered using natural ordering, followed by
the ordering of the grid points within the black group. In the context of parallel
computation, we are interested in maximizing the number of operations at grid
points among which there is no data dependence. Consequently, these operations
can be performed in parallel and the ordering for these grid points does not affect
the final result. For example, in the solution of the linear system Au = f, it is

appropriate to consider the following natural and red/black orderings:

Diagonal ordering (parallel version of natural ordering) :
(7,k) < (m,n) of j+k<m+n,
Parallel version of red/black ordering :
(7, k) <(m,n) if (j,k)isred and (m,n) is black,

where the order of updates during preconditioning is determined by the inequality
condition (e.g. in ascending or descending order). These two orderings for the
grid points on a uniform 6 x 6 square grid are illustrated in Figure 2.1. Note
that the same ordering number is assigned to grid points (j,%) with the same
J -+ k in the natural ordering and grid points of the same color in the red/black
ordering. This implies that operations at these grid points can be performed in
parallel. The red/black ordering is more attractive than the natural ordering in

parallel computation, as far as the computation time per iteration is concerned,

13

since it takes two steps to sweep all grid points while the natural ordering takes
O(n) steps. Nevertheless, the convergence rate of some iterative algorithms may be

slowed down by changing from natural ordering to red/black ordering as analyzed

in [76].

Figure 2.1: (a) Diagonal and (b) parallel red/black orderings

56 7T 89 12 1 21
4 5 6 T 8 21 2 1 2
3 4 5 67 12 1 21
23 4 5 6 21 2 1 2
12 3 45 1 2 1 21

(a) (6)

For the diagonal ordering, the grid points that have the same sum j + & can
be performed in parallel, and the same is true for the red/black ordering where
the grid points are of the same color. This means that if this problem is solved
on a parallel computer, then a sweep (or one iteration) using red/black ordering
can at best be computed in constant time (independent of the number of grid
points) while a sweep using diagonal ordering can at best be computed in O(n)
time on a n x n grid. Here we can see that the parallel red/black ordering offers
higher degree of parallelism (O(n?) operations can be performed in parallel } than
the diagonal ordering (which has degree of parallelism O(n)). Nevertheless, the
convergence rates improvement of the preconditioners using diagonal ordering are

usually better than that using parallel red/black ordering.

14

2.2.3 Survey of Preconditioners

The preconditioners implemented in this experiment are described in the fol-

lowing subsections. These include most of the point versions of the popular ones.

2.2.8.1 Incomplete Factorization and SSOR Preconditioners

This class of preconditioners uses an incomplete Cholesky factorization of the
matrix A as a preconditioner [6, 7, 39, 52, 86, 89]. If LL? is the Cholesky de-
composition of the symimetric positive definite matrix A where A is sparse, then
the factor L is generally much denser than A because of fill-in. By an incomplete

Cholesky factorization we mean a relation of the form
A=LIT+ R

where L is lower triangular and R # 0. One way to obtain such an incomplete
factorization is to suppress the fill-in, or part of it, that occurs during the Cholesky
decomposition. Some examples in this class are the incomplete Cholesky (IC(k)),
modified IC (MIC(k)), and relaxed IC (RIC(k)) preconditioners. The parameter k
denotes the amount of fill-in allowed in the factorization. For example, if we desire
not to compute any element of L in positions corresponding to zero elements of
A, then we obtain the IC(0), MIC(0) and RIC(0) preconditioners. For the rest of
this chapter, we limit ourselves to the case k = 0.

The idea of modifying an incomplete factorization to improve convergence dates
at least back to the work of Dupont, Kendall and Rachford {39]. A related idea
was given by Gustafsson [52], who called the method modified ICCG method
(MICCG). The splitting A = LLT + R includes a residual matrix B. While IC

preconditioner ighores the contribution of R, the modified IC (MIC) preconditioner

15

compensates for the contribution of R by adding them to the diagonal entries.
The MIC preconditioner, in addition, has the property that the row sums of LLT

is equal to thoge nulated in terms of a

parameter o that ranges from zero {unmodified IC) to one (MIC). The rates of
convergence are often optimal for an « slightly less than one [6, 11]. For « other
than zero and one, we call the method relaxed IC (RIC) preconditioner. IC(0),
MIC(0) and RIC(0) preconditioners can all be represented in the following matrix
form:
M=LLT
where
(M)y; =(A)y; Vi#j and (A); #0.

Thus, the L’s for these three preconditioners have the same sparsity and off-
diagonal elements. The only difference is in the diagonal entries.

The algorithm to compute L for the class of incomplete factorization with & = 0

can be summarized as follow [89]:

1/2
L= a1

Fori=1 to N
s; =10
end for
Fori=2 to N
Forj=1 to -1
if a;; = 0 then I;; = 0 else
i = (ai — DI lal) /5
8 =8+ Lo | lijlix |
end if

16

end for
1/2
Iy = (Gﬁ ~ T+ 133;) !

end for

The parameter 8 is the relaxation parameter. The values of 8 are 0, 1, and
otherwise for 1C(0), MIC(0) and RIC(0) preconditioners respectively. There are
other equivalent forms of these incomplete factorization methods. For example,
instead of using the incomplete Cholesky factorization, one can use the incomplete
LU or LDLT factorization. The incomplete Cholesky decomposition has an advan-
tage that it requires less storage compared to the others. However, it also has the
disadvantages that the square root operation is required during factorization and
an additional arithmetic operation is required during preconditioning. Therefore,
it is sometimes more desirable to use the root-free forms. We use the incomplete
LU factorization in our implementation.

The symmetric successive overrelaxation (SSOR) preconditioner [7] has the

following matrix form:

M= 52— (=D~ C)(LD) D - Cy)

2 —w'w

where (', and Cp are lower and upper triangular matrices respectively and
A = CL + OU,

and w is the relaxation parameter. The SSOR preconditioner can be written in

the form:

M=LU

where L and U have the same sparsity as the I and U matrices in the LU form

of the incomplete factorizations with & = 0. This means that ILU(0), MILU(0),

17

RILU(0) and SSOR exhibit the same data communication pattern given a linear
system. For the two-dimensional Poisson problem on a uniform grid, for exam-

7., and M., = L.. .. for SSOR

ple; we can represent the local operators {7, and M., axl £ X

Lk,
preconditioner on grid point (7, k) in stencil form as found in Figure 2.2.

FEach of the preconditioners described above consists of a forward solve (L-1)
followed by a backward solve (U~1). As shown in Figure 2.2 for the Laplacian
operator, since every grid point updates its data based on the data from grid
points to its west and south for the L-solve, the amount of parallelism ranges from
1 to n (refer to the definition of diagonal ordering given previously). The U-solve
also has O(n) degree of parallelism. Due to the sequential nature of the these
diagonally-ordered preconditioners, the forward and backward solves can at best
be performed in O(n) time on parallel computers.

For certain problems arising from the discretization of partial differential equa-
tions, we can obtain more parallelism by using multicolor orderings of the points

[91]. For the two-dimensional problems we consider in this chapter, for example,

we can reorder the equations using red/black ordering so that

i Dy C*
C Dpg

where Dp and Dp are diagonal and C is sparse. Consider the incomplete factor-

ization of A with k& = 0 denoted by:

” I 0 Dy Ugg Dpg Ugs
Lgr Ip 0 Dy LprDp LyrUps + Dg

where I and I are identity matrices for the red and black points, Dg is a diagonal

matrix, and Lpg and Ugp have the same sparsity as C and C7 respectively. Again,

18

the incomplete factorization preconditioners M’s are defined such that
(M),gj = (A)m Vi %] and (A).‘-j =,é 0.

Equating the entries of M and A based on the definition of different incomplete

factorization preconditioners, we obtain
1. red/black ILU(0)

LBR = OD‘EI, UBR = OT, and dzag[f)ﬂ] = d‘lﬁ'.g[DB — LERURB]'

2. red/black MILU(0)

Lpr=CD3', Upgp=CT, and diag[Dg] = row sums of Dy — LyrUxsp.

3. red/black RILU(0)
LBRZODEI, UBR: OT, and
diag[Dy] = diag[Dg] + B % row sums of LgrUgg.

The red/black SSOR preconditioner has the same matrix form as before, namely,
1 1 1 1
= — (] —N-1(Zp_
M= 2_W(WJD OL)(c.aD) (wD Cy)

but now the matrices D, Cp and Cy have been permuted to conform to the
red/black ordering.

Again, this preconditioning consists of a forward solve (L-1) followed by a
backward solve (/~1). In this case, however, since all the red points can be updated
in parallel and so can all the black points, the solves can at best be done in
constant time. Again, for the two-dimensional Poisson problem on a uniform grid,
for example, we can represent the local operators Ly, Uj and M, = L; U, for
SSOR preconditioner with red/black ordering on grid point (7, %) in stencil form

as found in Figure 2.2.

19

Figure 2.2: Stencils of local operators for SSOR for 2D Poisson Problem

(3,k) red :

L

(3,k) black :

[

g

i
g

I~
B

(a) parallel red/black ordering

20

_w w?)
i 16 4
_w —w w?
1 1 i T 1+ B
_w _w
4 4
Lk Uik My
(a) diagonal ordering
—u _w
4 4
e _w —w

4 1 n 4 1

—w _u

4 d

Us i M;,,
@,
18
w? _u

8 4
_w W _w w?
4 1 16 $ 1+4
w? e

8 4
Lo

16
Uk M,

|
iS]S

[

[y
[=2]

[
w|e

Nt o

°°|Ew

16

2.2.3.2 Polynomial preconditioners
1. m-step Jacobi precenditioner [5, 2, 35, 65, 89, 92]

Let A be a square nonsingular matrix and A = P — Q) a splitting matrix of A
such that P is nonsingular and the largest eigenvalue in magnitude of P-1Q

is less than 1. Then, with B = P-Q [89],
A1 = (> BHP-L.
k=1

We can derive a preconditioner which is an approximation to A by
Mpjy = (I+B+ B2 +...4 Bm1)P-,

which gives the m-step Jacobi PCG method. For the point Jacobi method,
P is the diagonal of A.

2. Parametrized polynomial preconditioner

In general, we can consider the polynomial preconditioner as

me—1

-1
Mgp(my = > 1B,

=0
so that the coefficients ;,0 < [< m, can be chosen to minimize a certain
objective function. Examples of such preconditioners are the least-squares
polynomial preconditioner and the min-max polynomial preconditioner [2,

65]. Only the least-squares preconditioners with m = 2,3 and 4 will be

implemented here.,

3. Other polynomial preconditioners [2]

The same idea for parametrized polynomial preconditioners can be applied

to a different splitting - for example, the SSOR splitting. This gives rise

21

to the m-step SSOR preconditioners. A variation of this is the multi-color
m-step SSOR preconditioner. No implementation for this preconditioner is

included here.

The polynomial preconditioners formulated above are very good candidates for
parallel computation. If the P matrix is the identity matrix, then the m — 1 steps
for the m-step Jacobi preconditioning amount to m—1 iterations of the basic Jacobi
method followed by accumulating the results of the iterations. As the basic Jacobi
method offers a very high degree of parallelism (all grid points can be updated
at the same time), so does this m-step Jacobi preconditioner. Thus, on massively
parallel computer systems such as the CM, the m-step Jacobi preconditioning takes

O(m) time.

2.2,3.3 Other preconditioners

The preconditioners we have discussed so far represents the more popular ones.
There are still other preconditioners which we have not discussed here. Exam-
ples are the use of fast Poisson solvers based on the fast Fourier Transform and
the ADI iteration as preconditioners [83]. A few other preconditioners which has
gained some attention in recent years is diagonally-scaled or incomplete Cholesky
factorization preconditioners applied to reduced systems [16]. When a given ma-
trix has property A [110], it can be reduced to a matrix which involves about half
of the original unknowns and has better condition number. The description of
these methods as well as their performance on the Alliant have been reported in
[16]. The use of the reduced system method on the Connection Machine has the
potential of speeding up the solution time. However, it also introduces some issues

concerning slightly irregular communication pattern during the matrix vector mul-

22

tiplication. For this reason, we have not implemented these methods on the CM
and we hope to assess the efficiency of these method on single instruction multiple

data machines in the future,

2.2.3.4 Convergence Rates

The convergence rates of the conjugate gradient method with different precon-
ditioners for the model Poisson problem, which depend on both the corresponding
condition number as well as the distribution of the eigenvalues of the precondi-
tioned system, can be studied either by matrix iterative analysis [10, 89, 39] or by
Fourier analysis [26, 28, 75]. A summary of the Fourier analysis results is listed in
Table ch2:tb0 which can also be found in {28] (in the tables & is grid size and the

number of grid points is related to & via N ~ A2 for on 2D grids).

Table 2.1: Comparison of Condition Numbers

preconditioner || Natural | red/black

none(Laplacian) || O(h-2) O(h-2)

ILU | O(h-2) | O(h-2)

MILU || O(h-1) O(h-2)
SSOR || O(h™1) O(h-2)
polynomial | O(h-2) O(h-2)

Table 2.1 basically shows that while the red/black and polynomial precondi-
tioners have high degree of parallelism, they often do not improve the order of
the condition numbers, compared with the preconditioners using natural ordering.

The effective preconditioners such as the MILU and SSOR with natural ordering

23

are, however, much more sequential in nature.

2.3 Implementation

2.3.1 The Connection Machine

The detailed description of the Connection Machine can be found in [61, 80].
The CM used in the present experiment is a 16k-node CM-2. The language used
for program development was PARIS, an assembly language for the CM. During
the experimental phase, it was found that if single-precision floating point numbers
were used, there was considerable discrepancy between the recursively computed
residual and the actual residual. One possible explanation is the loss of the or-
thogonality of the computed Krylov basis vectors due to finite precision arithmetic
[41]. However, for the purpose of better performance, majority of the experiments

use single-precision.

2.3.2 Processor mapping

The 2-D model problem can be nicely mapped onto the 2-D NEWS grid of the
CM using binary reflected Gray code when n is a power of two. Depending on the
ratio of the number of grid points to the number of available physical processors,
each physical processor simulates one or more grid points. To run a 128 x 128 grid

problem, the following configuration command in PARIS can be used:

dimension_array(1:2)=128
geometry id = cm_create_geometry(dimension_array,2)
vpset = cm_allocate_vp_set(geometry.id)

call cm set_vp_set(vpset)

24

In this case, since there are altogether 128 x 128 = 16384 grid points and
we have 16384 (16k) physical processors, each physical processor performs the
computations for a single grid point. Suppose 65336 (256 x 256) grid points
to be simulated but only 16k physical processors are available, then each physical
processor has to take the computation load of 4 grid points. By using the virtual
processing capability of the CM, this mapping (the mapping of 4 grid points to
one physical processor) is transparent to the users and is performed automatically
after the geometry has been set up.

An advantage of mapping the problem on the 2D NEWS grid is that the neigh-
boring grid points are mapped to neighboring processors; and since the commu-
nication speed between neighboring processors using the NEWS communication
is very fast, and that most of the communications are between local grid points,
good execution time performance can be expected.

One major concern is how the boundary grid points are handled. Since no com-
putation is needed for the boundary grid points other than providing data to their
neighbors, one way is not to map them to any processors. During computation,
the processors that simulate the grid points which are located next to the bound-
ary grid points will be performing slightly different tasks from the other interior
processors. An example is the local operation A;; which requires fetching data
from four neighbors (north, south, east, and west). Since these next-to-boundary
grid points have one or two neighbors missing (e.g. the grid point at the north-
east corner does not have east and north neighbors), they have to execute this
operator a little differently. Because the CM is a SIMD machine and cannot ex-

ecute two different active operations simultaneously, the updating of interior and

next-to-boundary grid points have to be done in fwo separate steps, resulting in

25

longer execution time. Another way is to map boundary grid points also to actual
processors. The drawback to this scheme is that these boundary processors will be
idle most of the time. However, since the operations to be performed on all interior
processors will be identical, the updating takes only one step, resulting in shorter
execution time compared to the first scheme. This latter scheme is chosen for our
implementation for reasons that it is simple to implement and it will probably give

better performance.

2.3.3 The Preconditioned Conjugate Gradient Method on the CM
2.3.3.1 Implementation of a Conjugate Gradient iteration

One iteration of the PCG method requires 3 inner products (including the
residual calculation), 3 multiply-and-add operations, 1 matrix-vector product cal-
culation, 2 scalar divisions, one comparison, plus the computations required for

preconditioning. Let’s look at how each of these operations is performed on the

CM.

1. Linked Triad (SAXPY)

This operation is in the form of y = ¢z + b where z and b are vectors and «
is a scalar. If each processor takes care of one element in the vector and the

scalar @ is supplied by the host system, then the following PARIS code can

be used
call cm f mult.const_add_11(y,x,a,b,ml.el).

Here ’ml” and ’el’ are integers specifying the lengths of the mantissa and ex-
ponent for the floating point operands. The time to perform this operation

depends only on the virtual processor ratio (number of grid points per phys-

26

ical processor) and this ratio depends on the total number of grid points and
the total number of available processors. For a particular virtual processor

ratio (VP ratio), this operation takes constant tim

€,

. Matrix-vector product

The matrix in this case is A, which, when operating on a vector, is equivalent
to the parallel execution of the local operator A;, (defined previously) on
each element of the vector. For the Poisson problem with 5-point discretiza-
tion, each processor adds the data fetched from the processors to its north,
south, east, and west, divides the sum by 4, and subtracts the quotient from

its own data. In PARIS code, it can be represented as

call cm £ _get_from news_11{tmp,src,0,0,wl)
call cm. f news_add_2_11{tmp,src,0,1,ml.el)
call cm f news_add_2_11(tmp,src,1,0,ml,el)
call cm f news.add.2_11(tmp,src,1,1,ml el}

call cm f multiply_constant_3_11{dest,tmp,0.25,ml,el)

Here 'wl’ is the length of the data (number of bits). The third and fourth
arguments to the ’cm f news_add_11’ function specify which dimension and
direction to get the data. For example, if both are 0, then processor (i,)
will get the data from processor (i —1, 7). Again, this operation can be done

in constant time for a particular VP ratio.

. Inner Product

The inner product has been known as a bottleneck to the performance of the

PCG method. It is important that this inner product operation can be done

27

efficiently. It can be observed that the hypercube configuration of the CM
helps to speed up this computation. [t allows multiplication to be done in
parallel in all processors, and the the partial sums are accumulated in the

form of a binary tree. The PARIS code for inner product calculation is

call cm f multiply 3_11{tmp,src,src,ml,el}

innerproduct = cm_global f add_11(tmp,ml,el)

4, Others

Other computational needs include 2 scalar divides and 1 comparison for
convergence. These computations are performed on the front-end computer

and require constant time.

In summary, without considering the preconditioning, the overall computation
time for each iteration on the CM is dominated by the inner product operation.
Even though the parallel computational complexity of the inner product compu-
tation is O(log N) where N is the number of grid points, it can be seen later that
the performance of the inner product calculation on the CM is comparable to the

other operations such as the linked triad operation.

2.3.3.2 Implementation of preconditioners

For preconditioning, depending on whether diagonal ordering or red/black or-
dering is used, the way to map the preconditioning algorithms on the CM and the

order of computation times can be quite different.

1. Implementation of preconditioners with diagonal ordering[17, 89, 93]

23

Assuming that grid points (1,1) and (n,n) are located at the lower left and
upper right corners of the domain respectively, then the 1.-solve starts at the
grid point (1,1) and updates one diagonal at a time until grid point (n n) is
reached, where n is the number of interior grid points in each dimensions.
This constitutes a wavefront moving from the lower left corner to the upper
right corner and is called a forward sweep. During the forward sweep, each
active processor (those processors located on the wavefront) updates its grid
point value by averaging with the corresponding variables fetched from its
south and west neighbors. The PARIS code is (assume the context flag has

been set for the active processors) :

call cm f news_mult_3_11(tmp,src,west,0,0,ml,el)
call cm f.subtract_3_11(dest,src,tmp,ml,el)

call cmn.f news_mult_3_11(tmp,src,south,1,0,ml,el)
call cm f subtract_2_11(dest,tmp,ml,el}

call cm f multiply 2_11(dest,center,mlel)

where "west’, "south’ and ’center’ are weighting factors corresponding to the
entries in the lower triangular L matrix (recall M = LU). The backward
sweep (or the U-solve) can be performed similarly except that now the sweep

starts at grid point (n,n) and proceeds to grid point (1,1).

The way to select a diagonal of grid points to be updated and leave the other
processors idle can be achieved by the use an address variable. This variable
is initially set to the sum of the x and y coordinates for each processor.
During preconditioning, the processors with address variable equal to 1 is

updated first, followed by 2, 3 and so on. For diagonal ordering, since there

29

are O(n) diagonals in a 2-D grid, the corresponding preconditioning takes

O(n) time.

T 1 11 1 1 i 111 P | kmbd 1 e oo * 1 Fan ond 1 L L |
1y sHouid alsS0 pe Imenvioned tiiat L€ misenstat trick |4y, oY) , WhELl applied

to a preconditioner having the form:
M = ST-187,

can help to reduce the amount of computation. Since the incomplete factor-
ization and the SSOR preconditioners all have the above form, the Eisenstat
trick can be applied. We have not implemented the Eisenstat trick in our
experiment. The savings due to the use of the Eisenstat trick is in the
matrix vector multiplication of the conjugate gradient iteration, and the L-
and U-solve are still required. As we shall see, for incomplete factorization
and SSOR preconditioners with diagonal ordering on the CM, most of the
time is spent in preconditioning. Therefore, we conclude that the use of the

Eisenstat trick should not improve the performance on the CM significantly.

2. Implementation of preconditioners with red/black ordering

The preconditioners with red/black ordering can be implemented using two
parallel boolean flags, namely the red and the black flags, which indicate
whether the corresponding grid point is red or black point. For red/black
ordering, since all the red points can be updated in parallel, and so are the
black points, the corresponding preconditioning only takes constant time.
This technique is used on the implementation of ILU, MILU and SSOR

preconditioners with red/black ordering.

3. Implementation of polynomial preconditioners

30

During each step of the m-step Jacobi preconditioning (for the Poisson prob-
lem), all processors corresponding to the interior grid points are active and

they all fetch data from their north, south, east and west neighbors by per-

LERE | e

forming

call cm_get_from_news_11(dest,src,0,0,wl)

call cm f news_add_2_11(dest,src,0,1,ml,el)
call cm f news_add_2_11(dest,sre,1,0,mlel)
call cm f news_add_2_11(dest,src,1,1,ml,el)

call cm f multiply constant.2.11(dest,0.25,ml,el)

and this is to be performed m — 1 times and the 'dest’ is to be accumulated.

With a fixed VP ratio, the polynomial preconditioning takes O(m) time.

2.3.4 Experiments

The PCG methods are applied to the 2D and 3D Poisson problem and also a
2D variable coefficient problem. Since an extensive set of numerical experiments
have been reported in [102], only a few of them are to be repeated here. The
ones selected represent the ones that give the most amount of parallelism (namely,
the polynomial preconditioners) and the one that gives the best convergence rate

(namely the RILU with natural ordering). The preconditioners used are :
¢ Conjugate gradient method without preconditioning (CG)
o RILU with diagonal ordering (RILU diagonal)
¢ 2-step Jacobi preconditioner (Jacobi-2)

o 4-step Jacobi preconditioner (Jacobi-4)

31

o 2-term least-squares polynomial preconditioner (v = 7/6,7;, = 5/6) (LS2)

o 3-term least-squares polynomial preconditioner {7y = 35/32,v, = 50/32,v, =
35/32) (LS3)

¢ 4-term least-squares polynomial preconditioner {vy, = 37/40,v, = 49/40, +, =
91/40,7, = 63/40) (LS4)

For each of the experiments, the following things are to be observed :
¢ the iteration counts to achieve convergence,

¢ the execution time on the CM, and

¢ MFLOPS achieved on the CM.

2.3.4.1 Experiment 1

A 2D Poisson problem is solved with f = 0 and initial guess uy = 1. Various
preconditioners listed above are used using n == 128,256,512,1024. The stopping

criterion used was [{ r; [|; / |[7o ||o< 10-8.

2.3.4.2 Experiment 2

The 3D Poisson equation is solved with f = 0 and initial guess u, = 1 using

n = 32,64. The stopping criterion is the same as the one in experiment 1.

2.3.4.3 Experiment 3

The 2D variable coefficient problem used here is
d du 7] du
_ 2 _ sy} — 2
GE (6 Ba:) ez (8 By) L =[0.17,

32

where u = ze®¥sin vz sin wy

Zero initial condition is used and the stopping criterion is the same as in experiment

1.

2.4 Results and Discussion

2.4.1 Results

"The iteration counts for experiment 1 are shown in Table 2.2. The correspond-

ing CM cpu times are shown in Table 2.3.

Table 2.2: Tteration counts for experiment 1

Preconditioner | n = 128 | n = 256 | n = 512 | n = 1024
CG 206 401 783 1525
RILU(diagonal) 29 40 54 | not done
Jacobi-2 101 197 384 748
Jacobi-4 71 139 270 527

LS2 95 187 364 711

LS3 68 132 258 503

LS4 59 116 226 411

The MFLOPS for the PCG procedures in experiment 1 can be found in Table
2.4. To calculate the MFLOPS, only the standard floating-point arithmetic oper-
ations such as addition and multiplication are counted. Operations such as data
copying, logic evaluations and data communication operations are ignored.

Also the iteration counts, the CM times and MFLOPS for experiments 2 are

shown in Table 2.5 to 2.7. For experiment 3, only iteration counts and execution

33

Table 2.3: CM Execution Time (in seconds) for experiment 1

Preconditioner n = 128 | n = 256 | n = 512 | n = 1024
CG 0.29 1.23 6.6 40

RILU (diagonal) 8.69 57.1 447 | not done
Jacobi-2 0.27 1.15 6.2 38.7
Jacobi-4 0.32 1.42 7.5 43.8

LS2 0.34 1.49 8.0 46.6

LS3 0.3 1.34 7.1 41.5

LS4 0.33 1.43 7.6 43.6

Table 2.4: MFLOPS on CM for the preconditioners for experiment 1

Preconditioner || n = 128 | n = 256 | n = 512 | n = 1024
CG 221 406 589 760
RILU(diagonal) 1.6 14 1.0 | not done
Jacobi-2 184 337 491 641
Jacobi-4 174 308 451 606

LS2 146 263 384 512

1S3 156 271 398 534

.54 152 276 407 552

34

times are shown in Table 2.8,

Table 2.5: Iteration counts for experiment 2

Preconditioner || n = 32 [n = 64
CG 66 130

RILU (natural) 17 22
Jacobi-2 33 65
Jacobi-4 24 46

L.52 30 60

LS3 22 43

LS4 18 37

Table 2.6: CM cpu time(in seconds) for experiment 2

Preconditioner i n =32 | n = 64

CG 0.35 3.43

RILU (natural) 8.61 65.8

Jacobi-2 0.34 3.32

Jacobi-4 0.47 4.35

LS2 0.45 4.36

LS3 0.43 4.05

LS4 0.43 4.29

35

AT o

.71 MFLOPS on CM for the preconditioners for experiment 2

Preconditioner {n =32 | n = 64
CG 142 229

RILU (natural) 2.5 3.3
Jacobi-2 121 195
Jacobi-4 107 177

LS2 87 144

LS3 91 150

LS4 93 154

Table 2.8: Iteration counts and CM times for experiment 3 (256x256)

Preconditioner || iteration count | CM time (sec)
CG 763 2.4

RILU (natural) 49 70
Jacobi-2 373 2.7
Jacobi-4 338 3.4

36

2.4.2 Connection Machine Statistics

To evaluate the performance of the PCG method on the CM, the execution
time statistics are gathered on some basic operations of the PCG algorithm.
These statistics are taken by averaging the CM cpu times from a few sample
runs with each run performing the corresponding operations (on parallel vari-
ables) 1000 times. Table 2.9 shows that MFLOPS counts of the operations using
single-precision floating point numbers while Table 2.10 shows the MFLOPS count
when double-precision floating point numbers are used. The CM used to gather
the statistics is the CM-2 with 16k nodes and with single-precision floating point

hardware, The operations to be examined are:

¢ two-operand addition (ADD)

two-operand multiplication - both operands are parallel variables (MULT)

linked triad {(SAXPY)

inner product calculation (INNER)

data communication using NEWS grid when distance = 1 {COMM)

It can be observed that single-precision floating point operations are much faster
than the double-precision floating point operations. The reason is that single-
precision floating point operations are performed in the floating-point hardware
which is much faster than the single-bit processors. Another observation from the
tables is that the inner product operation is relatively efficient compared to the
other arithmetic operations. Also, the increase in VP ratio improves the MFLOPS
performance most of the time. This behavior demonstrates the positive effect of

virtual processing.

37

Table 2.9: CM MFLOPS for different types of operations (single-precision)

operation § n =128 | n =256 | n=>512 | n= 1024
ADD 328 437 460 456
MULT 410 504 535 524
SAXPY 655 1008 1070 1003
INNER 172 437 718 846
COMM | 3.5 Gb/s | 6.0 Gb/s | 7.8G b/s | 11.6 Gb/s

Table 2.10: CM MFLOPS for different types of operations {double-precision)

operation || n =128 | n =256 | n = 512 | n = 1024
ADD 8.2 13.1 14.6 15.4
MULT 5.5 6.0 6.2 6.3
SAXPY 7.4 8.9 9.0 9.0
INNER 1.3 5.8 6.3 6.5
COMM |} 3.9 Gb/s | 6.3 Gb/s | 9.3G b/s | 13.2 Gb/s

38

2.4.3 Discussion

o The first observation about the running time performances is that there is
little improvement in execution using the best preconditioner (2-step Jacobi,
as of Table 2.3) over using CG alone while the other preconditioners take
more time than the CG. There are a few reasons for this. One reason is
that the performance of the inner product calculation is relatively efficient
and so a basic conjugate gradient iteration becomes much more efficient than
the preconditioners on the CM. As a result, for the grid sizes we look at on
this machine, the gain in time performance due to faster convergence cannot
compensate for the time loss due to preconditioning. Another reason is that
the CG method requires only two inner product calculations as opposed
to three for the preconditioned CG methods. In addition, the use of the
polynomial preconditioners helps to reduce the iteration counts only by a
small factors and consequently the saving in time due to lower iteration
counts is not good enough to compensate for the overhead time involved in

precounditioning.

o From Table 2.2, we can see that although the RILU preconditioner using
diagonal ordering are very effective in reducing the iteration counts, their
performance on the CM is very poor. The obvious reason is that the CM
spends most of its time in preconditioning. The performance improves for 3D
problems since the amount of parallelism for RILU is increased [17]. However,
it is still not good enough. Thus, we can conclude that such precondition-
ers with diagonal ordering are not good candidates on fine-grain massively
parallel computers such as the CM. However, it should be mentioned that if

the CM is having mesh-connected network instead of the hypercube network,

39

the preconditioners using natural ordering may turn out to be competitive,
since then the inner product time will be quite significant. Therefore, the
choice of a “good” preconditioner for a machine depends also very much on

the architecture of the machine.

Even though the least-squares polynomial preconditioners give better conver-
gence rate improvement, their performances on the CM are worse than the
m-step Jacobi preconditioners. Comparing the 4-step Jacobi(Jacobi-4) pre-
conditioner with the 4-step least-squares (L.34) preconditioner in Table 2.2,
it can be observed that LS54 requires slightly lower iteration count. However,
LS4 also requires more multiplications than Jacobi-4. It turns out that it is
better to leave out the extra multiplications and perform more a few more

iterations.

40

CHAPTER 3

Survey of Multilevel Preconditioners

3.1 Classification of Preconditioners

What we have concluded so far is that both convergence rate and degree of
parallelism are essential factors for efficient implementation of preconditioners on
massively parallel comﬁuters. This behavior can be traced back to the physical
processes underlying the elliptic problems. As elliptic problems exhibit global cou-
pling between different points in the domain, it is not surprising to know that
the preconditioners that use only local updating will not be effective in improv-
ing convergence rates. Unfortunately, the more global preconditioners such as the
RILU do not give high enough degree of parallelism. In this section, we summarize
some common characteristics of the existing preconditioners. The result is a clas-
sification of all the preconditioners into three types as described in the following

sub-sections,

3.1.1 Global Preconditioners Using Local Updates

This class of preconditioners consists of the MILU and its variants (ILU and
RILU) as well as SSOR. using diagonal ordering. After one iteration of precon-
ditioning step, the update at a given point depends on every other points (even
the far-away points) in the domain. Because of this global data exchange, this
class of preconditioner is thus effective in speeding up the convergence. However,

the overall process is achieved through many local updates (updates depending on

41

values of neighbors), and so this class is limited in the amount of parallelism.

3.1.2 Local Preconditioners Using Local Updates

This class of preconditioners consists of the MILU and its variants using parallel
red/black ordering and the class of polynomial preconditioners. After one iteration
of preconditioning step, the update at a given point depends only on its neighboring
points, and as a result there is only little improvement in the convergence rates.
Since the preconditioning step allows updating every point (or half of the points

for red/black ordering) simultaneously, the amount of parallelism is high.

3.1.3 Global Preconditioners Using Global Updates

This class of preconditioners consists of the hierarchical basis [111], multigrid
[24] and other multilevel preconditioners [22, 12, 13]. This class is characterized
by a hierarchy of grids ranging from coarse to fine grids. The preconditioning
involves data transfer between different grid level (for example, restriction and
interpolation in multigrid methods) and/or local updates within each grid level.
Because of the use of many grid levels with different coarseness, at the end of one
iteration of preconditioning step, the update at a given points also depends on the
points far away. Moreover, since local updates can be performed in parallel at each

grid level, there is also relatively high degree of parallelism.

The condition number improvement (which is related to convergence rate) and
the degree of parallelism for the different classes of preconditioners are summarized
in Table 3.1 and 3.2 for two- and three-dimension problems (in the tables n is
the number of unknowns in each dimension). Here the degree of parallelism is

a measure of the amount of computations that can be performed concurrently

42

given unrestricted hardware resources. Hence, this measure depends on the data
dependency inherent in the preconditioners. Parallel complexity measures how
the total executio
hardware resources. Lastly, sequential complexity measures the total amount of

work to perform the preconditioning.

Table 3.1: Characteristics of Different Classes of Preconditioners (2D)

condition | degree of parallel sequential
preconditioner | number | parallelism | complexity | complexity
local-local O(n?) O(n?) O(nlogn) O(n3)
global-local O(n) O(n) O(n1:5) O(n25)
global-global || O(log?n) | O(n?/logn) | O(log’n) | O(nlogn)

Table 3.2: Characteristics of Different Classes of Preconditioners (3D)

condition | degree of parallel sequential

preconditioner || number | parallelism | complexity | complexity
local-local O(n?) O(n3) O(nlogn) O(n*)
global-local O(n) O(n?) O(nt5) O(n35)

global-global [[O(log?n) | O(n3/logn) | O(log®n) | O(n3logn)

It is the excellent convergence rate and the relatively high degree of paral-
lelisin of the global preconditioners with global updates that motivate us to look
into the class of multilevel preconditioners. However, it should be pointed out

that efforts by other researchers in developing multilevel preconditioners are not

43

necessarily motivated by the same reason. In this and later chapters, we investi-
gate the multilevel-type preconditioners and show that they outperform the other
preconditioners on massively parallel machines .s* ch as the CM. Here we want {o
emphasize that even though the multilevel-type preconditioners give excellent con-
vergence rates and high degree of parallelism, their performance depends also very
much on the architecture of the machine. In particular, in order to obtain high

degree of efficiency, an efficient interconnection network for global communication

is required, such as the hypercube interconnection network on the CM.

3.2 Previous Work on Multilevel Methods

In this section, we briefly survey many multilevel methods that have been
proposed in the past. We borrow the classification from Tuminaro’s thesis [104]
and groups the multilevel methods into three types : multigrid preconditioners,

concurrent iteration multilevel methods and convergence acceleration multilevel

methods,

3.2.1 Multilevel Preconditioners

These methods use preconditioners (within a conjugate gradient algorithm)
that resemble a multigrid iteration. Specifically, these preconditioners mimic the
grid levels by projections onto multiple grids or basis functions with different scales.
One advantage of this approach is that since preconditioners need only roughly
approximate A-1 to be effective, there is more freedom in constructing precondi-

tioners.

44

3.2.1.1 Multigrid (MG) preconditioner

A natural choice for a multilevel preconditioner is to use a fixed number of
cycles of a conventional multigrid method. 'This approach was explored early
on in the development of multigrid methods [73, 74] to, for example, enhance
the convergence rates for discontinuous coefficient problems [74] and to avoid the
locking effect for elasticity problems [19]. The basic operations on each grid are
interpolation, projection and smoothing operations, each of which can be easily
designed to be highly parallelizable. For example, in the V-cycle strategy, each
grid is visited exactly twice in each preconditioning step, once going from fine to

coarse grids and once coming back from coarse to fine.

3.2.1.2 Hierarchical basis preconditioner (IIB)

Another preconditioning technique of multilevel type is the hierarchical basis
method [15, 111]. The name refers to the space of hierarchical basis functions
defined on a grid hierarchy. Let the hierarchical basis functions be denoted by ¢;,
where [denotes the grid level and j the index of the basis function on that level
(1!); = 1 at the jth grid point and 0 on the other grid points on level /). Then,
the action of the inverse of the hierarchical basis preconditioner M on a function

v can be written as

M= 3)
which takes the discretized form §S57Tv;, and can be computed by a V-cycle with
the matrix ST (a change of basis from nodal to hierarchical) corresponding to a
fine-to-coarse grid traversal and S (a change of basis from hierarchical to nodal)
to a coarse-to-fine traversal. On each level, only local operations are performed.

In 2D, the condition number of the preconditioned system can be shown to grow

45

like O(log? h—1), which is very slow. Unfortunately, this nice property is lost in
3D where the growth is O(h-1) [87, 111]. However, these theoretical results are
proven under much weaker regularity assumptions than for the multi
Moreover, the computational work per step is O(A=1) even for highly nonuniform

and refined meshes. For numerical experiments on parallel computers, see [3, 51].

3.2.1.3 Parallel multilevel preconditioner by Bramble-Pasciak-Xu (BPX)

Very recently, Bramble-Pasciak-Xu [22, 107] proposed the following precondi-

tioner for second-order elliptic problems in R¢:

M=o =3 k=43 (v, 6L)¢,
7 7

where ¢l,1 = 1,2,... are the nodal basis functions at grid level (qﬁg =1 at
the jth grid point and 0 at the other points on level [) and #; is measure of the
mesh size at grid level . Since the form of their preconditioner is similar to that
for the hierarchical basis preconditioner, the computations can be arranged in a
similar way via a V-cycle. They proved that the condition number of the precondi-
tioned operator can be bounded by O(log A-1) for problems with smooth solutions,
by O(log® h-1) for problems with crack type singularities, and by O(log® h-1) for
problems with discontinuous coefficients. In 3D, this is a significant improvement

over the hierarchical basis preconditioner.

3.2.1.4 Algebraic multilevel preconditioners (AMP)

Vassilevski [106] proposed a different approach to derive multilevel precondi-
tioners. He used the standard nodal basis functions and a multilevel ordering of the
nodes of the discretization, in which nodes at a given level belonging to a coarser

grid are ordered after the other nodes. He then considered an approximate block

46

factorization of the stiffness matrix in this ordering, in which the Schur comple-
ment at a given grid level is approximated by iteration with the preconditioner of
the stiffness matrix recursively defined at the previous level. He showed that, with
one iteration at each level, the condition number of the preconditioned system can
be bounded by O(log h-1). A similar method has been proposed by Kuznetsov
[77]. Later, Axelsson-Vassilevski [12, 13] improved this bound to O(1) by carrying
out recursively more (Chebychev) iterations with the preconditioner at each level.
Axelsson [9] also showed that the same technique can be applied when hierarchical
basis functions are used instead of the nodal basis. Note that when the number
of iterations at each level exceeds 1, the grid traversal differs from (and requires

more work than) all the previously mentioned V-cycle based methods.

3.2.1.5 Wavelet Preconditioners (WP)

Recently a lot of attention has been paid to the development of wavelet-based
numerical methods for solving partial differential equations [48, 96, 23]. Wavelets

are new families of basis functions that yields the representation of a function

Fz) = Y bW (2 - k)

where W(2iz —k) generates the wavelet basis functions by translation and dilation.
The construction of W{(2iz — k) begins with the solution of ¢(z) to a dilation

equation
¢(z) = 3 (2w — k).

Then W comes from ¢, and the basis comes by translation and dilation of W.

Some of the solution to the dilation equation are :

47

e box function

1 O0<z<1
¢(z) =
0 otherwise
with ¢g = ¢; = 1.
¢ hat function
T <<l
¢(z) =

2—2 l<e<x?2

with ¢g = ¢; = 0.5 and ¢ = 1.
¢ Daubechies function (D4) [34] with ¢4 to 3 as 0.25(1 &= /3), 0.25(3 4 /3).

Finally the wavelet is defined as

W(z) = Y(~1)ber_x(2z —).

The object of the wavelets is to localize as far as possible in both time and fre-
quency, with eflicient algorithms. It turns out that the “multiresolution analysis”
properties of the wavelet basis are similar to the idea of multilevel methods.

So far emphases in the literature have been on the use of wavelet basis func-
tions to accurately represent the solution functions. However, we can consider
the wavelet basis as a particular form of multilevel basis and we propose to use
some suitable wavelet bases as multilevel preconditioners. Such preconditioners,
like the hierarchical basis and the multilevel nodal basis preconditioners, can be

represented as

Mz =3 ¢ 3 (u, Myl

k I

where ¢, is a properly chosen scaling function for level k. The wavelet basis precon-

ditioners for second-order self-adjoint elliptic problems are currently being studied.

48

3.2.1.6 Relationship among multilevel preconditioners

As can be seen from the discussion above, there are similarities among various
multilevel preconditioners. Most of the multilevel preconditioners are in the form
of a multigrid V-cycle (MG, HB, BPX, WP and MF, but not AMP). The MF
preconditioner is very similar to the BPX method. The MF method allows some
flexibility in the choice of filters (basically any multigrid residual averaging operator
can be used) and does not depend on the use of a finite element discretization with
nested nodal basis functions. It also allows a single grid (i.e. non-multigrid)
version which may better suit massively parallel architecture computers. On the
other hand, the finite element framework allows an elegant proof of the asymptotic
convergence behavior for rather general problems as is done in [22, 107] whereas the
filtering framework is rigorously provable for constant coefficient model problems
only (although much more detailed information such as eigenvalue distribution can
be obtained for them).

Finally, it is interesting to compare these preconditioners with the conventional
multigrid method. Several of the preconditioners have the same form of a conven-
tional multigrid cycle, except that the smoothing operations are omitted. For less
regular problems where a good smoothing operator is hard to derive and could be
quite expensive, one step of these preconditioners can be substantially less expen-
sive than a corresponding step of the multigrid iteration. In a sense, one can view
these preconditioners as efficiently capturing mesh size dependent part of the ill-
conditioning of the elliptic operator and leaves the other sources of ill-conditioning
(e.g. discontinuous coefficients) to the conjugate gradient iteration. The combina-
tion of multigrid and conjugate gradient holds the promise of being both robust

and eflicient. However, to get a spectrally equivalent preconditioner, it seems that

49

one must go beyond the V-cycle and perform more iterations on each grid as in

the AMP method.

3.2.2 Concurrent Iteration Multilevel Methods

These methods are conceptually similar to conventional multigrid methods in
that the original problem is approximated on a hierarchy of grids. The major
difference is that instead of traversing all the levels sequentially, now all levels can
be processed concurrently. This is accomplished by first distributing the original
problem over all grids, performing relaxation sweeps on all levels concurrently, and
then recombining the solutions. Examples in this type of multilevel methods are
due to Gannon and Van Rosendale [46] and Greenbaum [50].

Since relaxations can be computed simultaneously, one iteration is faster than a
single iteration of a standard multigrid method when many processors are available.
Unfortunately, they have convergence rates somewhat slower than the correspond-
ing standard multigrid method. Again, tradeoff has to be made to find which

approach is more efficient on a particular parallel computer.

3.2.3 Convergence Acceleration Multilevel Methods

These methods accelerate the convergence of multigrid method by introducing
more work executed concurrently with the conventional method. On parallel pro-
cessors when this additional work is performed by the otherwise idle processors,
the time per iteration is then about the same as a conventional multigrid iteration.
The advantage of these methods is that fewer iterations are required for conver-
gence. Thus, these methods are potentially faster than the standard multigrid

method on parallel computers. Examples of this type of multilevel methods are

50

due to Chen/Sameh [30], Chan/Tuminaro {104}, Douglas/Miranker [36], Freder-
ickson/McBryan [45] and Hackbusch [54].

The primary emphasis in this dissertation is on the multilevel preconditioners.
In particular, we emphasize on the multilevel filtering preconditioners by Kuo,
Chan and Tong [76] as well as the parallel multilevel preconditioners by Bramble,
Pasciak and Xu {22]. In our experiments on the Connection Machine, however,
we also implement the parallel superconvergent multigrid (PSMG) algorithm by
Frederickson/McBryan [45]. In addition, we should point out that the single grid
multilevel filtering preconditioner proposed in this dissertation can be classified as

a convergence acceleration multilevel method.

51

CHAPTER 4

Multilevel Filtering Preconditioning - analysis and experments

This chapter introduces a preconditioning technique which we call multilevel
filtering (MF) preconditioning. In the next section, we use Fourier analysis to study
the effect of MF preconditioners on 1D, 2D, and 3D Poisson problems with zero
boundary condition and on uniform grids. Fourier analysis is used here mainly as
a tool to obtain insights into how to design different components (filtering, scaling)
of our MF preconditioners in order to get better convergence rates. Even though
the MF method is very restrictive from the analysis point of view, it can be applied
to many general second-order self-adjoint problems. For example, in our numerical
experiments, we have quite effectively applied the MF preconditioners to variable
and discontinuous coefficient problems. In next chapter, we will also show how
to apply the MF method to grids with local refinement as well as to higher order
problems. Moreover, the MF method is very close to the multilevel nodal basis
method proposed by Bramble, Pasciak, and Xu {22, 107] so that in some cases we
can borrow the finite element theory from [22] to derive a condition number bound

for our method.

4.1 TIdea of MF Preconditioning

This section describes the basic ideas as well as a step-by-step design of the
MF preconditioner. To simplify the analysis, we apply the preconditioner to a

one-dimensional (1D) Poisson equation and analyze the condition number of the

52

preconditioned system. However, it should be emphasized that the excellent con-
vergence rates offered by the MF hold also for higher dimensional cases (we have
included a

sub-section on the results of condition number analvsis

three-dimension cases).

4.1.1 Eigendecomposition of the 1D Laplacian

Consider the following 1D Poisson equation on §} = [0, 1]

— Du = f(z) (4.1)

subject to zero Dirichlet boundary conditions. The discretization of the above
equation on rectangular grids with grid size h gives rise to a linear system equation
denoted by Au = f where A, u and f correspond to the discrete Laplacian, the
solution and the forcing functions respectively. Clearly, A is a tridiagonal matrix
with diagonal elements —7%, %, —%. It is well known that the matrix A can be
diagonalized as

A=WAWT

where

(W),;; = V2hsinijnh,

, 4 | kmwh
A =diag(}y) , Ay = 73 sin? —

Here {A.} is known as the spectrum of the discrete Laplacian. Using the above

form, we can find the solution u by
u=A"1f=WATWTf.

This procedure serves as the general framework for the fast Poisson solvers in higher

dimensional (> 1) cases. The motivation of the multilevel filtering preconditioning

53

is to avoid the use of FFT but instead use a sequence of cheaper filtering operations

to approximately achieve the desired spectral decomposition.

4.1.2 Spectral Band Decomposition of the 1D Laplacian

The construction of the MF preconditioner begins with grouping the eigenfunc-
tions of A into subsets corresponding to different bands of frequencies. In matrix

form we partition W so that
W: [W]_,Wg,“‘,WL],n e 2L -1

where W, and W, correspond to the lowest and highest frequency bands respec-
tively with

Wy = [Waes, -+, W],
(This band decomposition is the only decomposition allowed by the multilevel grid

structure.)

Using the notations introduced above, we can rewrite

L
A=Y WAWT

=1

where

A =diag(Ay), Ay = diag(Dgia, -+, Apq).
Figure 4.1 shows the spectrum of the Laplacian divided into bands for n = 256.
To eliminate the need for the use of FFT, we seek to approximate 4 as described
in the following subsections.

4.1.3 Approximation 1 : Constant Band Eigenvalues

The first approximation comes in when we replace within each band the cor-

responding eigenvalues (A;) by a constant ¢;. Thus, we have a preconditioner M

54

such that
L P[’U
M-ty =7 — where P, = WW[.
=1 @

Tr. ... 0N TIFIXTT R N | B I | Lt T 11
nere i) = ¥vvyr !‘ I5 & HI&PPIIE 1ol space doinaill v Space aoinatil. 11 addiulofl,

P, can be derived from the original W by
P=WIpWT
where Ip is a diagonal matrix whose (&, k)the element is

1 k€ band,

Ip =
0 otherwise.

and

band; = {k: 211 < k<2 and k€ T}

Since P; passes Fourier components in band band; and blocks components in
other bands, it is called a bandpass filter.

Thus applying the preconditioner to a vector (i.e. M-1v) consists of three
phases : projection of v into the subspace corresponding to each band (operator
By}, scaling by the corresponding approximate eigenvalues ¢;, and synthesizing the
scaled components (summation). In the context of multirate signal processing, the
decomposition of a function into several components, each of which is confined to
a narrow wavenumber band (i.e. bandpass filtering) , is known as the filter bank
analyzer and the reverse process is the filter band synthesis [76].

The preconditioned eigenspectrum can then be described by

NEPP N0 N VS W
AM—aA:AX;AA:dzag(—,l,—E,..., a3y
€ G & ¢ C

The question is to choose appropriate ¢;’s to reduce the condition number x(M—1A).

Suppose we can find ¢’s so that

A
<<, keband, 1<I< L
<

55

where C; and Cj; are positive constants independent of &, then M and A are spec-
trally equivalent. The ¢;’s can be chosen based on the distribultion of eigenvalues

1 congidered in this discnssion, we recall that

for the problem. For the Laplacian

A R e e 22,

h? 2
Using this relationship and the wavenumber band partitioning defined previously,

we obtain the following approximate eigenvalue distribution for band:
AI i "72[221_2: Tt (23 - 1)2]'

We observe here that the eigenvalues in band; behaves approximately like 22! and

so we can construct ¢;’s such that
¢ = 2%,

In general, we use

Cp = 02’3!

where 3 is the order of the partial differential equation (We will see in next chapter
that the MF preconditioners can be applied to fourth-order problems by changing
this scaling factor accordingly.)

The condition number of the preconditioned spectrum for each band is then
bounded by
Ballk, k)

4511 — cos(2-IH-17)] <
G

< 4711 — cos(2- L],

56

for k € band;. The largest and smallest eigenvalues of M—1A are bounded respec-
tively

2

HAMLAY < max 451711 — cos(2-LHr)] <« 5

and
_ “1AY > min 4L-1[1 — —LH-1.Y] >
Apin(M-1A) > 11;1&4 [1 — cos(2 7)) =1,
Note that the last inequalities in above equations hold independent of L, or equiv-

alently, the grid size h. Thus, the condition number x(M-1A) is bounded by a

constant

2
K;(M_]'A) < ? = 4.93.

Figure 4.1 also shows the scaling factors ¢;’s for each band and Figure 4.2 shows
the spectrum of the preconditioned system for n = 256. We can observe that the

condition number has dropped from ~ 27000 to about 5.

4.1.4 Construction of Ideal Bandpass Filters F)’s

Having shown the effectiveness of MF preconditioning (namely «(M-14) =
O(1)), the question now is how to construct the space domain to space domain
bandpass filters. In practice, a bandpass filter is usually constructed by taking the
difference of two lowpass filters. Using the mathematical framework developed in

the previous sections, a lowpass filter can be represented by
Q= WIpWT
where Iy, is a diagonal matrix whose (k, k)th element is

1 k€ band;, V5 <1
I (b k)=

0 olherwise.

57

Then a bandpass filter P} is represented by

P=0Qi— Q1

where QJr, = I, the identity and ¢ = 0.

4.1.5 Construction of Ideal Lowpass Filters (;’s

In order to form the MF preconditioner, we need to generate all lowpass filters
&i,l=1,---,L — 1. However, as we go to lower and lower frequency filters (as l
goes to 1), the bandwidths are also getting narrower. It is well known that when a
signal has compact support in frequency domain, it will have large support in the
space domain (uncertainty principle). What this means is that the low-frequency
lowpass filters are relatively expensive to construct, since it has to average over a
larger number of grid points. This motivates the use of the cascade of a sequence
of elementary filters Hy,, Hy_4,---, H, for the design of lowpass filters, with H,’s
being simple and cheap averaging operators over grid points separated by spacing
proportional to the wavelength of the band. However each H; also lets through
higher frequency aliases and the cascades are used to filter these out in order to

achieve the lowpass effect. In mathematical terms, we define
Hl = WIHg WT
where Iy, is a diagonal matrix with the (%, k)th element

1 % c bandl Ueoeor U bﬂ-ndl_l
Ig(k k) =

0 k€ band, .

The filter J;’s are related to the filter H}’s via

L
le H Hp)]-SISL_li
p=i41
It is easy to verify that (};’s satisfy the desired bandpass characteristics by

pre- and post-multiplying the above equations with W and W7 respectively. Note
also that the values of Iy (k, k) for k U band;y, U- - U bandy, do not influence the

bandpass feature of ();’s. This observation simplifies the design of H,’s.

4.1.6 Approximation 2 : Replace Bandpass by Lowpass Filters

Using the formulation from the previous sections, we can form the MF precon-

ditioner mathematically in terms of §),’s as

M1y = 3 Fv
=1 @
_ XL: (Qi= Qr_1)v
= “
_ ZL: Qv _ i Qi1v
T H5a I oa
& Qv HQw
B I=1 —Clm - =1 2:4:
T D e
Cr =1 & G
_ L Qu
= 2 d_l

where dy = ¢y and ;=1 — -1 =L—1,...,1. Note that the bandpass filters

cy erg1?

FPps in the preconditioner M have been replaced by the more efficient lowpass
filters Q;’s. We observed from numerical experiments that the following modified

preconditioner

gives about the same convergence rate as M. This can also be proved by the

following theorem.

59

Theorem 4.1 Ifdo > 0 such that ¢;yy > (1 + o), Yk =1,2,..., L, then

vT My < vTMv < (1+ U)UTMU.

Proof :
L
vIMv = > dpTQu
=1
L o2
= cpvTQv+). |(a+ L YTQu
=1 Gy1—a
L
< Yal+ o WIQp — crovTQu
=1
L
< a4+ e Qu
=1
= (14 o) Mv.
Also,

L
vITMv = Y epTQu
=1

=1
L

= > el + o WIQu — cpovTQu
=1

= ‘UTM'U.

L L—-1
< Do eTQutot > cpTQ
=1

This completes the proof.

4.1.7 Approximation 3 : The Use of Nonideal Elementary Filters
Consider the design of the filter Hy, appearing at the first stage. The H; have
the following ideal lowpass characteristic,
I 05k <g2b

I, (k, k) =
0 201 <k <25,

60

We find that H; is an n X n full matrix. Thus, the operation Hyv for an arbitrary
vector v has a complexity proportional to O(n?). This is too expensive to per-
form. Therefore, we seek the approximation of the ideal elementary filter H; with
a nonideal filter Hy, ; which is a symmetric band matrix of bandwidth O(J) with
the spectral property IHL,J(k, k) = Iy, (k, k) for 1 < k < n. Consequently, the op-
eration Hy, jv only has a complexity proportional to O(Jn) and the corresponding
MF preconditioner has a complexity proportional to O(LJn).
Let us write the nonideal elementary filter of the form
J
Hpy=ag+ Yy a;(Ei + E-9),
i=1
where the coefficients a4 and a;’s are to be determined and the EJ and E-7 are
shift operators of distance of 27 in the x and -x directions respectively. In order fo

define the operation

J
Hp, g0 = ag+ 3 @ (Vnyj + 0a_j)

=1

for any vector v,, appropriately, the odd-periodic extension of v, is assumed,
Vo = —Vp and v, 49, = —v,, for integer p.

This implies that Hy, ; corresponds to a circulant matrix. The above odd-periodic
assumption is only used for analyzing and designing H, ;’s in this section. The
actual implementation of the MF preconditioner with a multigrid discretization
described in later section does not rely on this assumption.

There are numerous ways to determine the coefficients aq and a;’s depending
what approximation criteria to be used. The operator Hy, ; has the eigenfunction
sin(krnh) with the ecigenvalue

J
Ig, ,(k k) = ag + 2 a;cos(knh),

i=1

61

Here we consider a class of filters based on the following two criteria:
L Iy, (2,2)=1and Iy, ,(k, k) — 1 = — Iy, ,(n — k,n— k) - 1],

2. Ip, ,(k,k) = 1 when k — 0 and the first jth derivatives (1 < j < J) of
Iy, ,(k, k) are all zero as k — 0.

The first criterion implies that the function Iy, (k,k) — 1 is odd symmetric
with respect to k = Z, A direct consequence of this criterion is that

1

=3 and a; = 0,7 positive even.

The second criterion, called the mazimally flat criterion [59], requires the approxi-
mation at the origin to be as accurate as possible. It is used to defermine a; with
odd j. In Table 4.1, we list the coefficients a; for J = 1,3, 5 obtained according to

criteria (1) and (2). The larger J becomes, the better the approximation is.

Table 4.1: Coefficients of a class of nonideal lowpass filters

J aa a1 ag ag
1 1

11 1 g9 0
1 38 =1

3 2 32 32 0

5 1 150 -5 3
2 512 512 512

The filter Hy,_, ; can be constructed with the same set of coefficients used by
HL,J; i.e.

J
H_y5=a0+ a;(E¥ + E-%),

F=1
The only difference between Hy, ; and Hy_, ; is the position of grid points used for

averaging. For the first-stage filter Hy, 7, local averaging is used. For the second-

stage filter Hy,_, 5, we consider averaging between points separated by 2h. This

62

design is due to the following reason. From the above equation, we see that the
filter Hy,_; ; has the spectrum

J
Ty, (B k) = ag + 23" a; cos(kmj2h),

i=1

and that Ty, | (k,k) is related to Iy, (K, k) via
Tu,, (R k) = I, (2K, 2K).

Consequently, for functions consisting only of components in low wavenumber re-
gion 1 < k < 21, Hy_, ; behaves like a lowpass filter which preserves com-
ponents in the region 1 < k < 2L-2 and filters out components in the region
2L-2 < k < 2L-1. However, note that H;;, [< L is not a lowpass filter with
regpect to the entire wavenumber band.

By applying the same procedure recursively, we can approximate the general

elementary filter H; on a uniform infinite grid as
J . .
Hl,.] =dg + E Gj(Ezt_!J wp E_2I_lj),2 < { < L,
ot
where the coefficients a,’s are listed in Table 4.1. The spectrum of I ; is

J
I, ,(k, k) = ag + 2 " a;cos(krj20-Hh) 2 <[< L.

i=1

We can construct nonideal lowpass filters (); ; with nonideal elementary filters 1, ;,

QL,J = Ia

L
Q=[] Hy1<1<L~1.
p=i+1

The elementary filter H; ; is symmetric and so is the bandpass filter @, ;. Finally,
we obtain the nonideal MF-preconditioner

L QE,JT

=1 @

¥ P
M7lr =

63

which approximates the ideal MF-preconditioner M.

It is worthwhile to summarize the similarities and differences between the fast
Poisson solver and the MF preconditioning. They are both based on spectral de-
composition. The fast Poisson solver decomposes a function into its Fourier cormnpo-
nents through the FFT, whereas the MF preconditioner approximately decomposes
it into a certain number of bands through filtering, The filtering operations, which
correspond to local averaging processes, can be easily adapted to irregular grids
and domains and variable coefficients as will be shown later. In confrast, the FFT
is primarily applicable to constant coefficient problems with regular grids and do-
mains. Besides, for the fast Poisson solver we usually require detailed knowledge
of the spectrum. But for the MF preconditioner we only have to estimate how the

spectrum varies from one band to another.

4.1.8 Fourier analysis and higher dimensional cases

Since the MF preconditioner M; and the Laplacian A share the same eigen-
vectors, i.e. Fourier sine functions, the spectrum and condition number of the
MF-preconditioned Laplacian can be analyzed conveniently by Fourier analysis.

From the last section, we have the following spectral relationship
I, (k) =1,
Iy, ,(k k) = H Iy, (k,k),1 <1< L—1,

p=i+1

We can then determine the eigenvalues of Mj‘lA,

M 1A) Z IQ!J Qg_}

The eigenvalues of M5 A are plotted as function of k with J = 1,3 and A~ = 256

in Figure 4.3 and 4.4. We should compare these spectra with that in Figure 4.2

64

based on the ideal filtering assumption. All of them have one common feature.
That is, eigenvalues are redistributed in such a way that there exist many local
maxima and minima. The condition numbers for
Note that one of these numbers is in fact smaller than the condition number 4.58
obtained with ideal filtering. The precise reason for this phenomena is still not
clear to us. It might be related to the smoothness of the eigenvalue distribution
curves. The eigenvalue distribution for M7'A in Figure 4.2 has many keen edges.
However, these edges are smoothed by nonideal digital filters as shown in Figure
4.3 and 4.4.

The generalization of the MF preconditioner to two- or three-dimensional prob-
lems on square or cube domains can be done straightforwardly. For example, we
may construct the two-dimensional elementary filter by the tensor product of one-
dimensional elementary filters along the z- and y-directions,

J J
;= |ag+ ; a; (B2 4 E;QL”U)} x [ao + 32—21 aj(EiL_tj + E;2L'aj) ,
which can further be simplified by using operator algebra. For example, the coef-

ficients for Hp,; can be written in stencil form as

1 21

H -
L,1-16242
1 21

Similarly, the three-dimensional elementary filter can be obtained by the tensor
product of three one-dimensional filters along the z-, y- and z-directions.

The condition numbers of one-, two- and three-dimensional MF-preconditioned
Laplacians with two types of nonideal filters (J = 1 and J = 3) are computed

and plotted as function of the grid size 2 in Figures 4.5 and 4.6. These figures

65

show that M7 A for J = 1 behaves like O(log 2-1) while that for J = 3 behaves

asymptotically like O(1) for two- and three-dimensional cases.

this may not be easily implementable for general multidimensional problems with
nonrectangular domains, The difficulty arises when the size of H, ; is so large that
it operates on points outside the domain. There are two possible solutions. It may
be preferable to construct filters of larger size by the repeated application of filters
of smaller size. For example, we can apply the filter Hy, ; with J = 1 twice. This
is equivalent to a filter of size 5,

1
2

1
16

1 3 1 1
EQ+ZE4+—+—E+~—E?

1
2 _ (Zp-1
HL'I N (4E + 8 4 16

1
“E)? =
+ 4E)

Another possibility is to apply smaller filters at points close to boundaries and
larger filters at points far away from boundaries. Note also that, for fixed J, the
size of the elementary filter If; ; increases as [decreases. However, this problem
can be resolved by incorporating the multigrid discretization structure into the

above multilevel filtering framework as described in the next subsection.

4.1.9 Multigrid multilevel filtering (MGMF) preconditioners

In previous sections, we discussed the construction of the MF preconditioner
for the model Poisson problem based on a single discretization grid (let’s call it
single grid multilevel filtering SGMF preconditioner). This section will discuss
the generalization of this preconditioning technique so that it can be implemented
more efliciently and applied to more general self-adjoint elliptic PDE problems.

The filtering operation described above is performed at every grid point at all
levels 2 < 1 < L. Since there are O(logn) levels and O(Jn) operations per level,

where n and J denote the order of unknowns and the filter size respectively, the

66

total number of operations required is proportional to O(Jnlogn). However, since
waveforms consisting only of low wavenumber components can be well represented
on coarser grids, we can use the multigrid philosophy [24, 55] and incorporate
the multigrid discretization structure into the filtering framework described in the
previous sections. That is, we construct a sequence of grids §, of sizes by = O(2-1),
1 <1< L, to represent the decomposed components. Then, the total number
of unknowns is O(n) and consequently the total number of operations per MF
preconditioning step is O(Jn). Note that J is a constant independent of 4.

The multigrid multilevel filtering (MGMF) preconditioner is obtained by in-
serting down-sampling (I/™') and up-sampling (I! ,) operators into the SGMF
preconditioner. With the notation commonly used in the multigrid literatures,
the down-sampling and up-sampling operators for grids £, (h; = 254-1h) and O,
(hy_y = 2L-141}) can be defined as

-1 l

00 0 00 0
I“: g 10 I lo 1o
000 00 0

[-1

It is easy to verify that a lowpass filter followed by a down-sampling operator is
the same as the restriction operator in MG methods while an upsampling operator
followed by a lowpass filter is equivalent to the interpolation operator.

Given a sequence of grids {, 1 <1 < L, down-sampling (/},,) and up-sampling
(Il*Y) operators between grids Q; and §)..1, and appropriate elementary filters H,;

defined on §;, the two-dimension MGMF algorithm can be summarized as follows,

Algorithm MGMF2D (z = M-1r)
w="r

for | = L,2,~1

67

v = filter(w,!)

end MGMF2D

This is the MGMF algorithm implemented in the numerical experiments.

The preconditioning Mjlr can be viewed as a degenerate multigrid method,
for which we have a sequence of restriction and interpolation operations but where
the error smoothing at each grid level is replaced by an appropriate scaling. This
observation leads us to generalize the MF preconditioner to the case of nonuniform
grids commonly obtained from the finite-element discretization. That is, one can
view projection as decomposition and interpolation as synthesis and any multigrid
method can be used as an MGMT preconditioner if we replace the potentially more
expensive error smoothing by a simple scaling. Since the eigenvalues A, in band
band, behaves like O(h;?), where h; describes approximately the grid spacing for
level [[22], therefore, a general rule for selecting the scaling constant ¢; at grid
level [is

¢; = O(h?)

for second-order problems. In general, to select the scaling constant ¢ for an

B3-order problem, we use

= O(hl_ﬂ)-

This generalized version is closely related to the preconditioner by Bramble,

68

Pasciak and Xu [22]. They derived their preconditioner in the finite-element con-

text discretized with the nested triangular elements. From our filtering framework,

the corresponding elementary filters H; ; takes the form

s r T
DA Ll 0§ Ailk et I e LIRS i 21

which is different from H;, given earlier. We can derive other filters by applying

it more than once. For example, by applying it twice, we get

00 1 21
0 2 6 6 2
H ppxs - é}i 16 10 61
26 6 20
12 1 0090

In order to eliminate the directional preference, we can apply BPX in alternating

directions which gives a symmetric filter:

01210
1 46 41
Hyppxa: 61_4 2 6 8 6 2
1 46 41
01210

The MF preconditioner is designed to capture the spectral property (or A-
dependency) of a discretized elliptic operator but not the variation of its coeffi-
cients. This is also true for the hierarchical basis and BPX preconditioners. In
order to take badly scaled variable coeflicients into account, we use the MF precon-

ditioner in association with diagonal scaling in our experiments [51]. The diagonal

69

scaling is often used for cases where the diagonal elements of the coefficient matrix

A vary for a wide range. Suppose that the coefficient matrix can be written as

B
[

A= DiAD3,

where we choose D to be a diagonal matrix with positive elements in such a way
that the diagonal elements of A are of the same order, say, O(1). Then, in order
to solve Au = f, we can solve an equivalent problem A#i = f, where & = D3y and
f= D% f, with the MF preconditioner. There exist other ways to incorporate
the coefficient information into preconditioners of the multilevel type, say, to use

the Gauss-Seidel smoothing suggested by Bank et al. [15].

4.2 Numerical Results

In this section, we present numerical results for two- and three-dimensional
Poisson, variable coefficient and discontinuous coefficient problems to demonstrate
the convergence behavior when MGMF preconditioning is used. Three variations

of the MGMF preconditioning are implemented :

MGMF1 the MGMF preconditioner with 9-point (27-point) filter for 2D (3D)
problems. (i.e. J =1 filter)

MGME2 a modified version of MGMF in which the 9-point (27-point) filter is

applied twice. (i.e. J =1 filter twice)

MGMF3 another modified version of MGMF in which the 9-point (27-point) fil-
ter is applied once at the finest grid level (to give smaller amount of work

compared to (MGMF2) and twice at other grid levels (fo achieve a conver-

gence rate between MGMF1 and MGMF?2 but close to MGMF2).

T0

The preconditioning operation counts for 2D (3D) problems are 9N, 27N and
15N (9N, 32N and 12N) respectively for MGMF1, MGMF2 and MGMF3. These

For all test problems, we use the standard 5- {or 7-) point stencil on a square

(or cubic) uniform mesh with b = 25 and N = n? {or N = n?), zero boundary

conditions and zero initial guesses. Experimental results are given for different
values of & and the stopping criterion is || r* |} / || r© ||€ 10-5. The six test

problems are:
1. the 2D model problem with solution u = z(z — 1)y(y — 1)ez,

“Au=f,0=[0,1,

2. a 2D variable coefficient problem with solution u = ze®¥sinrz sinwy,

d Ju d Ju
— —TYy___ - Ty} — — 2
Iz (6 y8$)+6y (6 yay) I8 [Oal] 3

3. a 2D discontinuous coefficient problem with f = 2z(1 — z) + 2y(1 — y),
J A 0 Ou
- it I ol I — 2

where

104 >05y<0.5
ple,y) =1 10~¢ z <05,y > 05
1 otherwise

4. the 3D model problem with solution u = z(2 — D)y(y — 1)2(z — 1)e=v=,

—Au:f,ﬂ=[9,1]3,

5. a 3D variable coeflicient problem with solution u = e*¥* sin 7z sin 7y sin w2z
o Ju a Ju d Ju
[2 — TYE — —zyz] — 3
Bw(e a$)*’3y(e ay)*'az(e Bz) 5@ =10,15%

71

)

6. a 3D discontinuous coeflicient problem with f = 22(1 — z) + 2y(1 — y) +

22(1 — 2),

&g f Gud g f Hu g f Fu

=z 4+ = ke P T~ f0=10,1?
52 (P(fc,y,Z)&m) + 5y (P(fv,y,z')ay) +a (P(w,y,f'«')az) £ =1[0,1P3,
where

10~ 2>05withy<05,2<050ry>0.5,2>0.5
plz,y,z) =14 10¢ £ <05withy>05,2<050ry<0.52>05

1 elsewhere

For comparison purposes, the hierarchical basis (HB) [15] [111] and multigrid
with modified Jacobi as smoother (MG(k), where k is the number of pre- and post-
smoothings used) preconditioners were also implemented. The operation counts
per iteration for the HB and the MG(k) preconditioners are TN and 26 + 32 x k
(8N and 26 + 36 x k for 3D) respectively. The number of iterations are shown in
the following Tables 4.2 to 4.7 (*-’ in Tables 4.5 and 4.6 means ’data not available’).
For different test problems the k in MG(k) that gives the best overall operation
count is shown.

The iteration counts shown in the tables do not reflect the overall operation
counts for the preconditioners. In Tables 4.8 and 4.9 we also show the total op-
eration count required per grid point for each preconditioner. (We show only the
data for n = 256 and n = 32 for the 2D and 3D problems respectively).

We can observe from the tables that filtering twice (MGMF2) always improves
the convergence rates over MGMF1 but not the overall operation count. This
observation was the main driving force for the design of MGMF3 and we see that
MGMTF3 requires less work per grid point than MGMF1 and MGMF2. Also, from
the tables it appears that both MGMF2 and MGMF3 give condition number of

72

Table 4.2: Iteration counts for Test Problem 1
n || MGMF1 | MGMF2| MGMF3$ | HB | MG(2)
8 10 9 10 | 16 4
16 11 9 10 24 4
32 12 8 10| 34 5
64 13 8 10| 44 5
128 15 8 10| 34 5
256 16 7 10 | 64 5

‘Table 4.3: Iteration counts for Test Problem 2

n || MGMF1 | MGMF2 | MGMFS | HB | MG(1)
8 13 12 131 18 7
16 17 14 16 | 27 8
32 22 17 19 | 36 10
64 26 18 22 | 46 12
128 30 20 24 | 56 13
256 33 21 26 | 67 15

73

Table 4.4: Tteration counts for Test Problem 3

n || MGMF1 | MGMF2 | MGMFS3 | HB | MG(10)

3 21 19 20 | 28 6
16 35 30 33 | 49 10
32 59 49 51 | 79 15
64 101 82 86 | 132 17
128 200 140 143 | 223 20
256 367 254 269 | 393 24

Table 4.5: Iteration counts for Test Problem 4

n || MGMF1 | MGMF2 | MGMF3 | HB | MG(2)
8 11 8 11| 20 5
16 13 8 10| 30 5
32 13 10| 45 6
64 14 10 70 .

Table 4.6: Heration counts for Test Problem 5

n | MGMF1 | MGMF2 | MGMF3 | HB | MG(2)
8 13 11 13| 20 5
16 16 12 14| 33 6
32 18 13 16| 53 7
64 21 14 18 | 82 -

74

Table 4.7: Tteration counts for Test Problem 6

n | MGMF1 | MGMF2 | MGMF3 | HB | MG(10)
8 24 21 24 | 43 8
16 46 38 41| 96 15
32 95 71 74 | 229 20

Table 4.8: Operation counts per grid points for 2D problems (n=256)

test problem || MGMF! | MGMF2 | MGMFS HB| MG
1 448 328 340 | 1664 | 555
2 990 1008 936 | 1876 | 1185
3 11010 12192 9684 | 11604 | 8808

Table 4.9: Operation counts per grid points for 3D problems (n=32)

test problem || MGMF1 | MGMF2 | MGMF3 | HB| MG
4 416 440 350 | 395 | 615
5 612 741 592 | 1749 | 861
6 3230 4047 2738 | 7657 | 8220

75

O(1) for Poisson problems in 2D and 3D, of O(logn) for variable coefficient prob-
lems and of O(n) for discontinuous coefficient problems. The HB preconditioner
doeg not exhibit competitiv formance both in
operation count, especially for 3D problems, since the condition number behaves
like O(h-1) instead of O(log A1) for 2D problems. The HB preconditioner should
give better performance for problems with nonuniformly refined grids. The MG
preconditioner gives the best convergence rates for all the test problems attempted.
However, for smooth problemns it performs worse than the MGMF preconditioners
in operation counts mainly because of the expensive work spent in the relaxation
steps. For discontinuous coeflicient problems (e.g. test problems 3), the MG pre-
conditioner sometimes gives better operation counts than the others when the
number of relaxation steps is large enough (10 in our experiments). In our previ-
ous paper when we used 3 relaxation steps the operation count for problem 3 was

found to be the worst of all.

76

Figure 4.1: Spectrum of Laplacian divided into Bands and Scalings(n=256)

magnitude of eigenvalues

100

10-1

102

1043

104

(1 11y

)

T

gy R e o o e Y ey o P R
L iteian

[EEHT

[N ANNIT

Lt eI

50 100 150 200 250 300

wavenumber

Figure 4.2: Preconditioned Spectrum for Laplacian Using Ideal Filters (n=256)

magnitude of eigenvalues

10% b T T T T T =
; ideal bandpass filters used ;
L, & 4
¥
o0 [/ / //w"" E
9_ ¥ MWWWW E
10-1 = H
102 4
10k aes E
E condition number = 4,58 =
10—4 L H 1 I 1
0 50 100 150 200 250 300
wavenumber

7

Figure 4.3:

101

100

magnitude of eigenvalues

101

Figure 4.4

10t

100

magnitude of eigenvalues

10

Preconditioned Spectrum for Laplacian with J=1 Filter (n=256)

condition number = 8.67

| I I I

3

BT Y 0 T J

o 50 100 150 200

wavenumber

250

300

Preconditioned Spectrum for Laplacian with J=3 Filter (n=256)

TV F 1T

condition number = 3,29

I T |

0 50 100 150 200

wavenumber

78

300

condition no.

condition no.

Figure 4.5: Condition Numbers for M7 A with J=1 Filters

10

T

T T v T1TT T T L L) T

T
1

| W N D '

1
100

no. of unknowns in each dimension

103

Figure 4.6: Condition Numbers for M7 A with J=3 Filters

34

281

2.4

221

LI A N I 1 T T LA Bt il e T T

no. of unknowns in each dimension

79

103

CHAPTER 5

Extension of MF to More General Elliptic Problems

In the last chapter we have presented the idea of multilevel filtering (MF) pre-
conditioning applied to second-order self-adjoint elliptic problems. In this chapter
we will show how to effectively apply the same idea to other elliptic problems such
as the second-order anisotropic problem, Helmholtz equation, convection-diffusion
equation, biharmonic equation, and problems on locally refined grids. Fourier
analysis is used as a tool to understand the effect of the SGMF preconditioners
on model problems on uniform grid with suitable boundary conditions. However,
it should be emphasized that the MF preconditioners can be applied to problems
with variable or discontinuous coefficients and/or irregular grids. Numerical re-
sults are given to show the effectiveness of the MF preconditioners on some model

problems.

5.1 MTF Preconditioners for Anisotropic Problems

In this section, we extend the concept of multilevel filtering to the second-order
anisotropic problems. To achieve high degree of efficiency, the preconditioning step
requires some modifications in the design of filters. We first provide justification
for such modifications and then we will show the condition number computed by
Fourier analysis. Numerical experiments are also included.

Consider the following 2D second-order anisotropic problem :

Uy — uyy = f(wiy) in = [0) 1]2

80

where o« > 1 and with zero Dirichlet boundary conditions. The discretization of
the equation using uniform square mesh with h = -1 gives a block-tridiagonal
matrix A such that Au

express this as ;

where
,\/— n
i = — Z Z Uy sin(jwlh) sin(krmh)
=1 m=1
and
. " 2 T TN
Jie = i 33" fimsin(jrih) sin(krmh)
n =1 mu=]
such that

A(j,k) = (2 + 2a) — 2(acos jrh + cos krh)

We can observe from the eigenvalue spectrum of A that for e > 1 the variation
in magnitudes of the eigenvalues in the k-direction is relatively small compared to
that in the j-direction. To maintain uniform variation of eigenvalues within each
band, we divide more wavenumber bands in the j-direction than in the k-direction.
We call this technique directionally adaptive filtering. This can be done in practice
by first performing 1D filtering in the j-direction for a number of levels (say number
of levels = v) and after that resuming 2D filtering. This is in contrast to performing
2D filtering for all the levels for the nearly isotropic problems described in the last
section. Here v depends on « as well as the problem to be solved. For second
order elliptic problems with quasiuniform grid and hy & 2k, it is sufficient to use
v = round(log,). Suppose o = 4, then v = 1 and the modified H,, for the finest

grid level takes the following stencil form :

i1
4121

81

while the filter for the other coarse grid levels have a 2D stencil (tensor product of
1D filter, i.e. Hy; x Hyy).
Note that if the finest level is defined on a (n42) % (n+2) grid, then for y > 1 the

SIS Ly w1

next coarse level is defined on (241 +1) x (n++2) grid instead of (242 +1) x (2L +1)
grid for v = 0. It should also be noted that this modified filtering scheme is
analogous to the idea of semi-coarsening in the multigrid literatures.

We performed Fourier analysis of the single grid version of this scheme (called
SGMF1la) on the 2D anisotropic problem with different « and A. The condition
numbers of the preconditioned system are given in Table 5.1. For comparison
purpose, the condition numbers of the preconditioned system using the unmodi-
fied SGMF'1 preconditioner are also included. Table 5.1 shows that this modified

scheme is quite effective. For example, for & = 1000 the condition number grows

slowly with n while this is not true for the unmodified SGMF1 preconditioner.

Table 5.1: condition number for different o and n

o =10 a =100 a = 1000

n A || SGMF1la | SGMF1 || SGMFla | SGMF1 §| SGMF1a | SGMF1

7 25 3.8 13 3.8 38 3.8 47
15 103 4.3 21 4.7 117 4.7 216
31 414 5.4 28 5.8 233 5.9 849
63 1 1639 6.6 34 6.8 328 6.9 2142
127 1 6639 8.2 40 7.9 395 8.0 3480
255 | 26560 9.7 46 9.0 454 9.0 4396

The MGMF1 preconditioning algorithm for the above anisotropic problems can

32

be summarized as follows ;

Algorithm MGMF1la : input = r, output = z = M-1r
vp =T
Decomposition :
count = vy
for!l=5L-1,.--,1
if (count = 0) then
1 := x-filterl(vyy)
vy 1= y-filterl(t;)
else
count = count — 1
vy 1= x-filterl(vy,4)
end if
end for
Scaling :
forl=1,---,L
Vo= U g
end for
Synthesis :
1 1= vy
forl=2,-.-,L
tpi= v+ Hy Il
end for
z = 1,

end MGMF1a

83

Next we show the numerical results using the multigrid MF (MGMF1a) pre-
conditioner in conjunction with the conjugate gradient method. Again, we use the
standard 5-point discretization on a uniform sqnare mesh with h = ?E}ﬁ and the
forcing function f(=z,y) is such that the solution is u = z(z — 1)y(y — 1)e#v. The
stopping criterion used is || v [|; / [| r0 [[2< 10-% and the initial guess is 0. The

iteration counts for different & and « are shown in Table 5.2.

Table 5.2: Iieration counts for different o and n

o = 100 “ a = 1000

n A | MGMF1a | MGMF1 H A | MGMFla | MGMF1

TN 17 7 199 13 6 20
153 41 10 41 | 27 9 44
31| 90 12 64 | 63 12 84
63 || 187 13 83 || 126 13 140
127 || 388 15 95 || 258 15 193
255 | 812 17 106 |} 608 17 224

The numerical results show that this scheme works very well for a wide range
of e. It should be noted that a similar scheme can be applied to the case when

a < 1 and for the 3D anisotropic problems.

5.2 MF Preconditioners for Positive Definite Helmholtz Equation

Consider the following 2D Helmholtz equation :

—Au+fu=fin Q=012

84

with zero Dirichlet boundary condition and when # is a positive or a small negative
constant so that the discretization matrix A is symmetric and positive definite.
(Most Helmholtz problems with negative 8, however, give rise to symmetric but
indefinite stiffness matrices. We plan to pursue this type of problems in the future).
An effective MF preconditioner .for this equation requires modifications in the
scaling constants ¢;’s, as explained below. Again we can express Au = f in Fourier

domain with A as :

A(j, k) = 4sin?(srh) + 4sin?(jxh) + Gh2,

The spectrum of A differs from that of the Poisson equation by 8A2 and we need
to incorporate this offset in the scaling constants ¢fs. Instead of using ¢;3; = 4¢
for P;)isson equation with %; ~ 2h;,,;, The recurrence relation is now given by
o = 2 with o) = 8 4 kh? (let us call this scheme SGMF1Db). To find the
range of A such that all the eigenvalues are real and positive, we can first observe
from the equation above that this is indeed the case when 8> 0. And if 5 <0, it

is straightforward to find the lower bound of J as

~8sin?(wh/2)
h? '

3>
For the 2D Helmholtz equation with n = 256, this lower bound is about —19.7. In
Table 5.3, we show the condition numbers of the preconditioned systems (SGMF1b)
computed by Fourier analysis for a range of 3 and compare them with those of
the unpreconditioned system (A). We also include the condition numbers when
the unmodified SGMF1 preconditioner is used. The Fourier results show that
for large B, the modified preconditioner SGMF1b improves the condition number

significantly over SGMF1.

85

Table 5.3: condition number for different n and 8

=10 8 = 1000

n A | SOMF1b | SGMF1 | A | SGMF1b | SGMF1
7 17 1.97| 218 1.5 2.60 | 125
15| 69 261 | 285| 3 3.70 | 310
31| 275 336| 3.60| 9 463 | 493
63 | 1102 409 | 433} 33 5.04| 579
127 || 4407 484 | 5.0 | 129 517| 605
255 || 17629 559 | 9.94 || 515 520 61.2

We now show the numerical results using the multigrid formulation of the
SGMF1b preconditioner (MGMF1b). Again, we use the standard 5-point dis-
cretization on a uniform square mesh with h = ;;;_3'3- and the forcing function f(z,y)
is such that the solution is u = z(z — 1)y(y — 1)ev. The stopping criterion used
ig || 7 |ls / || 7 [|2< 10-5 and the initial guess is 0. The iteration counts for the

unpreconditioned (A) and preconditioned CG methods (MGMF1b and MGMF1)

with different n and 8 are shown in Table 5.4,

Again, we can see that the numerical results agree with the results from Fourier
analysis. For small 3, the MGMF1b and MGMF1 requires almost the same number

of iterations to achieve convergence. However, for large £, the advantage of using

the MGMF1h becomes obvious.

86

Table 5.4: Iteration counts for Helmholtz equation with different n and B

B =10 B = 1000
n| A|MGMFlb|MGMF1| A |MGMF1b | MGMFI
7 15 10 0] 4 6 8
15 | 32 11 1| 6 8 11
31 || 66 12 12 10 10 16
63 || 133 13 13| 22 11 18
127 || 273 15 15 | 48 12 19
255 || 555 16 16 || 101 13 20

5.3 MF Preconditioners for Convection-diffusion Equation
Consider the 2D convection-diffusion equation
F,9) T = e Aut f(z,) in @ = [0,0] x [0,]

with Dirichlet boundary conditions on 9. This equation, for example, describes
the concentration of a chemical in a solution flowing with a time-independent
velocity field k(z,y). We examine the simple case when k(z,y) = [k,0]T, e = 1

and ¢ = b = 1 so that the equation becomes
—Au+tku, = f(z,y) in Q =[0,1]%.

The application of MF preconditioning to this convection-diffusion equation
requires special handling because the discretization matrix A is nonsymimetric. In
the following sub-section we consider the cases when % x A is small enough so

that the discretized system is symmetrizable, i.e. there exists a diagonal matrix

87

D such that DAD-1 is symmetric, and positive definite). Then we consider MF-

preconditioned conjugate gradient method applied to normal equation.

5.3.1 MPF Preconditioners for Symmetrized Systems

In the following we describe a method to handle the problem when kh is rel-
atively small. The method symmetrizes A before applying the PCG algorithm.
The symmetrized system resembles the positive-definite Helmholtz equation and
thus efficient MF preconditioners are known from the last section. We examine
two discretization schemes for the method and show numerically that the MF

preconditioner is effective for both schemes.

Scheme 1A Central Difference Scheme

This scheme on a square mesh of side h gives rise to :
k
= Bp g+ oty = i) = fig)

where Ayu; ; is the standard 5-point finite difference discretization for
the Poisson equation. This scheme has an accuracy of O(h?). However,
to obtain stability, the mesh size has to be < 2 [18]. Therefore, if & is
large (which is typical for many applications), very small mesh size has
to be used in order to maintain stability. However, too small a mesh size

also means unnecessarily high operation count to arrive at the solution.
Scheme 1B HODIE Scheme [79]

The HODIE scheme for the above convection-diffusion equation has the

following difference formula :

(27 + 2)“2}3’ — (T + %‘—)u,—_l,j - (7 - %ﬁ)“m,j — Ui i1 T Ui

= kh2f(ih + S22 jh)

88

where 7 = /1 +E2Th2-.

An advantage of this method is that it has an accuracy of O(h?) and is

also unconditionally stable.

The (iiscretization matrices from the schemes 1A and 1B above are nonsym-
metric but symmetrizable when A is in the range of stability. We can symmetrize
these matrices before applying preconditioned conjugate gradient methods. The
symmetrized matrices in general are equivalent to the discretization of certain
Helmholtz equations. Consequently, the MF-preconditioning techniques for the
Helmholtz equation can be used here. Recall that for the Helmholtz equation,
only the scaling constants need to be modified. Using the same technique, we can

derive the scaling recurrence for these schemes as :

_ G341+ 3s
a=Ty

where s is different for different methods :

¢ Central difference :

2=+ B0 -8
A4y /(L 4 B (1 — B

kh kh
JcL :6+2\/(1 + 50 -3)

o HODIE Method :

2/1+EE _9,/1 + BE \/ h? h?
— =442 +2 -2
° 44,1+ EE e =442+ 2y(r+) - 5)

We use the following test problem :

—Au+ku, = f(z,y) in 2 =[0,1]?

89

where f(z,y) = —my(l — %f—,/r’kc—)sin 7y so that the solution is given by u(z,y) =

(1 - %g%) sinmy. The stopping criterion is || r* ||, / || 7 {|;< 10-10 and zero initial

Table 5.5: Tteration Counts for Convection Diffusion equation

nil 1A | 1B
154 26 | 21
31 5 27| 25
63 § 27| 26
127 ¢ 27| 27
266 || 27| 27

We can observe from Table 5.5 that both schemes used here require about the
same number of iterations and the convergence rates seem to depend only slightly
on n, Both the central difference and HODIE schemes seem to give reasonable
accuracy. The central difference scheme is both easy to use and reasonably accurate
when the convective term is not too large. When the convective term is relatively

large and high accuracy is needed, then the HODIE scheme may be promising.

5.3.2 MF Preconditioners for Normal Equation

For convection-diffusion equation with large kh term, we use MF preconditioner
combined with conjugate gradient method applied to normal equation. By using
the normal equation approach for second-order problems, the eigenvalues of the

system are due to the contributions from both the fourth-order and second-order

90

terms. If the fourth-order term is dominant (i.e. kh is small), we can ignore the

second-order term and treat the problem as a biharmonic equation for which we

is dominant (i.e. &k is large), we can ignore the fourth-order term and treat the
problem as a second-order anisotropic problem for which again we know about
efficient MF preconditioner. When kh is medium large, it is not clear what the
best way is to apply MF preconditioning.

We again use the following test problem :
—Au+ku, = f(z,y) in Q =[0,1]?

with right hand side such that the solution is 4 = e®¥ sin{mz) sin(xy). The stopping
criterion is || ¥ [|z / || 70 {l;< 10-¢ and initial guess is 1.

Table 5.6 shows the iteration counts for no preconditioning, MGMFla and
MGMT2 preconditionings. We see that for k relatively large or relatively small,
MGMF?2 gives very good convergence rates and is consistently better than MGMTF1a
and much better than without preconditioning. For medium values of k, however,
MGMF1la appears to be better even though both preconditioners seem to be not

very effective.

5.4 MF Preconditioners for Biharmonic Equation
Consider the following biharmonic equation in 2D :
- A?y=fin 0 ={0,1]?
with second boundary conditions :

u
w(z,y)lr=0 and @h* =0.

91

Table 5.6: Numerical Results - iteration counts

grid a CGNR | CGNR-MGMF1 | CGNR-MGMF2
32 x 32 0 474 41 28
32 x 32 10 595 40 30
32 x 32 100 210 50 33
32 x 32 1060 196 49 36
32 x 32 || 10000 64 22 16
32 x 32 || 100000 34 14 12
32 x 32 |} 1000000 31 14 12
64 x 64 0 1867 59 30
64 x 64 10 2152 35 31
64 x 64 100 534 50 55
64 x 64 1000 402 85 64
64 x 64 || 10000 257 36 27
64 x 64 |} 100000 127 21 16
64 x 64 |} 1000000 64 16 13

92

We discretize this equation using 13-point second-order centered finite differ-

ence approximation with h = , and obtain a sparse matrix A. The eigenvalue

1
n+1

Ia

snectrum (Tf can -hﬂ QT\T‘IT‘{'\Y‘;T‘I"IA .ﬂf:l 1’\\?’ :
wpe el iR 2l RIS S Lzl MR Qppafoallliati Y-

¥

A, k) = (4 — 2(cos(imh) + cos(jmh))?

which is the square of that of the Poisson equation.

Since the eigenvalues in B, for this equation behave like O(h;*), a natural
extension of the MF preconditioner involves changing the scaling recurrence ¢;; =
4¢; to ¢y = 16¢; (again, hy = 2k, is assumed). In Table 5.7, we show the result
of the Fourier analysis on the MF-preconditioned biharmonic equation. In the
table, SGMFlc, SGMF2¢c and SGMF3c represent the original SGMF1, SGMEF?2

and SGMF3 preconditioners with the new scaling.

Table 5.7: Condition number for SGMF preconditioning for biharmonic equation

n || No preconditioning | SGMF1c | SGMF2c | SGMFSc

7 690 25 5.3 17
15 1.1 % 10¢ 108 5.6 66
31 1.7 x 105 438 7.2 256
63 2.8 x 108 1814 8.7 1017
127 4.4 x 107 7367 10.2 4061
255 7.0 x 108 29705 11.7 16238

We see that the condition number of A grows about 16 times with each halving
of h. The use of SGMF1c has effectively helped to reduce the condition number.
Nevertheless, SGMF2c helps to reduce the condition number even more dramati-

cally.

93

In our numerical experiments, we implement the SGMF1¢, SGMF2c and SGMF3c
preconditioners for the Biharmonic equation with first boundary condition (i.e. uly

and 2%l are given). The discretization usin
ference approximation gives the following difference equations for the grid points

not close to the boundary:

20u;; — 8(uigy; + Uiy, + Uiger T i)
+ 21 i1 F Yy er F Ui g T %io1)

F Uigay F Uiy F U g = RS
for 2,7 = 2,n — 1. If we let the boundary condition be u = g(z,y) and its first

derivative be b(z,y). Then the difference equation for i == 1, and 7 =3,-++,n ~2

(grid point next to the bouﬁdary) is

2lug; — 8(ug; + up 4 Uy 1) F 2(ug g T Uao1) T Us Uy e U g

= hé(fi:j + Sgo,j - 2(90,j+1 + 90,5-1) - Zhb{),j)

since

o} 0
u—m—uonwz(),

on Oz
and using central differencing, we get

_(wy—uy)

oh o

Also, at ¢ = j = 1 (grid points at the four corners), we have

22ury — B(ugn + thg) +2ugg) +tigy g

= R*(fi,5 + 8(go; + 910) — 2(go,j+1 + Goj—1 + G20) — 2R(Do + b1 g)).

The difference equations for other near boundary grid points can be derived simi-

larly.

94

The right hand side f(z,y) and boundary conditions g(z,y) and b(z,y) are such
that the solution is u = z{z — 1)y(y — 1) sin{wz)sin{ry). The stopping criterion

)y
and th

4]
;...

shown m Table 5.8.

Table 5.8: Iteration Counts for SGMF-preconditioned PCG for biharmonic equa-

tion

n || No preconditioning | SGMF1c | SGMF2¢ | SGMF3c

7 10 9 10 9

15 42 17 12 16

31 160 36 14 30

63 586 82 17 a7

127 2218 177 23 113

255 8587 366 33 220

Next we show (in Table 5.9) the iteration counts when the multigrid formulation
of SGMFlc, SGMF2¢ and SGMF3c (i.e. MGMF1lc, MGMF2¢c and MGMF3c) are
applied to the same problem.

We observe a close correlation between the numerical and Fourier results for
the SGMF preconditioners. Indeed, SGMF2c¢ improves significantly over SGMF1c
with only a little increase in cost per iteration. SGMF3c¢ improves somewhat over
SGMF1c but is still not good enough compared to SGMF2c. Therefore, SGMF2¢
requires the least operation counts out of the three. Looking into the numerical
results for the MGMF preconditioners, we first observe that both MGMFlc and

MGMUF3c¢ give better convergence rates than their SGMF counterparts. We cannot

95

Table 5.9: Iteration Counts for MGMF-preconditioned PCG for biharmonic equa-

tion
n || No preconditioning | MGMF1c | MGMF2¢ | MGMF3c
7 ‘ 10 10 10 10
15 42 27 22 24
31 160 40 29 32
63 586 56 30 37
127 2218 80 35 40
255 8587 120 43 48

explain why this is the case. Finally, with a little arithmetic, it is not difficult to

show that MGMF3c gives the least overall operation counts.

5.5 MF Preconditioners for Problems with Locally Refined Grids

In this section, we shall consider the application of the MI preconditioners to
second-order elliptic problems with local mesh refinement. Such mesh refinements
are necessary for accurate modeling of problems with various type of singular
behavior. We consider the discretization scheme for locally mesh refined grids
by McCormick and Thomas [84]. This discretization scheme was motivated by
the desire to preserve the highly regular grid structure (to maintain efficiency on
parallel computer architectures) as well as to satisfy the need for local resolution
in many physical models. For example, the mesh in Fig. 5.1 would be effective
if the forcing function f(z,y) behaves like a § function distribution at the points

(1,1) and (n,n) (both lower left and upper right corners).

96

Figure 5.1: Locally Refined Grids - An Example

97

The Fourier analysis cannot be applied here because of the presence of nonuni-

form grids. However, as was shown in our previous paper [76], the parallel multi-

level preconditioner propased by Bramble, Pasciak and Xu [22] can be considered
as a special case of MF preconditioners with appropriately chosen filters. We
can borrow the finite element analysis result from them and we would expect the
MGMF preconditioners to be effective also for meshes with local refinement. Below
we show the MGMF algorithm for this problem. Here ff and H, are restriction (or
interpolation} and elementary filtering operators restricted to the locally refined

grids only. Moreover, we can use the same recurrence relation ¢ = 4¢;,, and we

have the following algorithm:

98

Algorithm MGMF1d : input = r, output = z = M~1r
Decomposition :

vy =T

(* filtering at refined levels *)

for!{=L-1,-..,J~-%k

vy = ff+1ﬁl+1,1'01+1
end for
(* filtering on uniform grid levels *)

forl=L—-k-1,---,1

vp = f+1 H I+1,1%141

end for
Scaling :
forli=1,.-..,L
v i= UG
end for
Synthesis :
Z = vy

for!=2,.--,L -k
zri=u+ Hygll 24
end for
forl=L—-%k+1,--.,L
zp = vy + ﬂl,lf{mlzl—l
end for
z =z,

end MGMF1d

99

We solve a Poisson equation on the grid

e shown in Fig. 5.1 but with refinement only at the upper right corner and the
forcing function is f(z,y) = 2-16(1 — A,1 ~ k), and

e shown in Fig. 5.1 and the forcing function is f(z,y) = 2-1(6(h,h) + 6(1 —
h,1— L)) where [is the number of level of refinements used and & is the grid

size for the nonrefined grid.

We use the discretization scheme for the domain and the interfaces proposed by
MecCormick [84] for aligned grid. The stopping criterion and initial guess are the
same as before. The iteration counts for different number of levels and different A
are given in Table 5.10 and 5.11. The iteration counts for unpreconditioned CG
method and the parallel multilevel preconditioner (BPX) [22] are also included for
comparison purpose.

The tables show the effectiveness of the MF preconditioner compared to the
unpreconditioned CG method and the PCG method with parallel multilevel pre-
conditioner. The convergence rates seem to be quite insensitive to the number of

refinement levels used,

5.6 Conclusion

In the last chapter we show the competitiveness of the MF preconditioners
compared with other preconditioners such as the hierarchical basis preconditioner,
MG preconditioner, etc. In this chapter we have further demonstrated the ease
with which we can extend the MF preconditioners to effectively solve other more
general elliptic problems. The flexibility of filter and scaling block design offers

different ways of achieving high degree of efficiency for these problems.

100

Table 5.10: Iteration Counts for Poisson equation with refinements at upper right

corner only

n || no. of levels | CG | MGMF1 | BPX
15 0} 26 9 12
15 1} 37 10 14
15 21 45 11 16
15 3| 83 12 17
31 0} 48 9 13
31 1} 70 10 15
31 2] 88 11 17
31 31109 12 18
63 0| 84 10 14
63 11126 11 15
63 2] 166 11 17
63 31210 12 19

127 0133 10 14
127 11219 i1 15
127 21309 12 17
127 3| 393 13 19

101

Table 5.11: Iteration Counts for Poisson equation with refinements at both corners

n || no. of levels | CG | MGMF1 | BPX
15 0| 26 9] 12
15 1] 54 1| 15
15 2| 63 12| 17
15 3| 75 16| 18
31 0| 48 9| 13
31 1] 86 1] 16
31 2 | 117 131 17
31 3| 140 13 19
63 0| 84 10| 14
63 1]126 12| 16
63 2 | 190 12| 18
63 31235 14| 19
127 01133 10| 14
127 1| 204 12| 16
127 2 | 207 13| 18
127 3| 391 14| 20

102

CHAPTER 6

Multilevel Preconditioners and Domain Decomposition Methods

6.1 Introduction

In the previous two chapters we consider a multilevel filtering preconditioner
for second-order and fourth-order, self-adjoint elliptic partial differential equations.
Closely related to the MF preconditioner are the hierarchical basis preconditioner
by Yserentant [111] and the parallel multilevel preconditioner {or multilevel nodal
basis preconditioner as used in this chapter) by Bramble, Pasciak and Xu [22]. In
this chapter we combine the idea of multilevel method with domain decomposition
methods to arrive at a new preconditioner.

Domain decomposition refers to a class of methods for solving partial differ-
ential equation. The main idea is to decompose the original domain into smaller
subdomains, solve the original problem on the subdomains, and somehow “patch”
the subdomain solutions to form the solution to the original problem. Besides
the ease of parallelization which makes the domain decomposition methods attrac-
tive on parallel computers, it also allows one to treat complex geometries or to
isolate singular parts of the domain through adaptive refinement. Thus, domain
decomposition methods have attracted much attention in recent years [27, 25].

In constructing the new preconditioner, we first consider second-order, self-
adjoint, uniformly elliptic partial differential equations on a two dimensional polyg-
onal domain £2. The problems are solved numerically by using piecewise linear finite

elements. The domain is first divided into nonoverlapping subregions §,’s which

103

are further divided into triangular finite elements. We denote H the diameter of a
typical subregion and h the diameter of its elements.

We begin with the linear system arising from a discretization of the problem
and we first eliminate the variables interior to the subregions ;. The resulting
reduced system, the Schur complement, involves only the variables associated with
T, the set of edges and vertices of the subregions. This system is then solved by a
preconditioned conjugate gradient method, where the preconditioner is constructed
from certain problems associated with the interfaces I';; = 0€; N 842, and vertices
and a global coarse problem associated with the vertices.

Many preconditioners have been proposed for the subproblems associated with
the edges I';;. For example, the method by Bramble, Pasciak, and Schatz [20] uses
an operator similar to the square root of the Laplacian operator as the subproblem.
Recently Smith and Widlund [95] propose a computationally more efficient hybrid
- preconditioning method which involves only a simple change of basis (between
nodal and hierarchical basis) with the unknowns on the edges I';;. They show that
the new method has a condition number which grows no faster than C'(1+log())?,
which is comparable to that of the BPS method.

The domain-decomposed preconditioner we consider in this chapter is inspired
by the work of Smith and Widlund {95]. In the same way that [95] uses the
hierarchical basis on the edges to obtain a domain decomposition method, we use
the multilevel nodal basis of Bramble, Pasciak, and Xu [22] applied to the reduced
system on the interfaces (i.e. the edges and the vertices) to obtain our domain
decomposition method. We call this preconditioner the multilevel nodal basis
domain decomposition (MNBDD) preconditioner. We derive a proof, similar to

the proof by Smith and Widlund [95], such that the condition number is bounded

104

by O(log? &) for smooth coefficient problems. Numerical experiments, however,
show that the condition number appears to be O(1) for the model problem. The
computational cost of onr method is about the same as that of Smith and Widlund’s

method.

6.2 The Multilevel Nodal Basis Algorithm and Domain Decomposition
Methods

In this section we provide the necessary background to define the MNBDD
algorithm., We consider a second-order, self-adjoint, uniformly elliptic, bilinear

form a(u,v) on Q with Dirichlet condition on 0
a(u,v) = (f,v) Yve HXQ), ue H(Q).

Let VH{Q) and V*(£2) be the spaces of continuous, piecewise linear functions, on
the two triangulations, which vanish on 9£). We use elements which obey certain

regularity assumptions, and obtain the discrete variational problem:
a(un,vr) = (f,on) Yo, € VHQ), wu, € VH(Q).

By introducing the standard nodal basis {¢;} for the space V%, the above finite

dimensional variational problem is reduced to a linear system:
Kz =b.

Here z is the vector of unknowns =;, b is the vector of components (f, ¢;), and K

is the stiffness matrix where K;; = a(¢;, ¢;).

6.2.1 The Multilevel Nodal Basis Algorithm

105

Figure 6.1: Multilevel Nodal Basis Functions

The multilevel nodal basis method [22] is given in terms of a set of nested

sequence of finite element spaces,

H
VicVic...cVI=Vh leogz—EZI,

which are successive refinements by a factor of two of Vi = VH. Here V4 is the
set of piecewise linear finite element functions after i levels of refinement from
the original coarse triangulation. In other words, V* is the set of piecewise linear

functions {¢ iy (ng = dimV}) in V2''h that satisfies

qsf(y:) = 8_1'[} VJ:\I =1, -,ny

where {y!:{=1,...,n;} is the set of all interior nodal points of the triangulation

on which V* is defined. In short, {¢1}%, is the standard nodal basis for the

J=1
space V. Figure 6.2.1 shows the multilevel nodal basis functions in one dimension.

The multilevel nodal basis preconditioner M of Bramble, Pasciak, and Xu (BPX)

[22, 76] applied to v € V* takes the following form:

J my
M-1o = A7 Qo + 33 (v, 64§ (6.)

{=1 i=1

where the operator Ap is a discretization of the elliptic operator —A on V} and

Qo is the standard orthogonal L? projection from V} to Vi

106

The operator M -1 involves transformations between standard nodal basis and
multilevel nodal basis (the second term in the above equation) as well as the
solution of the problem corresponding to the original coarse triangulation (the

first term in the equation). In matrix form, this preconditioner M can be written

as:

M-1 = GD-1GT

where (G and G7T are the transformation matrices from multilevel nodal basis to

nodal basis and vice versa, respectively; and D=1 = blockdiag[l,, -+, L, In.» A"

e
solves the elliptic problem on the coarse level while leaving the other levels un-
changed. It was proved in [22] that for smooth coefficient problems, the condition
number of the preconditioned system n(ﬂ:f ~1K) < C'J? where C is a constant in-
dependent of A and H. In addition, this algorithm requires only O(n;) operations
where ny is the dimension of the finite element space V%,

The matrix ¢ transforms the input vector from multilevel nodal basis to nodal
basis. The dimension of the multilevel nodal basisism =n;+n;_1+:. - +n, +ny
while that of the standard nodal basis is n = n;. Thus, G is a rectangular matrix
of size n x m (which is unlike the square transformation matrices for hierarchical
basis). Let v = {vf,i =1, ,n;}] € BM where v} is the value at the nodal point
y} corresponding to level [, then

J ooy
Gv = ;ZE ; vigi

where ¢%,1 = 1,2, .n, is the set of basis functions in V.

The algorithm for G as applied to a vector v (of dimension m) is as follow:

107

Algorithm G : v; — u,0 =0,.-.J
for [=0,.--,J-1
Vg1 1= Vg1 T —;“H'”I
end for
u=uvy

end &

Here the I/*! matrix is obtained from the choice of ¢;’s. On a two-dimensional
uniform domain using triangular elements, it corresponds to a seven-point inter-

polation operator.

6.2.2 Domain Decomposition Methods

Domain decomposition methods generally split the space V* into N + 1 sub-
spaces

Vi = Vh

e @ VHEU) @ -~ @ V(D).

For each subregion §;, we thus have a subspace V{Q;) = VA N HL(Q;). The ele-
ments of V* are piecewise, discrete harmonic functions, i.e. they are orthogonal,
in the sense of the bilinear form a(-,), to all the other subspaces.

First we partition the stiffness matrix K and vector = into those corresponding

to the interior of the subregions and the edges and vertices. We then have

K, K T b
Kz = I B I _ I
I{ITB KB g bB

If we apply block Gaussian elimination to eliminate the interior points, we obtain

the following reduced system or Schur complement for the edges and interfaces

Spzp = (Kp — KIyK;iKip)ep = bp — KT Kilbr = by,

108

The Schur complement matrix Sg is in general dense. However, it is not neces-
sary to generate this matrix since, in the conjugate gradient iteration, this matrix is

eeded only in terms of matrix vector nroducts which can he computed by solvin

each subregion once and collecting the solution on the interfaces and vertices.

6.2.3 Multilevel Nodal Basis Domain Decomposition Preconditioner

In this section, we combine the ideas from previous sections to derive a new do-
main decomposition algorithm. The symmetric form of the preconditioned system

using multilevel nodal basis preconditioner can be written as:
D 3GTKGD 23 =}

where GD~%% = z and b = D-5G7'b. Let us partition the unknowns corresponding
to the multilevel nodal basis # into those on the subregion interior #; and those
on the interface #g and we eliminate the subregion interior variables ;, we obtain
the reduced system:

Spig = bg,
where Sg is the Schur complement of D=3GTKGD-% after eliminating z;. Here

we can also decompose (@ according to the interior and interface unknowns so that

G — GI GI B

CJB I GB

where G; and G are the transformation (rectangular) matrices involving subre-
gion interior points and interface points respectively.

The above formulation requires many arithmetic operations when the Schur
complement is applied to a vector during the conjugate gradient iterations. By

using the following lemmas, the above system can be reduced to a simpler form.

109

Lemma 6.1 G represents a change of basis which leaves the space of variables on

I' invariant (i.e. Ggr=0).

Proof : (sg; represents the contribution of the multilevel nodal bases in the
subdomain interior to the nodal basis on the interfaces during the transformation.

Recall from previous sections that

J my
u=Go=>) > vi (6.2)
I=01i=1
where {¢f,7 = 1,2, -m;} is the set of basis functions in V?, and v},i = 1,.--,n; is

the set of values defined on the nodal points @}, Let u = (u7, up)T and v = (v, vp)
be the partitionings according to subdomain interior and interfaces where v € Rn
and v € R™, If we evaluate the above expression at node y% on the interface T', we
obtain
- I3 » J y y . 3
ug = (Gpog)' + (Geror) = 33 D (ve)i ()i + 2 _(v)i ()i
I=0 {jer igrl

where (#]); is the value of the basis function at node j evaluated at node i on level

{. It can be verified that
(¢{)i=0 VieQ,andiel

since all multilevel nodal basis functions at the nodes interior to the subregions
vanish on the interface. In other words, the second term in the summation of

equation 6.2 is identically equal to 0. Thus Gp; = 0 and v = (Ggvp)'.

The following lemma is based on a similar one from Smith and Widlund’s paper

[95]. The proof can be obtained by a straightforward matrix manipulation.
Lemma 6.2 Let Ggr =0 and D = blockdiag(Dy, Dy), then

8y = D5t GTSpGsD5t.

110

The above two lemmas imply that if we first eliminate the interior variables
and then transform to the multilevel nodal basis, we will be solving the same
linear system as before (transformation to multilevel nodal basis and then do the

elimination). As a result, we are solving the following simpler and smaller system:
_1 1
.DBZngS’BGB.DBzSEB — bBS

which is equivalent to solving the Schur complement system Spzp = by with
the preconditioner M- = GgD-1GE. We call the preconditioner using this new
formulation the multilevel nodal basis domain decomposition (MNBDD) precon-
ditioner. This method offers several possible advantages over the standard BPX
method. The conjugate gradient iteration is carried out over a much smaller set
of unknowns and we will show that the condition number is smaller. The solution
of the subproblems on the interfaces is easily parallelizable since they are indepen-
dent. One possible drawback, however, is that now it is necessary to solve each
subregion exactly in each iteration which adds more computational overhead.

Here the algorithm for (7 algorithm is similar to the one for G shown before
except now the basis functions used in the evaluation are restricted only to those
on the interfaces. The operation of Gz on a vector vy is defined by:

J o mj
Gpop =) E(vﬂ)jﬁﬁ;

j=01i=1

where gﬁ;,z =1,2,.-.m; is the set of basis functions on T'.

The MNBDD algorithm can be summarized as follow:

Algorithm MNBDD : input = r, output = » = Mz'r
Perform partial change of basis to the MN basis v = GLr

solve the coarse grid problem y = Dz'v

111

Perform change of basis back to the nodal basis z = Gy
end MNBDD

We need one more lemma from [95].

Lemma 6.3 Let K be symmetric and positive definite. Then the condition num-

bers of K and ilts Schur complement salisfy
k{Schur(K)) < «(K).

Using Lemina 6.3 as well as the condition number bounds from {22], we arrive

at the following main theorem:
Theorem 6.1 k(Mz'Sg) < O(log*(£)) for smooth coefficient problems.
Proof : By using Lemma 6.1 and 6.2 we obtain
8y = D3 GLSsGsD5E.
By using Lemma 6.3, we obtain

(D3 GLSsGsD}) = w(Sy)

< k(D-1GTKGD-3),

which is bounded by O(log? £}, sce [22].

It is also proved in [22] that the condition number bound in Theorem 6.1 de-
pends also on the elliptic regularity of the problem. For example, for smooth coeffi-
cient problems on convex polygonal domains, the condition number is bounded by

O(log £}; and for certain discontinuous problems, the condition number is bounded

by O(log® &),

112

The hierarchical basis domain-decomposed (HBDD) [95] algorithm is similar
to the BPS algorithm by Bramble, Pasciak and Schatz [20]. The only difference is

that the HBDD uses hierarchical basis preconditioner

~ HR for the edges while the BPS
uses variants of Dryja’s preconditioner [37]. The MNBDD algorithm, however, has
one important difference; namely, in addition to the use of multilevel nodal basis
as preconditioners on the edges, the MNBDD algorithm also implements multilevel
nodal basis on the vertices. This introduces some redundancy on the vertices. This

redundancy may be the reason for its improved performance (see next section).

6.3 Numerical Results

6.3.1 Two-subdomain Example

We use the two-subdomain example of [95] with different right hand side and
we compare our results with those reported in [95]. We also include results from
using the Dryja’s (lé/ ?} [87] preconditioner. We use the domain { = {, U}, where
0, and), are unit squares aligned along an edge T' = {, N €),. We use the stan-
dard uniform mesh and the usual five point discretization for the Laplacian and
the iteration counts are listed in Table 6.3.1 (where n is the number of unknowns
on the interface). The right hand side is such that the solution is z(z — 1)y(y — 1)
and the stopping criterion is when the relative 2-norm of the residual falls below
10-6. The initial guess used is u(® = 1.0. We observe that while the iteration
count for the HBDD continues to grow with larger n, the other preconditioners
seem to be bounded independent of n. While the iteration counts using the HBDD
preconditioners grow with n, we see that the iteration counts using MNBDD seem

to gradually levels off. Overall, we see the MNBDD preconditioner performs rela-

tively well compared to the others.

113

Table 6.1: iteration count versus n

n || No precond | Dryja | MNBDD | HBDD
8 4 4 4 4
16 8 6 7 7
32 16 6 9 8
64 27 6 9 10
128 39 6 9 12

6.3.2 Many-subdomain Example

Next we consider the case of many subdomains. The unit square €2 is subdivided
uniformly into £ x k square subdomains and the same model problem is solved using
uniform meshes. We compare our results with a set of experiments reported in
[95]. We also compare the condition numbers as well as iteration counts between
our method, Smith and Widlund’s method, and Bramble, Pasciak and Schatz’s
method (BPS). For HBDD method, it is reported in [95] that the contribution
of the coarse problem should be scaled by a factor @ a2 3.6 to achieve fastest
convergence. Inspired by Smith and Widlund’s effort in search for an « that
gives fast convergence, we also explore a variant of the preconditioner by Bramble,

Pasciak and Xu [22] (equation 6.1) defined by:
J
M~ = aA7*Qov + 3 > (v, ¢1)¢}- (6.3)
=1 i=1
It can be shown that this modified preconditioner has the same order of condition
number bound as the unmodified one (equation 6.1) provided that « is independent

of A and H. The « that gives fastest convergence in our experiment is 0.5. The

numerical results using this « are also included under the method MNBDD(0.5).

114

The right hand side f is constructed such that the solution is u(z,y) = z(z —
L)y(y — 1) and the stopping criterion is 10-5. Again, the initial guess is u(® = 1.0.
The results are shown in Table 6.3.2 where the results for HBDD(3.6) is obtained
using ¢ = 3.6.

Our first observation is that our condition number results for the HBDD method
agree very well with those reported in [95]. We also observe that the condition
numbers using the MNBDD method are much lower than the BPS and HBDD
methods. The condition numbers grow very slowly with n while this is not the
case with the BPS and HBDD methods. With the use of the scaling factor o = 0.5,
we observe an even better performance and in fact, the condition numbers appear
to be O(1).

Through the numerical experiment on the model problem, we have showed that
the MNBDD preconditioner offers good convergence rates (better than BPS and
HBDD for the model problem used in our experiment) as well as low computational
cost (O(n) for MNBDD and HBDD and O(nlogn) for BPS). The BPS, HBDD,
and MNBDD algorithms have a similar property that the edge preconditioners do
not take into account the variation of coefficients in the original equation. It is
not clear whether the good condition number behavior will hold for problems with

variable coefficients and it is our intention to pursue this issue in the near future.

115

2

Table 6.2: Condition Numbers and iteration counis for the Many-subdomain Case

number of || HBDD(3.6) BPS MNBDD(1) | MNBDD(0.5)
grid | subdomains k | iter k |iter || « iter K iter
32x32 2x2 9.62 | 11 | 11.85 7§ 11 | 2.27 8 2.24 7
32x32 4dx4 7.96 | 11 8.75 | 14 |} 2.88 9 2.19 8
32x32 8x8 530 | 10 || 6.08 | 12 | 3.09 9 2.10 7
64x64 2x2 12.68 | 13 | 16.47 | 12 || 2.34 8 2.32
64x64 4x4 11.84 | 13 | 13.03 | 15 | 2.96 9 2.28 8
64x64 8x8 852 { 12 || 9.79 | 15 (13.21{ 10 2.21 8
64x64 16x16 541 | 10 | 6.32 | 13 || 3.21 | 10 2.11 7
128x128 4x4 16.49 | 15 | 17.92 | 18 | 3.01 9 2.35 8
128x128 8x8 1254 1 15 || 14.18 | 16 |1 3.30 | 10 2.35 8

128x128 16x16 869 | 13 || 1021 | 15 ||3.31| 10 | 2.24 8

128x128 32x32 542 | 10 || 6.36 | 13 [3.22 | 10 | 2.11 7

256x256 4x4 21.90 | 17 || 2345 19 | 3.03 9 2.39 8

256x256 8x8 1730) 17 | 19.33 | 18 13.34 | 10 243 8

256x256 16x16 12,72 | 15 {1479 | 17 |1 8.37 | 10 | 2.36 8

256x256 32x32 8.69 | 13 || 1027 | 15 || 3.30 | 10 | 2.24 8

256x256 64x64 537 1 10 || 637 | 12 1321 10 | 2.09 7

116

CHAPTER 7

Performance Analysis of MF preconditioners on the CM

7.1 Introduction

This chapter investigates the performance of the multilevel filtering precondi-
tioners on the CM. We first compare the timing performance of the MF precon-
ditioners with other preconditioners on two- and three-dimensional Poisson prob-
lems, 21} variable coefficient problem, and biharmonic equation. It is well known
that the V-cycle multigrid-type algorithms encounter idle processor problem on
massively parallel computers [78]. This problem is especially true on the CM be-
cause of insuflicient software capability to detect processor activities, the result of
which is large amount of overhead incurred. Techniques (such as on chip striding
and virtual processor striding) have been proposed before [78] to alleviate the idle
processor problem. Since such techniques have not been incorporated into the mi-
crocode, we derive timing models to study performance improvements using the
striding mechanisms. Using the timing models, we show that the execution time
decreases monotonically with the increase in the number of processors used, im-
plying that the MF preconditioners can exploit the massively parallelism without

degradation in the execution time.

117

7.2 Implementation of MF Preconditioners on the CM

7.2.1 The Conjugate Gradient Method on the CM

The impleméntation issues of the CG method for two- and three-dimensional
second-order elliptic problems have been discussed in detail in Chapter 2. The
major difference between implementing second-order problems and fourth-order
problems such as the biharmonic equation lies in the matrix vector multiplication
which for the latter is a 13-point stencil. A straightforward implementation of
the biharmonic operator thus requires 12 communication steps. This expensive
communication can be reduced by treating the biharmonic operator as a cascade of
two Laplace operators which requires only 8 communication steps. Another point
is that the stencils for the grid points near the boundary are slightly different
from those of the interior grid points. This may pose an efficiency problem on
the CM since it is a SIMD machine and inhomogeneous operations have to be
performed at different time steps. TFortunately the first and second boundary
conditions (boundary conditions with first and second derivatives respectively)
can be handled nicely with one extra multiplication and one extra addition for
the grid points near the boundary. Consequently the parallel operation count for
the matrix vector multiplication for biharmonic equation is 20 (9 for each Laplace
operator and 2 extra for points near the boundary).

For the problems we solve on the CM, we assume uniform grid with 2741 grid
points in each dimension for some integer ¢. It should be mentioned that mapping a
general unstructured mesh on the CM efficiently is a nontrivial task and in general
will result in degradation of performance. Active research is currently being done

to investigate efficient embedding of unstructured meshes on the CM [57].

118

7.2.2 Implementation of Filters

At each level the MGMF1 filter involves each active processor getting data from
its eight neighbors at a power-or-two distance away and computing the weighted
sum. A straightforward implementation of this filter requires 8 communication
steps. Communication can be reduced by decomposing the 2D filter into a cascade
of x- and y-filter {generally called tensor product). Similarly, the 3D MGMF1
filter can be decomposed into cascades of x-, y-, and z-filter). Each x- or y-filter
requires two communication steps and four arithmetic operations. Therefore, the
tensor product MGMF1 filter requires a total of only 4 communication steps and
8 arithmetic operations. Moreover, the scaling operator can be incorporated into

the filter which can effectively reduce the arithmetic operation count to 6 per level.

The PARIS (assembly language for the CM) code for the MGMF1 filter is as follow:

/* get data from neighbors in x direction at distance of 2% away */
/* forall active processors */

call cm_get_from._power_two_11(templ,src,0,k,0,wl)

call cm_get.from_power_two_11(temp2,src,0,k,1,wl)

call cm f add_2_11(templ,temp2,ml,el)

call cm_f multiply_constant_2_11(temp1,0.5,ml,el)

call cm f add_3_11(dest,templ,src,mlel)

/* get data from neighbors in y direction at distance of 2¢ away */
/* forall active processors */

call cm_get_from_power_two_11(temp1,sre,1k,0,wl)

call cm _get_from_power_two_ll(temp2,src,1,k,1,wl)

call cm f add_2_11(templ,temp2,mlel)

119

call cm f_multiply_constant_2_11(temp1,0.5,ml,el)

call em f add. 2 11{templ,src,mlel)

h | 1T o 2aps A o - 1 LAY
call cm f add_2_il{dest,tempi,ml,ei}

The program code above can be further optimized by combining some of the
arithmetic operations to form a composite operation (e.g. put add and multiply

together which is faster than two single operations due to less memory access).

7.2.3 Implementation of Interpolation

Interpolation can also be decomposed into x- and y-interpolation to reduce the
communication. 4 communication steps and 4 arithmetic operations are needed
to itmplement this tensor product interpolation. The interpolation algorithm is

described in the following:

/* x-interpolation at distance of 2F away */

/* forall active processors */
call cm_get_from_power_two_11(templ,src,0,k,0,wl)
call cm_get_from_power_two_ll(temp2,src,0,k,1,wl)
call cm.f add_2_11{templ,temp2,ml,el)

call cm.fmultiply_constant_3_11{dest,temp1,0.5,mlel)

/* y-interpolation at distance of 2% away */
/* forall active processors */
call cm_get_from_power_two_1l{temp1,src,1,k,0,wl)

call cm.get_from_power_two_11(temp2,src,1,k,1,wl)

120

call cm f add _2_11(templ,temp?2,ml,el)

call cm f multiply_constant_3_11(dest,temp1,0.5,mlel)

7.2.4 Selection of Active Processors

The number of active processors decreases as coarser and coarser grids are
traversed, and determining which processors should be enabled or not at various
levels can be a cumbersome task. This can be dealt with elegantly by declaring
beforehand two variables in each processor to store the x- and y- addresses of
the processor. By examining the bit pattern of the x- and y- addresses, active

processors can be determined in a straightforward and efficient way.

7.3 Timing Results on the CM

Table 7.1 shows the timing and MFLOPS results for the MGMF1 precondi-
tioner compared to other preconditioners for 2D Poisson problem. The value k in
MGMIF'1-k in the tables indicates the number of levels used. We first observe that
the excellent convergence rates (reflected in the iteration counts) and the relatively
high degree of parallelism (reflected in the MFLOPS) of the MGMF1-6 give the
best timing among all preconditioners implemented. For the 1024 x 1024 grid,
for example, better than a factor of two improvement is seen compared to the
unpreconditioned CG method.

The column ‘DP time’ shows the execution times when double precision arith-
metic is used instead of the fast single precision arithmetic. Since the MMGMF
preconditioners are communication intensive, we see less drastic deterioration in
performance compared to other preconditioners (a factor of 10-20 compared to

60-80). The result is that the MGMF1-7 preconditioners become about 10 times

121

Table 7.1: PCG for 2D Poisson Problems - CM Statistics (16k CM-2)

precond. grid no. iter. | time(s) | MFLOPS | DP time(s)
CG(none) || 512x512 | 783 6.6 589 491
RILU 512x512 54 447.0 1.0 —
Jacobi-2 512x512 384 6.2 491 385
Jacobi-4 512x512 270 7.5 451 423
1.5-2 512x512 364 8.0 384 498
LS-3 512x512 258 7.1 398 436
LS-4 512x512 226 7.6 407 686
MGMF1-5 || 512x512 46 4.6 T4 87
MGMF1-6 | 512x512 26 4.3 45 60
MGMF1-7 {| 512x512 18 5.1 26 50
CG(none) || 1024x1024 1525 40.0 760 —
RILU 1024x1024 o — — —
Jacobi-2 || 1024x1024 748 38.7 641 —
Jacobi-4 1024x1024 527 43.8 606 —
LS5-2 1024x1024 711 46.6 512 —
LS-3 1024x1024 503 41.5 534 —
LS-4 1024x1024 441 43.6 552 e
MGMF1-6 || 1024x1024 47 20.4 68 e
MGMF1-7 || 1024x1024 27 18.5 43 —
MGMF1-8 || 1024x1024 18 20.7 26 —

122

faster than the unpreconditioned CG. It will be interesting to compare the commu-
nication overhead between different preconditioners. Using the timing data given
in this chapter, it is straightforward to estimate this communication overhead.

Also in the table (say for 1024 x 1024 grid), MGMF1-7 gives the best execution
time even though the maximum number of levels is 10. This can be explained by
realizing that at the tenth level, only one processor is active and the convergence
rate improvement by going all the the way to the tenth level may not be great
enough fo compensate for the extra time consumed in traversing to the tenth
level. In Figure 7.1, we show the iteration counts versus the number of levels used
and we can see that even though the iteration count continues to decrease as more
levels are used, the decreasing rate also slows down with more levels. In Figure 7.2
we show the execution times for different grids versus number of levels used and
we observe that for the 2D Poisson problem, the optimal number of levels seems
to be logyn — 3 where n — 1 is the number of unknowns in each of the x- and
y-dimension. |

Table 7.2 shows the timing and MFLOPS results for 3D Poisson problem.
We observe that the MGMF1 preconditioners still outperform the others. The
improvement, however, is not as good as that for the 2D case since now filtering
and interpolation require more communication steps and arithmetic operations.

At a glance, it seems that even though the MGMF1 performs better than
the other preconditioners, the improvement is too small to be significant. In the
following sections, we will show how this timing performance for the MGMF pre-
conditioners can be further improved.

The conjugate gradient method without preconditioning is indeed very efficient

on the CM. About 760 MFLOPS is observed on a 16k-processor CM-2. If we

123

Table 7.2: PCG for 3D Poisson Problems - CM Statistics (16k CM-2)

precond grid noe. iter. | time{s) | MFLOPS
CG(none) || 32x32x32 | 66 0.35 142
RILU 32x32x32 17 8.61 2.5
Jacobi-2 || 32x32x32 33 0.34 121
Jacobi-4 || 32x32x32 24 0.47 107
LS-2 32x32x32 30 0.45 87
L.S-3 32x32x32 22 0.43 91
LS-4 32x32x32 18 0.43 93
MGMF1-2 || 32x32x32 30 0.29 108
MGMF1-3 || 32x32x32 19 0.35 57
MGMF1-4 || 32x32x32 16 0.54 31
MGMF1-5 || 32x32x32 15 0.85 19
CG(none) | 64x64x64 130 3.43 229
RILU 64x64x64 22 65.8 3.3
Jacobi-2 || 64x64x64 65 3.32 195
Jacobi-4 | 64x64x64 46 4.35 177
LS-2 64x64x64 60 4.36 144
LS-3 64x64x64 43 4.05 150
LS-4 64x64x64 37 4.29 154
MGMF1-2 || 64x64x64 58 2.51 194
MGMF1-3 || 64x64x64 29 2.47 98
MGMF1-4 || 64x64x64 19 2.91 55

124

assume a linear scale-up to the full 64k-processor machine, the performance will
be about 3 GFLOPS. Currently there are still some viable ways to hoost the
performance further. One of them is the use of slicewise storage scheme (each 32-
bit data is stored across 32 processors) instead of fieldwise storage scheme (each
32-bit data is stored within one processor) to exploit more efficiently the pipelining
feature. Another way is the use of the stencil library which will further enhance the
performance for matrix vector multiplication. With these features incorporated in

our experiment, better performance is expected.

7.4 Performance Analysis for 2D Second-order Self-Adjoint Elliptic

Problems

7.4.1 Techniques for Performance Improvements

There are two techniques that can dramatically improve the performance of
both grid communication and arithmetic for the MGMF preconditioners. The
first technique was called ‘VP striding’ in [78]. When the number of grid points
is larger than the number of available physical processors, each physical processor
has to simulate a number of grid points (VP) by time slicing. This idea is called
‘virtual processing’ and the number of grid points simulated on each physical pro-
cessor is called ‘VP ratio’. During the MGMF preconditioning when coarser levels
are traversed, only some of the VPs need to do arithmetic and communication.
However, even with the VP context flags (a logical flag within each virtual pro-
cessor to enable or disable the processor) disabled for some processors, the CM
microcontroller still issues the instructions (arithmetic and communication) to all
VP’s. The context flags are used only to determine whether to store the result to

the destination. Thus, even some of the arithmetic and communication are not

125

needed, the CM microcontroller still allocates time to do such useless task.

A second technique was called ‘on-chip striding’ in [78]. The idea is similar
to VP striding except that now when even coarser levels are traversed, there is
a point when some of the physical processors are idle. Since there are 16 physi-
cal processors on one integrated circuit chip and they share the same hypercube
channel fo communicate to other chips, time slicing is used to send data from
the 16 processors offchip. At a certain coarse level, even though only some of the
physical processors on the chip need to communicate offchip, the microcontroller
does not have the knowledge of this and it will allocate time for each processor to
communicate, This introduces some wasteful communication time.

The implementation of the techniques above requires modification to the CM
microcode and currently they have not been implemented. In order to study the

performance improvement using these techniques, timing models are developed in

this chapter for second-order and fourth-order problems.

7.4.2 Timing Model
Before deriving the timing model, let us define some parameters :

s = FLOPS / processor

n = no. of unknowns in each dimension (2D)

F(i,m) - time for commmunication at dist=2¢ in dimension m
p = number of physical processors used

I = number of iterations needed for convergence

k = number of levels used

T = total execution time.

We use the communication model formulated by Levit [78] as follow:

126

{ Il vy + tedmvie; 28 < v,
Fi,m) =19 16t51],v; 2= cpu,
1 325 1, v; 2t > ¢ v,
where t; and tz denote the on-chip and off-chip communication time per data
respectively, and ¢;’s denotes the on-chip dimensions (i.e. the way the 16 processors
are arranged on chip. For example, the 16 processors can be arranged in 4 x 4
2D array so that ¢, and c, are both 4). Similarly, v; denotes the VP dimensions
(i.e. the way the virtual processors are arranged within each physical processor.
For example, if VP ratio is 8 and the virtual processors are configured as 4 x 2 2D
array, then v; and v, are 4 and 2 respectively).

This communication model basically classifies the grid communication into
short-range, medium-range, and long-range communications. For short-range com-
munication, some of the processors need only to communicate on chip and since
on-chip communication is fast, the communication time is shorter. For medium-
range communication, all of the processors need to communicate off-chip but the
destination chip is only one hop away in the hypercube. Finally, for the long-range
communication, all of the the processors need to communicate to another chip
which is at a distance of 2 away in the hypercube and thus this communication
takes twice the time as the medium-range communication.

We perform experiment on the CM fo obtain the timing statistics for the
‘cmn.get_from_power_two_ 11’ instruction and the results seem to agree with the
model. Using the data from Table 7.3, #; and {5z can be approximated to be

32 and 28 microseconds respectively.

127

Table 7.3: cm_get_from_power_two 1l timing - CM Statistics (16 CM-2)

grid log2(distance) | time (ms)
256x256 0 0.4
256x256 1 0.6
256x256 2 1.0
256x256 3 1.8
256x256 4 3.5
256x256 3 3.5
1024x1024 0 2.7
1024x1024 1 3.8
1024x1024 2 6.0
1024x1024 3 10.3
1024x1024 4 16.5
1024x1024 5 28.6
1024x1024 6 55.9
1024x1024 7 55.9
1024x1024 8 56.1

128

Using the definitions and communication model above, we arrive at the follow-

ing timing model:

21n? 2 =2 1k~ 1)n?
T = [—+3log, p(+ig)+2F(0,1)+2F(0,2)+4 > > F(i,m) p—s’]xI.
m=1 {=0

The first three terms in the model denote the the time to perform the outer CG
algorithm while the other terms denote the time to do the preconditioning. Using
the above model and the timing data, we plot the execution time predicted by the
model and the actual execution time for n = 256 and 1024 as shown in Figure 7.3

and 7.4 and the predicted and actual times seem to correlate well.

7.5 Improved Timing Model

Using the VP striding and on-chip striding techniques, we modify the commu-

nication model suited for MGMF1 preconditioner as follow:

Er Il vi)adr + Cellimvic) s 28 < cnvm

ﬁ’(z,m) = (16tE H_?' 'Uj)-‘-l—_%:f A = CrU,
(32tE HJ 'UJ)Z;% 2i > CpUyy .

The improved timing model is then :

- 21 2 k=2 11{k — 1)n2
T = [""?“+310g2 p(4tp) 12 (0,1)42F(0,2)+4 Y 3 Fli,m)+ =D

IxI
mel fe=0 ps
We also plot the execution time predicted by this improved model in Figure 7.3
and 7.4 and we see a dramatic performance improvement compared to the timings
without the striding mechanisms.
In an effort to deal with the idle processor problem, Frederickson and McBryan

[45] develop a massively parallel multigrid algorithm which they called the par-

allel superconvergent multigrid (PSMG) algorithm. We implement this PSMG

129

algorithm and compare it to the MGMF1 preconditioned PCG method and the
results are shown in Table 7.4. In the table, the MGMF1-k* denotes the predicted
MGMF1 preconditioner using the improved model. We see that MGMF1-k* im-
proves dramatically over even the PSMQG algorithm. For the 1024 x 1024 grid, the

MGMF1-k* is about 20 times faster than the unpreconditioned CG method.

Table 7.4: PCG for 2D Poisson Problems - predicted CM Statistics (16k CM-2)

precond. grid no. iter. | time | MFLOPS

CG(none) | 256x256 401 1123 | 589

Jacobi-2 256x256 197 1.15 337

LS-3 256x256 132 1.34 271

MGMF1-5 256x256 26 1.02 47

MGMF1-8* | 256x256 14 0.22 115

PSMG-T 256x256 4 0.85 -

CG(none) || 1024x1024 | 1525 | 40.0 760

Jacobi-2 1024x1024 748 38.7 641

LS-3 1024x1024 503 41.5 534

MGMF1-7 | 1024x1024 27 18.5 43

MGMF1-8*% || 1024x1024 18 2.2 250

PSMG 1024x1024 5 13.9 —

7.5.1 Optimal Number of Processor

Using the improved timing model, we calculate the number of processors P

that gives the lowest execution time (Figure 7.5 and 7.6). We found that the Py 13

130

equal to n2 (VP ratio = 1), showing that the MGMF-preconditioned CG method
can indeed exploit the massively parallelism offered by parallel computers such
as the CM. However, it should be pointed out that from Figure 5.5 and 5.6, at
some point doubling the number of processors results in only a slight improverment
in execution time. Therefore, if we take the hardware cost into consideration in

addition to execution time, it may not be worthwhile to use n? processors afterall.

7.6 Performance Analysis for Biharmonic Equation

7.6.1 Improved Timing Model

The improved timing models for MGMF1- and MGMF2-preconditioned CG

method for biharmonic equation are as follow:

. 32n2 1 . N 2 k=2 11(k — 1)n?
m=1 1=0

and

. 32n? 1 . " 2 k2 25(k — 1)n2
m=1 =0

Again the first three terms denote the the time to perform the outer CG algo-
rithm while the other terms denote the time to do the preconditioning. We plot
the actual execution time and the predicted time for the original and improved
timing model for n = 256 as shown in Figure 7.7 and 7.8. Again the predicted and
actual times seem to correlate well.

Table 7.5 shows the execution times and MFLOPS for 256 x 256 and 512 x 512
grids. Again, the MGMF2* for 256 x 256 grid denotes the predicted performance
using the improved timing model. We observe a hundred-fold improvement over

the unpreconditioned CG method.

131

Table 7.5: PCG for Biharmonic Equation - CM Statistics (16k CM-2)

precond., grid | no. iter. | time(s) | MFLOPS
CG(none) || 256x256 | 8846 57.3 314
MGMF1-4 || 256x256 331 8.6 90
MGMF1-5 || 256x256 170 7.4 87
MGMF1-6 || 256x256 135 9.9 34
MGMF2-4 | 256x256 188 9.4 73
MGMF2-5 || 256x256 73 6.0 45
MGMF2-6 || 256x256 43 6.1 26
MGMF2* || 256x256 43 0.54 293
MGMF3-4 || 256x256 217 9.8 71
MGMF3-5 || 256x256 85 6.5 38
MGMF3-6 | 256x256 49 6.8 21
CG(none) || 512x512 | 34817 659 314
MGMF1-5 || 512x512 440 51.2 86
MGMF1-6 || 512x512 251 43.1 55
MGMF1-7 || 512x512 201 59.6 34
MGMF2-5 || 512x512 188 41 67
MGMF2-6 || 512x512 74 25.7 42
MGMF2-7 || 512x512 o4 315 25
MGMF3-4 || 512x512 687 86.3 92
MGMF3-5 || 512x512 208 42.5 56

132

7.6.2 Optimal Number of Processor

Using the improved timing model, we calculate the number of processors P,
that gives the lowest execution time (Figure 7.9 and 7.10). Again, we found that

the P, is equal to n2 (VP ratio = 1).

7.7 Summary

The MGMF-preconditioned CG methods are attractive on massively parallel
computers such as the CM. The importance of the hypercube network on the CM
for making the MGMF preconditioners efficient cannot be undermined. Since the
MGMTF preconditioners are communication intensive, it is important to have an
efficient interconnection network and relatively low communication to computation
ratio.

A final point ig that by using the communication improvement techniques, we
believe that the V-cycle multigrid method should perform better than the mas-
sively parallel multigrid algorithms such as the PSMG. Indeed, the architectural
characteristics of the CM (many processors on one chip, many processors share one
communication channel, virtual processing, etc.) are likely to be inherited by the
future massively parallel hypercube computers (if hypercube interconnection con-
tinues to be used in future massively parallel systems) due to the advent of VLSI
technology and the realization that communication hardware is expensive. If this
is the case, then the striding techniques will continue to find useful application in

V-cycle multilevel algorithms.

133

no. of iterations

CM time (in sec)

Figure 7.1: Tteration Count versus no. of levels used (n=256)

350

300

250

200

150

100

(2

3 3.5 4 4.5 5 55 6 6.5 7 735 8
Number of levels used
Figure 7.2: CM Time versus no. of levels used (n=256)

40— : : : . . : : :
351 4
30- .
a0 T 1
20- n=10;,4 i
15 =
10} i
SE T v I .

n=256

03 3I5 :fr 4'5 g 5I5 é 6f5 ":" 7I5 8

Number of levels used

134

Figure 7.3: Predicted and Observed Times for Poisson Problem(n=256)

time in sec

2

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

T T ¥ T T

solid lne - actual time
dashed line - time from model
dotted Hine - predicted time with striding

number of levels used

Figure 7.4: Predicted and Observed Times for Poisson Problem(n=1024)

time in sec

40

35

30

25

20

15

10

solid - actual time T,
dashed - time from model
dotted - predicted time with striding

1 2 3 4 5 6

number of levels used

135

predicted time (in sec)

predicted time (in sec)

Figure 7.5: Predicted CM Times for Poisson Equation{n=256)

1

rd

0.9

0.8

0.7

0.6

05

04

03r

021

| N I N N I | 1

b1 1

104

number of processors used

105

Figure 7.6: Predicted CM Times for Poisson Equation(n=1024)

4

3.5

2.5+

L1 ¢) hid 1 | N

105

number of processors used

136

Figure 7.7: CM Times for Biharmonic Equation with MGMF1(n=256)

25 y r T T r
solid line - actual ime
dashed line - time from model
dotied line - predicted time with striding
20} 3
15k .
g
H
g
1ot _
5h -
0 k) I 1 1 1
2 3 4 5 6 7 8

number of levels used

Figure 7.8: CM Times for Biharmonic Equation with MGMF2(n=256)

25 ¥ T T T T
solid line - actual time
dashed line - time from model
dotted line - predicted time with striding
20+ _
15k i
8
"
H
5
1o}]
5k _
0 I L I 1 i
2 3 4 5 6 7 8

number of levels used

137

Figure 7.9: Predicted Times for Biharmonic Eqn. with MGMF1 (n=256)

16 T T ¥ 1 T T 1 11 T T LI S BRLARAL e |

14

12

10

predicted time (in sec)
oo

t | I S S WO DR S | 1 £ F I R N S N

0 L
102 104 108

number of processors used

Figure 7.10: Predicted Times for Biharmonic Eqn. with MGMF2(n=256)

4.5 T Y T T T T 1T E) T T T T T T

4

5

3

2.5

2

predicted time (in sec)

1.5

1

0.5

Fl ! i 4 & .1 F T 1 1 | NV S N N W |

0
103 104 108

number of processors used

138

CHAPTER 8

FFT as a Massively Parallel Multilevel Algorithm

8.1 Overview

'8.1.1 Overview on Massively Parallel Multilevel Algorithms

The global dependence property of elliptic problems, which translates into slow
convergence rates for local-type iterative methods, has motivated us to look for ef-
ficient numerical methods in the class of multilevel algorithms, and in particular,
multilevel preconditioners for the conjugate gradient method. We have since de-
veloped a class of MF preconditioners and have shown its efficiency on a massively
parallel computer for some second- and fourth-order elliptic problems. In fact, in
many situations the most efficient algorithms for the numerical solution of large
elliptic problems are multilevel algorithms, e.g. the various multigrid algorithms
[24, 53, 98].

When implemented on massively parallel computers where the number of pro-
cessors is O(N) and N is the number of unknowns, however, the multilevel algo-
rithms encounter the idle processor problem at the coarse grids. For example, at
the coarsest grid, only one grid point (or one processor) needs to be updated.

In view of this problem, McBryan and Frederickson [45] developed a massively
parallel multigrid algorithm (the Parallel Superconvergent Multigrid or PSMG)
which gives better convergence rates and keeps all processors busy all the time so

that the overall computational time is reduced (they implemented the PSMG on

139

the CM and showed its efliciency over the regular Multigrid method.)

Along the same line, but in a different spirit, is the development of the Robust
Multigrid method (RMG) by Hackbusch [54]. The motivation behind the RMG
method is to improve the robustness of the MG algorithm for a wider class of
problems. Tt happens that the RMG method possesses the massive parallelism
just like the PSMG algorithm.

‘The MF preconditioners also have their massively parallel version (called SGMF),
as described in Chapter 4. However, SGMF preconditioners require complex com-
munication pattern near the boundary (due to odd symmetry property) which
spreads to the interior at the coarse grids. This makes the SGMF preconditioners
relatively inefficient on massively parallel computers such as the CM as they re-
quire the slow router to handle the complex communications rather than the much
faster NEWS network.

Recently, several researchers {101, 44] have looked upon the FFT algorithm
as a multigrid-type algorithm. FFT exhibits communication pattern similar to
magsively parallel V-cycle multilevel algorithms. FFT has been used widely in the
numerical solutions of partial differential equations. Some of the examples are the
Fast Poisson solver and the solution of Burgers’ equation using spectral method.

For example, consider the following 1D Burgers’ equation
Uy + UUy = PUgy.

If wpwind differencing is used to discretize the u, term and spectral method is used

to discretize the u, and u,, terms, then we have the following :

g(nt+l) — 4(n)

A — M FKFult) = —yF K2 Fyln)

140

or

ulrtl) = 4v) 4 S ALF K Fulh) — AtF K2 Fu(m)

where ut® is a n X 1 vector and K = diag{0,1---n — 1).
Here FI'T forms the core of the algorithm to solve the above recurrence. The

rest of this chapter focuses on the development and implementation of an efficient

ordered FFT algorithm on the CM.

8.1.2 Overview on Ordered FFT

The increased availability of various parallel architectures poses many chal-
lenges for algorithm development. One notable example is the Fast Fourier Trans-
form (FFT) with many variants that are targeted for different types of computers.
The main difference between these variants is the order of the intermediate se-
quences which have been selected to favor certain architectural characteristics.
For example, orderings that result in long vectors with unit stride are selected
for vector computers [99]. Orderings that minimize communication are selected
for hypercube multiprocessors [100]. Interprocessor communication is the major
source of performance degradation on hypercube multiprocessors.

In this chapter we examine efficient implementation of radix-2 ordered DIF
(decimation in frequency) FFTs on massively parallel hypercube computers such
as the Connection Machine (Any mention of FFT in this chapter should be as-
sumed to mean radix-2 DIF FFT unless otherwise indicated). The concept of an
ordered transform is expanded to include any transform in which the ordering of the
input sequence matches that of its transform. This is a reasonable consideration
on the CM where orderings can be selected with .equal ease by the specification

of geometries and priorities. Two “ordered” transforms are considered, namely,

141

standard-order [100] (or consecutive-order as used in [66]) and cyclic-order ([66]
or scatter-order as used in [42}) transforms. These transforms differ in communi-
cation complexity and their suitability will likely depend on the application. If a
standard-order transform is not required then an cyclic-order transform with less
communication may be appropriate.

The standard-order transform was considered earlier [100] where it was demon-
strated that a sequence with IV = 2 elements could be transformed with r/24+d+1
parallel transmissions on a hypercube with P = 29 processors if d > r/2, Here
we show that a cyclic-order transform can be computed with 2d — »/2 parallel
transmissions. Both orderings belong to the class of orderings called index-digit
permutations [43]. In this chapter we are interested only in using binary digits.
Besides reducing the amount of communication, we also show that this algorithm
facilitates the parallel computation of the trigonometric coefficients without eval-
uating the trigonometric functions or interprocessor communication. Although we
will consider only “ordered” transforms in the expanded sense, it is important to
note that an unordered transform can be computed with only d parallel transmis-
sions.

In section 2, we begin with a class of orderings called binary index-digit per-
mutations. In particular, we review the concept of i-cycle which is central to the
implementation of ordered hypercube FFT as well as the general index-digit per-
mutation. In particular, we examine the standard-order and cyclic-order FFT.
In section 3, we first discuss different ways of computing the trigonometric coeffi-
cients and then present a new parallel method for the direct computation of the
trigonometric coefficients. Next we show that this method is particularly suited

to a hypercube implementation using i-cycles. The performance results of these

142

FI'T's are presented in section 4. Finally, we include an error analysis of the new

method for computing the trigonometric factors.

8.2 Parallel Hypercube FFTs

8.2.1 1Introduction

We consider the implementation of ordered FFTs on hypercube multiproces-
sors, It is assumed that the number of physical processors is P = 2¢ where d is the
dimension of the hypercube. Each processor has its own local memory (also called
distributed-memory system). Tt is also assumed that the number of elements to
be transformed is N = 27 and that N/P is a small constant (massively parallel
version of the original hypercube FFT [100}). Moreover, if N/P > 2 (number of
elements is more than twice the number of physical processors), the elements are
mapped to virtual processors which then contain exactly two elements, (after the
CM model). It is known that interprocessor communication consumes a substantial
amount of time and hence its minimization is of primary concern. Communica-
tion between virtual processors located in the same physical processor does not
contribute to interprocessor communication. Throughout the text we will use the
following notation.

If £, has N = 2r elements then it can be mapped into the multidimensional
array «(é,_q,--,%p) where 4,_4%,_4,+-,%, is the binary form of n. The FFT can
then be loosely described as a sequence of 21 transforms of length two in each of
r dimensions. An example for the case N = 16 is given in Table 8.1.

The original sequence is given as the first entry in Table 8.1. The transform in
the dimension 15 is designate.d by replacing i3 by k3 in the second entry. Subsequent

multiple 1-D transforms correspond to subsequent entries in Table 8.1. The FFT

143

Table 8.1: Intermediate Orderings for Cooley-Tukey FFT, N=16, using Subscript

Notation

(g, 11, %2, %3)
XMW (g, 24, 9, ks3)
X@(ig, 1y, ky, ks)
XOig, ky, kg, ks)
XW(ko, &y, kg, ka)

XY (kg, by, by, o)

requires the multiple 1-D transforms to be computed in the order of decreasing
indices, i.e., is, 13, i1, and i5. The last entry corresponds to the bit-reversal that
is necessary to order the FFT. Between each of the multiple 1-D transforms the
sequence z,, is multiplied by certain roots of unity. For example, XM (4, 1,,15, k3)

is computed from
X(l)(iO:ilai%O) = m(7:03(":133.2:0) + w(iﬂailaim l)

X (i, 1,12, 1) = w22 (4, 11,35, 0) — 2(ig, 43, 13, 1)]
where w = e~ir/4,
We will adopt the binary notation in place of the subscript notation to avoid
conversions between the two. Table 8.2 is the binary equivalent of the subscript

notation that is used in Table 8.1. Element locations are then given directly in

binary form.
The last two entries in Table 8.2 correspond to a reordering in which the element
in position k3kyk k, binary is moved to position kyk kyks. This illustrates the

advantage of the binary notation which provides the locations directly without

144

Table 8.2: Intermediate Orderings for Cooley-Tukey FFT, N==16 Binary Notation

z(i3igt1%0)
X (kyigiyio)
X@(kakqtyiy)
X (kgkykyip)
X®) (kakoky ko)

X a) ko, ko)

reversing the order of the subscripts.

The last entry in Tables 8.1 and 8.2 is an example of an index-digit permutation
[43], called a bit-reversal. Other examples include the perfect shuffie and matrix
transpositions. The time required for communication is known to contribute sub-
stantially to the overall computing time. It is also known to depend significantly
on how the sequence &, is mapped to the processors, We will begin with perhaps
the most common mapping in which the first N/P elements are mapped to the
first processor, the second N/ P elements are mapped to the second processor and

so forth.

Definition 8.1 A standard (or conseculive as in [66]) sequence to processor map
€(dp_y - typog | tr_g_y -+ 1) 18 one in which the element z, with n =4,_16,_5-- -1y

(binary) has address 1._y_; - - -1y in processor number i, _1i,_, -+ -1,_4 [100].

Both a processor number and address are required to identify a particular
element in the sequence. The partition | is introduced for expository purposes
to separate the address on the right from the processor number on the left. For

example if r = 4 and d = 2 then the element z, with n = i4i4i,4, has address

145

¢35 and is located in processor number i31; and the mapping is designated by
(iats | tylp)-

8.2 An {binary) index-digit permuted sequence to processor map is
one in which the indices i; are permuted. That is, the element z, with n =
bpealpeg +r+ig (binary) has address iy _a_1)im(r—d-2) " * tm(o) I processor number
bm(r—1)bm(r—2) * * " tm(r—d) Where m{j) is an arbitrary permutation of the integers

0,---,r—1 [100].
From the last two entries in Table 8.2 it is evident that a method will be needed

for converting between index-digit permuted maps on the hypercube. To that end

we introduce a specific class of communication tasks.
Definition 8.3 An (binary) i-cycle is an (binary) indez-digit permutation of z,,
in which the most significant digit of the address (called the pivot) is exchanged

with any other digit, either in the address or the processor number [100].

For example, if a standard sequence to processor map is used for z,,, an i-cycle
is a reordering that exchanges the digit in position r — d — 1 with any other digit.

Two i-cycle examples are given in Table 8.3.

Table 8.3: Sample i-cycles for the case d = 2 and r = 4

X(isty | taio)
X(i352 1 iUil)
X (ioty | 1371)

The second entry in Table 8.3 is obtained from the first by an i-cycle that
exchanges the first and second (pivot) digits. The third entry is obtained from the

second by an i-cycle that exchanges the second and fourth digits.

146

For ¥ =16 and P = 4 the data exchanges for two sample i-cycles are given in
Table 8.4 below.

The i-cycles consist of parallel exchanges of packets with N/(2P) elements.
The i-cycle on the left side of Table 8.4 consists of two exchanges. The last two
elements in processor 0 are exchanged with the first two elements in processor 1
and the last two elements in processor 2 are exchanged with the first two elements
in processor 3. The i-cycle on the right side of Table 8.4 also consists of two
exchanges. The last two elements in processor 0 are exchénged with the first two
elements in processor 2 and the last two elements in processor 1 are exchanged
rwith the first two elements in processor 3.

The i-cycle has three properties that make it useful for the development of

parallel communication algorithms on the hypercube.

I-cycle property A : Ani-cycle may or may not require interprocessor commu-
nication, depending on whether or not the digit is in the processor number.
For example, the first i-cycle in Table 8.3 does not require interprocessor
communication because the processor number is unchanged. However the
second i-cycle does require interprocessor communication because the pro-
cessor number is changed. When interprocessor communication is required
it is between processors that are directly connected because the processor
numbers differ in only one bit. Through this discussion we are assuming
that the sequence to processor map is an index-digit permuted map. A
direct connection would not be established if the underlying map was (for

example) a binary Gray code.

I-cycle property B : It can be shown that at each stage of the FFT the packets

transmitted between processors each contains 2r—4-1 = N/(2P) elements and

147

Table 8.4: Sample i-cycle communication paths for N = 16 and P =4

X (igiy | iig) X (415 | i1do)
X (18 | dgbo) X (iysy | iaio)
talelyle | 23l1%2% | P | Z3f2lifp 1429230

0000 0000 | 0| 0000 0000

0001 0001 {0 0001 0001
0010 0100

[mes]

0010 1000
0011 0101

<

0011 1001
0100 0010 | 1| 0100 0100
0101 0011 1| 0101 0101
0110 0110 1} 0110 1100
0111 0111 |1} 0111 1101

1060 1000 |2} 1000 0010

1001 1001 2| 1001 0011
1010 1100 [2| 1010 1016
1011 1101 |2 1011 1011
1100 1010 |3 | 1100 0110
1101 1011 13| 1101 0111
1110 1110 |3} 1110 1116
1111 1111 | 3| 1111 1111

148

that P/2 packets are exchanged in parallel.

I-cycle property C : Any index-digit permutation can be implemented as a
sequence of i-cycles. To see this, first decompose the permutation into disjoint
cycles. Next decompose each cycle into i-cycles by interchanging the first
position with the pivot position and restore it following the completion of
the cycle. For example, if the cycle is (2,8,7,5) and the pivot is in position 3,
then this cycle is equivalent to the i-cycles (3,2)(3,8)(3,7)(3,5)(3,2) applied
from left to right. Any index permutation can be implemented in no more

than 1.5d i-cycles [100].

8.2.2 The Standard-order FFT

Consider now the implementation of a standard-order FFT. The i-cycles are
given in Table 8.5 for the case r = 8 and d = 5. The subscripts of the digits are
increasing for a transform in standard order like the last entry in Table 8.2. The
letter ‘a’ in the superscript indicates an ordering rather than computational step
and an ‘“*’ following an entry indicates that a parallel transmission was necessary
for that step. The sequence of i-cycles is selected based on the theory presented in
[100] where it is shown that for even r > d/2 a total of r/2 + d + 1 = 10 parallel

transmissions are required.

8.2.3 The Cyclic-order FFT

The mapping of a sequence onto the processors is known to significantly influ-
ence the time that is required for communication and hence mappings that reduce
communication are of considerable interest. The difficulty with selecting a map

that minimizes communication for a particular algorithm is that it may not be op-

149

Table 8.5: Intermediate Orderings for a standard order FFT for N = 256 and

P =32

.....

.....

X (3ykpi5igis | kgigio)*
X @ (iykykgigiy | siyio)*
X @) (igkokoksis | kytyin)*
XO)(iykrkghsky | katyio)*
X060 (iykrkoksky | ksiyig)®
X (kghykoksky | kyiyio)*
X©a) keghokyksky | kgiyio)*
X (kghykokaky | kykgto)
X (kghykokaky | krkgiy)*
X (kykykoksky | kokoky)
X ®)(koky ko kghy | kshghs)*

150

timum for a different part of the overall computation. However without knowledge
of the other algorithms, and their optimal maps, it is not unreasonable to permit
orderings other than the standard order. If order is not a consideration then it is
known that the FFT can be performed with d parallel transmissions. However it
is likely that the other parts of the overall computation will expect the order of
the transform and the input sequence to be the same, particularly if utilities and
subroutines are used. Therefore we define an ordered transform as any transform
in which the order of the sequence and its transform are the same.

In this section we will consider a variant of the parallel FF'T presented above
in which the input sequence and transform are cyclic-ordered. Communication is
reduced and, as mentioned in the introduction, it is just as simple to select this

order as the standard order on the CM using geometry and priorities.

Definition 8.4 A cyclic sequence to processor map z(ig.q -+ +ig | tp_y - 14) is one
in which the element x, with n =1,_yi,_5 - iy (binary) has address 4,_yi,_o -1y

in processor number iy_q%; -+« iy [66],

A cyclic-order FFT is an ordered FFT according to the definition that was given
in previous sections and it requires fewer parallel transmissions than a standard-
order FFT. An example is given in Table 8.6 for N = 256 and P = 32. As
before, the locations that correspond to the digits on the right of the partition
‘|' reside in the same physical processor. The digits on the left of the partition
correspond to the processor number. An entry that ends with a “*’ indicates a
parallel transmission and the lines with superscripts that end with a ‘a’ involve
only communication.

The communication complexity for a cyclic-order FFT on parallel hypercube

is given in the following lemma.

151

Table 8.6: Intermediate Orderings for a cyclic-order FFT with N = 256 and P = 32

X (kgisigisio | kykrke)*
X O (kgkytyirig | kskoke)™
X 60)(kgkyiziyio | kskrke)*
X (kgkykgiyig | kykrks)*
X 60 (kykyksiyig | kskeks)
X (kykykskgio | kykrks)*
XY kakyhsksto | krkiky)

X (kykykskoky | koky ky)*

152

Lemma 8.1 A cyclic-order FFT of length N = 27 can be implemented on a hy-
percube of dimension d (where d > r/[2) with 2d — r[2 parallel transmissions if r

is even and 2d — (r — 1)/2 parallel transmissions if r is odd.

Proof : The normal i-cycles require d parallel transmissions since every physical
processor address digit has to be transferred into the pivot position. The extra
i-cycles are performed on the most significant r/2 digits, r/2 — (r — d) of which are
located in the processor address. Thus, a total of d +r/2 — (r — d)) = 2d — /2

parallel transmissions is needed. A similar proof can be developed for odd r.

The cyclic-order transform in Table 8.6 requires six parallel transmissions com-
pared with ten for the standard-order FFT in Table 8.5. In general the cyclic-order
FI'T requires anywhere from d to 1.5d parallel transmissions and the standard-
order FI'T requires anywhere from 1.5d to 2d parallel transmissions. More specif-
ically, for d > r/2, the cyclic-order FFT requires 2d — r/2 transmissions compared
to d + r/2 4+ 1 for the standard-order FFT. Therefore the cyclic-order FFT re-
quires r — d 4 1 fewer parallel transmissions than the standard-order FFT. For the
finest grain computations with d = r — 1 they differ by only two parallel trans-
missions, Nevertheless this difference will likely be noticeable because the total
communication time is proportional to O(log N} which is also a small integer.

The FFT is often a part of a larger computation that is posed on a grid so it is
reasonable to ask about the compatibility of the Binary Reflected Gray code order-
ing and cyclic-ordering. In both the standard-order and the cyclic-order transform
the processors can be mapped so that nearest neighbors are at a distance of one,

but at the expense of the i-cycles being conducted at a distance of two.

153

8.2.4 The Algorithm

The parallel hypercube FFT algorithm, written in pseudocode (similar to CM

FORTRAN) is included in the following. The variable declaration and initialization

have not been included.

C Parallel Hypercube FFT using the cyclic-order Transform
Ck: log2 (n)-1
Subroutine FI'T
doi=k,0,-1
if (i#k) call icycle(i) /* I-cycle */
call calculate_factor /* Calculate trigonometric factor */
temp = datal + data2 /* Compute new data points */
data2 = (datal - data2) * twiddle
datal = temp
if (i j= n/2.and.i#0) then /* Extra I-cycles */
call icycle(n-i-1)
end if
end do

end

8.3 Computing the Trigonometric Coefficients

There are a few alternative methods for computing the trigonometric coeffi-

cients depending on the available memory, I/O bandwidth, and processing capa-

bilities [72].

154

Recursion All of the trigonometric coefficients at each stage are generated by re-
cursion. This scheme requires only O(1) storage and is popular on a unipro-
cessor or vector processors. However, the computation is highly sequential

and not suitable for multiprocessors.

~ Table look-up The trigonometric coefficients are precomputed and stored in each
processor. This scheme has an advantage for many FFTs since the trigono-
metric coefficients would be available for use without recalculation. However,
this scheme also requires a large amount of storage (O(log N) per processor)
for naive implementation. [69], for example, shows how to improve this mem-

ory utilization to O(N + P log P).

Direct calculation The trigonometric coeflicients can be computed directly from
the equation W~ = cos(2kr/N) — isin(2kwk/N). However, the calculation
of the trigonometric functions on each stage is very time consuming. Partic-

ularly since the FFT itself requires only a few operations.

Permutation Initially, the trigonometric coefficients are distributed among the
processors according to the calculations required in the first stage. In the
subsequent stages, half of the trigonometric coefficients are permuted each
to two other processors. This scheme may be ineflicient on parallel machine

such as the CM where communication is expensive.

None of these methods are completely satisfactory on massively parallel com-
puters il memory is limited and communication is expensive. However, by per-
forming a few additional operations at each stage, the trigonometric coefficients

can be computed in parallel without any communication.

155

Consider the following example of a 16-point FFT (unordered transform) and
suppose that element i is mapped to processor i, then the trigonometric factors
needed at each stage are as in Table 8.7. The entries in each column correspond to
k in the trigonometric factor W-*. Entries with the form (k) refer to the exponent
of a coeflicient that is not used at the current stage but is needed to compute the
coefficients at a subsequent stage of the FFT.

It can be seen that the integers in each column are twice (mod N/2) the integers
in the previous column and hence the trigonometric coefficients can be computed
from the identities.

cos 26 = cos?§ — sin®f ,and
sin 260 = 2 cos fsin 4,

Thus, we can calculate the trigonometric coefficients for the current stage from
the previous stage by four multiplications and one addition (or three multiplica-
tions and two additions). This method can also be used to generate the table for
the table look-up scheme. It can also be used to compute the coeflicients for the or-
dered (both cyclic-order and standard-order) parallel hypercube FFT presented in
section 2 with a slight modification for the initial trigonometric factor calculations.
Table 8.8 containg the exponents for the cyclic-order transform with N = 16. An
initial standard sequence to processor map is assumed.

Fewer computations are required because every trigonometric coefficient is used
and therefore a factor of two is saved compared to the unordered FFT. In general,
this method of computing trigonometric coefficients can be used if the order of the
not-yet-transformed bits (¢;) is preserved. The characteristics of the methods for

computing the trigonometric coeflicients are summarized in Table 8.9,

156

Table 8.7: Trigonometric Coefficients for a 16-point unordered FFT

Processor Value of k in W-*
Processor Number (binary) | Stage 1 | Stage 2 | Stage 3 | Stage 4
0000 (0) (0) (0) (0)
0001 o 2) (4) 0
0010 () (4) 0 (0)
0011 (3) (6) 4 0
0100 (4) 0 (0) (0)
0101 (5) 2 (4) 0
0110 (6) 4 0 (0)
0111 (7) 6 4 0
1000 0 (0) (0) (0)
1001 1 (2) (4) 0
1010 2 (4) 0 (0)
1011 3 (6) 1 0
1100 4 0 (0) (0)
1101 5 2 (4) 0
1110 6 4 0 (0)
1111 7 6 4 0

157

Table 8.8: Trigonometric Coefficients for a 16-point parallel hypercube FFT using

cyclic-order and i-cycles

Processor Value of £ in W-—*

Processor Number (binary) | Stage 1 | Stage 2 | Stage 3 | Stage 4

0000 - - - =
0001 - - - -
0010 - - - -
0011 - - - -
0100 - - - -
0101 - - - -
0110 - - - -
0111 - - - -
1000 0

[
=

0
1001 1 2
1010 2 4
1011 3 6
1100

<
L = R
o]

1101

1116

B =
PN
L]

o o o

1111

158

Table 8.9: Characteristics of Different Methods for Computing Trigonometric Fac-

tors
Method storage computation | comm. comment
recursion O(1) O(Nlog N) 0 very sequential
table look up | O(N + PlogP)| O(logN) 0 reuseability
permutation O(N) 0(1) O(log N) -
direct calculation O(N) O(log N) 0 use sin and cos
new method O(N) O(log N) 0 1no sin and cos

8.4 Performance of the Parallel Hypercube FFTs on the CM-2

8.4.1 Performance results for the CMSSL FFT

Consider first the performance of the CMSSL (CM scientific software library)
FFT that is currently available (as of summer 1989) on the CM (located at NASA
Ames Research Center) [69, 70]. The execution times of both the ordered and
unordered FFT is presented in Table 8.10. FFT (A) and FFT (B) correspond to
the unordered and ordered FFTs respectively and the results were obtained on a
32k processor CM-2. Gray code ordered data (or NEWS order) was used in this
set of experiment. If, however, binary (or SEND) order is used, a speedup by a
factor of 2 is expected. In tﬁe table, the entry *~’ means that the result could
not be computed because it required more memory than what was available. The
MFLOPS are computed from the formula MFLOPS = 5N log N /time which does
not include the precomputed trigonometric coefficients.

The difference between the time for FFT (A) and FFT (B) is due to the addi-

tional communication that is required to bit-reverse the results of FFT(A). From

159

Table 8.10: Execution times for CMSSL FEFT (32k)

size FF'T | FFT (A) (sec) | MFLOPS(32k) | FFT (B) (sec) | MFLOPS(32Kk)
65536 0.02 262 0.03 175
131072 0.04 279 0.08 139
262144 0.09 262 0.22 107
524288 0.17 293 0.56 89
1048576 0.35 300 1.79 59
2097152 0.69 319 6.21 35
4194304 1.40 330 - -
8388608 2.81 343 - -

FFT (A) is the CMSSL FFT without bit-reversal

FFT (B) is the CMSSL FFT with bit-reversal

‘-’ memory was exceeded

160

the table it is clear that performing bit-reversal is expensive and that performance
deteriorates for larger problems. The bit-reversal in the CMSSL FFT that was
timed (summer 1989) makes use of the router. The reason for the missing entries
(‘- memory exceeded) is that the router requires more temporary storage than
the FIF'T. The newer version of FFT makes use of high-radix index-digit permuta-
tions, or all-fo-all personalized communication (matrix transposition) as described

in {62, 67, 68] which is considerably faster than the router.

8.4.2 Performance of a CM FORTRAN version of the standard-order
FFT

In this subsection we will examine the performance of the standard-order FFT
using i-cycles in the intermediate phases of the algorithm. The program was written
in the beta release version of the CM FORTRAN with partial optimization using
compiler options. At present, the system software will use a binary reflected Gray
code mapping of the logical processors onto the physical processors. Therefore
most i-cycles will communicate over a physical distance (Hamming distance) of
two which requires twice the communication of a map in which the logical and
physical processors have the same number. The latter case will be discussed in the
next subsection.

The execution times and MFLOPS for the FORTRAN version are listed in
Table 8.11.

The MFLOPS in Table 8.11 above are calculated from MFLOPS= 7.5N log N/T
(which includes 2.5N log N operations for computing the trigonometric coeffi-
cients). Comparing Table 8.10 and 8.11 it can be observed that for small NV, the
ordered CMSSL FFT is about twice as fast as the standard-order FFT, (e.g. 0.08

161

Table 8.11: Execution times for the CM FORTRAN standard-order FF'T (32k)

size FFT || Execution time (sec) | MFLOPS(32k)
65536 0.08 98
131072 0.16 104
262144 0.32 111
524288 0.66 113
1048576 1.34 117
2097152 2.81 118
4194304 5.67 122
8388608 11.68 124

sec versus 0.16 sec for 131072-point FFT). However for large N, the standard-order
FFT using i-cycles outperforms the ordered CMSSL FFT (e.g. 2.81 sec versus 6.21
sec for 2M-point FFT). Also, from Table 8.10, the execution times for FFT (B)
triples when the size of the input doubles. On the other hand, from Table 8.11,
the execution times for standard-order FFT using i-cycles approximately doubles
when the size of the input doubles.

From these comparisons we conclude that the standard-order FFT using i-cycles
provides enhanced performance compared to an FFT with separate bit-reversal
and butterfly phases. It should be mentioned that the CMSSL FFT was written
in lower level languages while the results in Table 8.11 were obtained with a high
level language (CM FORTRAN) which is also in its beta release. Thus, further
improvement is expected for an implementation in a optimized low level languages

or with a mature FORTRAN compiler.

162

Even though the FFT has been implemented with an efficient communication
algorithm using i-cycles, over 80 percent of the execution time is still spent in
communication. In the next section, communication will be further reduced by
avoiding the binary reflected Gray code mapping of the logical to physical proces-

5018,

8.4.3 A Comparison of three FFTs on the CM

In the previous subsection we examined the performance of a CM FORTRAN
version of the FFT in which the binary reflected Gray co&e was used to map logical
processors to physical processors. Although this map is ideal for nearest neighbor
communication, it slows the i-cycle communication for the FFT by a factor of
two. In this section we will consider the performance of three ordered FFTs on a

hypercube whose logical and physical processor numbers are the same.

1. The standard-order FFT which combines the bit-reversal and the butterfly

phases.

2. The cyclic-order FF'T which also combines the bit-reversal and the butterfly

phases,

3. An FFT written by Hertz [2] which separates the bit-reversal and the but-

terfly phases.

Using CM FORTRAN/PARIS it is possible to equate logical and physical pro-
cessor numbers, That is, any reference to processor i;_; -, is a reference to
a processor with the same binary representation in the hypercube and not to a
processor whose number is the binary reflected Gray code map of 35 ;-+-25. A

significant improvement is obtained because the key communication task (i-cycle)

163

is conducted at a physical distance of at most one using news communication for
all i-cycles. The programs were written in CM FORTRAN/PARIS and run on
a 32k CM-2. The times for different size FFT are listed in Table 8.12 and the
corresponding MFLOPS counts are listed in Table 8.13.

The MIFLOPS for (3) is calculated using the same formula as (1) and (2).
In reality, method (3) requires more than 7.5 operation per point and thus the
MFLOPS count should be higher due to the need for computing the sine and
cosine functions at each stage of the FFT.

These results demonstrate the attributes of cyclic-ordering, i-cycles, and the
new parallel method of computing the trigonometric coefficients. From Table 8,13,
we estimate a performance of about .9 GFLOPS for a 16M-point FFT on a full
64k CM-2.

8.5 Error Analysis of the New Method for Computing Trigonometric

factors

In this section we consider the numerical accuracy of our new method for gen-
erating the trigonometric factors. Both analytical and numerical results will be

presented. We shall begin with a few definitions.

Definition 8.5 [{9] If a number ¢ is represented by the nearest floating point

number (fl(z)) with precision t (number of digits for the mantissa) and machine

base b, then
A =a(+e), |el<u
where u is the unit roundoff error defined by

U= ibl“*.

2

164

Table 8.12: Computing time in seconds for three ordered FFT
size FFT || machine size | FF'T (1) | FFT (2) | FFT (3)
131072 8k 0.22 0.16 -
262144 8k 0.45 0.32 -
524288 8k 0.94 0.67 -
1048576 8k 1.92 1.39 -
2097152 8k 3.95 2.89 —
262144 16k 0.23 0.17 0.688
524288 16k 0.49 0.36 1.40
1048576 16k 1.01 0.72 2.95
2097152 16k 2.07 1.50 6.10
4194304 16k 4.23 3.07 12.68
524288 32k 0.25 0.19 -
1048576 32k 0.52 0.39 -
2097152 32k 1.09 0.80 -
4194304 32k 2.22 1.59 -
8388608 32k 4.55 3.29 -
FFT (1) standard order FFT.
FFT (2) cyclic-order FFT.
FFT (3) P. Hertz FFT. [60]

165

Table 8,.13: MFLOPS for three ordered FFTs

size FFT || machine size | FFT (1) | FFT (2} | FFT (3)
131072 8k 76 104 -
262144 8k 79 111 -
524288 8k 79 112 -
1048576 8k 82 113 -

2097152 8k 84 114 -
262144 16k 134 208 31
524288 16k 152 208 53
1048576 16k 156 218 53

2097152 16k 160 220 54

4194304 16k 164 225 55
524288 32k 299 393 -
1048576 32k 302 403 -

2097152 32k 303 413 -

4194304 32k 318 435 -
8388608 32k 318 440 -~

FFT (1) standard order FFT.

FFT (2) cyclic-order FFT.

FFT (3) P. Hertz FFT. [60]

‘-’ Data not available.

166

Definition 8.6 Let ck and sk be the exact required cosine and sine factors for

element j at stage k of the FFT, then the corresponding computed E:;? and 8% satisfies
| & —ck |[< h(k)u, and

| & — sk |< h(k)u

where h(k) is the growth rate of the error for our method.

Assumption : If ¢ and 8% are computed through direct cosine and sine

function calls to the library, then

The algorithm for computing the trigonometric factors is as follow :

Algorithm compute_factor :
[* at stage k=1,2,... %/
if (k .eq. 1) then
parfor j =0,1,-.-,n—1
& = cos(61) /* direct calls */
8l = sin(é’})
end for
else

parfor j =0,1,...,n~1

Ak nﬁ,‘:....]_ _ ,\}?_1

e =& « *2 8770 % 2
2k A}‘:‘—l Ak':_l

8k = 2 % S)

Ok = 2 x 9'1?“1

J

LY

167

if (0%.ge.7) then

Gk = gk — ¢
J 3

AL, [A

CF = -t

3 J

8k = 8k

g 3

end if
end for
end if

This method computes the trigonometric factors initially using direct calls to

the cosine and sine library functions and by the above assumption,
|&l —~cl[€u, and
i
| 8f st |<u, Vi

Lemma 8.2 | &F — (8§71)2 + (8571)2 [< 2u + u2.

Proof :

ﬁf = fl(fl(é;?‘loﬁ;?“l)_fl(g?-1§?_1))
= (@204 8) — (B2 + 6)] (1 +65)
= (G = G+ aE) -) + 65(E) -

B3(8571)% + 6165(851)% — 6,85(35-1)?
where | §; |< u,7=1,2,3 and which leads to the lemma by noting that

| &5 |< 1,5, k.

168

Lemma 8.3 | 8 — 2EE1EE1 1< 2,

Proof :

€33

koo ak—~1 3k—1
ko= fl2e 8+1)

= 28-1851(1 + 6,
where | &, |< u and which again leads to the lemma.

Lemma 8.4

| é;“ - cj.“ |< 2V2h(k — 1)u + 2u + u2, and

| 85— sh|< 2V2h(k — Du + 2u + u2.

Proof :
Bock] = 18- @ (R |+ (@ () - () 4 ()
< 2kt (G- ()R |+ (550 - (sl |
S 2utul [4 k-t | &kt — |+ |8 4+ sh=1 | gt — sh=1
< ud a4 ([E 4] e [| 3] 4 | s DAk D).
Now since

(851)2 4 (312 =1, and
(1) + (sh1)2 =1,

with a little trigonometry, it is straightforward to show that

| &1]+ |81 < V2

169

Hence we have,

&k —ck|< 2v2h(k — 1)u + 2u + u?.

R . " . 1®
r the computation of sine funciion.

Finally, we have the following theorem :

Theorem 8.1 Iféf and §;° are computed via Algorithm compute_factor, then
| & — & |< h(k)u + O(u?), and
| §f — s;? |< A{k)u + O(u?),
where h(k) = ﬁ(?\/i)k

Proof :

From the previous lemma, we have the following recurrence
h(k) = 2v/2h(k — 1).
Solving this recurrence using initial condition A(1) =1 gives
h(k) = ——(2VD)F.
2v2
Corollary 8.1 The mazimum error given by Algorithm compute._factor is ﬁin?’/ 2,

This is obvious if we notice that k£ only goes up to log, n.
An additional feature about this new method is that if the above error bound is
not acceptable, we can restart {using direct calls), say, at the middle (stage ligzﬁ)

of FFT and we have the following corollary.

Corollary 8.2 If the Algorithm compute_factor is restarted stage !3522—“, then the

mazimum error incurred is ﬁinﬁ/ 4,

170

This corollary can be easily proved by noticing now & only goes up to h’gT‘?"’. If
this bound is still not acceptable, we can have more restarts to achieve the desired
ACCUTACY,

It is given in [31] that the error for the Cooley Tukey FFT is of O{hmethod log, n)
where hmethod is the error incurred in the trigonometric factor calculations. Hence,

we have the final theorem.

Theorem 8.2 The error bound for the Cooley Tukey FFT using Algorithm com-

pute_factor to compute the trigonometric factors with m restarts is O(n”("’?ﬂi log, n).

In the following we present numerical results using single-precision arithmetie
on the CM. A vector consisting of a discrete sine function in the real part and
zero in the imaginary part is input to a FFT subroutine and the output is then
input to an inverse FFT subroutine, both using the new method. An error vector
is gencrated by taking the difference of the real parts of the original input and the
final output. Table 8.14 shows the maximum norm and the root mean square of
the error vector. The root mean square value is computed by taking the 2-norm
of the error vector and then divided it by the size of the input. Table 8.15 shows
the same norms but the new method is used with one restart. We observe a large

increase in accuracy with the use of just one restart.

8.6 Summary and Conclusion

First, the experimental results in section 4 demonstrate that performance can
be improved by using the ordered parallel FFTs that reduce communication by
combining the communication and computational phases [100]. Although this re-

sult has been demonstrated on the CM it would also be true for any hypercube

1

Table 8.14: Error magnitudes using the new method

size FFT N || Maximum norm | 2-norm/N
8192 6.43730e-4 3.31699%e-6
16384 1.44638¢e-3 4.34077e-6
32768 3.05253e-3 6.41415e-6
65536 6.69646¢-3 8.13486e-6
131072 1.6593%e-2 1.24870e-5
262144 3.11155e-2 2.00082e-5
524288 6.67725e-2 2.45073e-5

Table 8.15: Error magnitudes using the new method with 1 restart

size FFT N || Maximum norm | 2-norm/N
8192 2.44975e-5 9.07233e-8
16384 3.37362e-5 9.01880e-8
32768 4.61340e-5 8.24786e-8
65536 8.73804e-5 1.00031e-7
131072 1.00136e-4 8.58351e-8
262144 1.65522e-4 9.80134e-8
524288 2.08616e-4 8.93721e-8

172

because communication time is a significant part of the overall computing time.
Second, the cyclic-order FFT has performance that is superior to the standard-
order FFT and is therefore recommended where applicable. In addition, a parallel
algorithm for computing the trigonometric coefficients was presented that repre-
sents an attractive compromise between the communication, computation, and
memory constraints that exist on the CM. The use of the i-cycle, cyclic-ordering,
and the new parallel algorithm for computing the trigonometric coefficients have

resulted in the development of a high performance ordered FFT for the CM.

173

CHAPTER 9

Conclusion

Conjugate gradient methods, coupled with “effective” preconditioner, are effi-
cient methods for the solution of many systems arising from the discretization of
elliptic partial differential equations. In addition to the fast convergence rates, they
also offer high degree of parallelism, In particular, on massively parallel computers,
the conjugate gradient methods have been shown to be highly efficient.

Since the choice of preconditioner has a large effect on the convergence rate,
much research efforts have been to develop effective preconditioners. On the other
hands, many preconditioners which are effective in improving the convergence rates
have poor inherent parallelism and thus are unable to efficiently utilize the re-
sources offered by massively parallel computers. Unfortunately, these two desir-
able characteristics, namely fast convergence rates and high degree of parallelism,
usually do not come together., We conclude firstly that tradeoffs have to be made
between these characteristics in order to arrive at a preconditioner that gives lowest
execution time on a given massively parallel machine.

In search of efficient preconditioners on massively parallel machines, we inves-
tigate the class of multilevel preconditioners. In particular, we have developed
the class of multilevel filtering preconditioners which we have shown to be effec-
tive in improving convergence rates and which possess relatively high degree of
parallelism. These are confirmed by the experimental results on the Connection

Machine. The multilevel filtering preconditioners are similar to, but developed

174

independently of, the multilevel nodal basis preconditioners by Bramble, Pasciak
and Xu [22]. Using Fourier analysis, we have done a condition number analysis of
our method for models problems on uniform grids with certain boundary condi-
tions. For more general second-order self-adjoint problems on non-uniform grids,
the convergence results of our method follow the finite element theory from [22].
One advantage of the Fourier analysis in our case is that it helps to finetune our
preconditioners to effectively cope with different classes of self-adjoint problems
such as anisotropic problems and biharmonic equation. Implementation on the
Connection Machine for biharmonic equation shows an improvement in execution
time by an order of magnitude. With further optimization, an improvement by
two order of magnitude can be achieved.

At this moment, it is not clear whether the multilevel filtering preconditioners
are better than the standard multigrid method. While multigrid methods which
achieve full multigrid efficiency are hard to beat, we see that for problems with com-
plex operator and complex geometry, our operator-independent approach may be
more preferable. A detailed comparison between multigrid methods, our method,
and other multilevel preconditioners will be a valuable effort.

There are a few things that we have not done. For general fourth-order self-
adjoint elliptic problems, there is a need for a finite element theory for our mul-
tilevel filtering preconditioners. In this dissertation, we have made comparison
between a few multilevel preconditioners. This effort is by no means exhaustive.
In particular, we have not investigated in detail the algebraic multilevel precondi-
tioners developed by Axelsson and Vassilevski [9, 12, 13]. We plan to pursue this

preconditioner in the near future.

175

[1]

[7]
8]

Bibliography

Adams, L., Iterative Algorithms for Large Sparse Linear Systems on Parallel

Computers, PhD thesis, University of Virginia, 1982.

Adams, L., m-step Preconditioned Conjugate Gradient Methods, STAM J.
Sci. Stat. Comput., Vol. 6, No. 2, April 1985.

Adams, L. M., and Ong, E. G., A Comparison of Preconditioners for GM-
RES on Parallel Computers, in Parallel Computations and Their Impact on
Mechanics, ed. A. K. Noor, pp. 171-186, The American Society of Mechanical
Engineers, New York, N. Y., 1987.

Agron, E., Ordering Technigques for the Preconditioned Conjugate Gradient

Method on Parallel Computers, Master Thesis, University of Maryland, 1987,

Ashby, 8. F., Polynomial Preconditioning for Conjugate Gradient Methods,

Department of Computer Science, U. of Illinois at Urbana-champaign, Re-

port No. UIUCDCS-R-87-1355, 1987.

Ashcraft, C. C., and Grimes, R.G., On Vectorizing Incomplete Factorization
and SSOR Preconditioners, SIAM J. Sci. Stat. Comput., Vol. 9, No. 1, pp.
122-151, 1988,

Axelsson, O., A Generalized SSOR Method, BIT, Vol. 13, pp. 443-467, 1972.

Axelsson, O., On the eigenvalue distribution of a class of preconditioning

methods, Numer. Math. 48, pp. 479-498, 1986.

176

[9]

[12]

[17]

Axelsson, O., An algebraic framework for multilevel methods Report 8820,

Department of Mathematics, Catholic University, The Netherlands, 1988.

=) 1 7

Axelsson, O. and Barker, V. A., Finite Elemeni Solution of Boundary Value

Problems : Theory and Computation, Academic Press, 1984.

Axelsson, O. and Lindskog, G., On the Rate of Convergence of the Precon-
ditioned Conjugate Gradient Method, Numer. Math. 48, pp. 499-523.

O. Axelsson and P. Vassilevski, Algebraic multilevel preconditioning meth-
ods, I Report 8811, Department of Mathematics, Catholic University, The
Netherlands, 1988.

0. Axelsson and P. Vassilevski, Algebraic multilevel preconditioning meth-
ods, II Report 1988-15, Institute for Scientific Computation, University of

Wyoming, Laramie, Wyoming, 1988.

R. E. Bank and T. F. Dupont, An Optimal Order Process for Solving Elliptic
Finite Element Equations, Math. Comp. 36, pp. 35-51, 1981,

R. E. Bank, T. F. Dupont and H. Yserentant, The hierarchical basis multigrid
method, J] Numer. Math., 52, pp. 427-458, 1988,, 1988.

C. L. Baucom, Reduced Systems and the Preconditioned Conjugate Gradient
Method on a Multiprocessor, CSRD Report No. 807, University of Illinois at
Urbana-Champaign, Nov, 1988.

H. Berryman, J. Saltz and W. Gropp, Krylov Methods Preconditioned with
Incompletely Factored Matrices on the CM-2, Department of Computer Sci-
ence, YALEU/DCS/TR-685, Yale University, March 1989.

177

[18]

[22]

[23]

[26]

G. Birkhoff and Lynch, Numerical Solutions for Elliptic Problems, STAM,
Philadelphia, 1984.

D). Braess, On the Combination of the Muliiigrid Method and Conjugate Gra-
dients, Lecture Notes in Mathematics, Multigrid Methods II, edited by W.
Hachbusch and U. Trottenberg.

J. H. Bramble, J. E. Pasciak and A. H. Schatz, An iterative method for
elliptic problems on regions partitioned into substructures, Math. Comp., 46,

(1986), pp. 361-369.

J. H. Bramble, J. E. Pasciak and A. H. Schatz, The construction of precon-
ditioners for elliptic problems by substructuring, I, Math. Comp., 47,(1986),
pp.103-134.

J. H. Bramble, J. E. Pasciak and J. Xu, Parallel multilevel preconditioners,

To appear in Math. Comp.

W. Briggs and Van Henson, Wavelets and Multigrid, A talk on given at the

Copper Mountain Conference on Iterative Methods, 1990.

A. Brandt, Multi-level adaptive solutions to boundary-value problems, J

Math. Comp. vol. 31, No. 138, pp. 333-390, 1977.

Chan, Tony F., Domain Decomposition Algorithms and Computational Fluid

Dynamics, CAM Report 88-25, Department of Mathematics, UCLA, 1988.

Chan, Tony F., and Elman, Howard C., Fourier Analysis of Iterative Methods
for Elliptic Problems, SIAM Review, Vol. 31, NO. 1, pp. 20-49, March 1989.

178

[27]

[28]

[31]

[32]

[33]

[34]

[35]

[36]

Domain Decomposition Methods for Partial Differential Equations, edited by
T. F. Chan, R. Glowinski, J. Periaux, O. B. Widlund, SIAM, Philadelphia,
1989.

T. F. Chan, Jay C.C. Kuo and C. H. Tong, Parallel elliptic preconditioners:
Fourier analysis and performance on the Connection Machine, Computer

Physics Communications 53, pp. 237-252, 1989.

Chandra, R., Conjugate Gradient Methods for Partial Differential Equations,

Ph. D. Thesis, Computer Science Department, Yale University, 1978.

H. Chen and A. Sameh, A Domain Decomposition method for 3D Elasticity
Problems, CSRD Report No. 890, Univeristy of Illinois, Sept. 1989.

C. Chu, Fast Fourier Transforms on Hypercube Computers, Dissertation.

Connection Machine Model CM-2 Technical Summary, by the Thinking Ma-

chine Corporation.

R. E. Crochiere and L. R. Rabiner, Multirate Digital Signal Processing
Prentice-Hall, Inc., Englewood Cliffs, N.J., 1983

1. Daubechies, Orthonormal Bases of Compactly Supported Wavelets, Comm.
Pure Appl. Math. 41, 1988, pp.909-996.

Donato, J., Fourier Analysis of Polynomial Preconditioners for the 5-point

Laplacian, Term Paper, Department of Mathematics, UCLA, 1988.

C. Douglas and W. Miranker, Constructive interference in parallel algo-

rithms, SIAM Journal on Numerical Analysis, 25 (1987), pp. 376-398.

179

[37]

[43]

[44]

[45]

[46]

M. Dryja, A capacitance matriz method for Dirichlet problem on polygon
region, Numer. Math., 39, 1982, pp. 51-54.

m T

Dufl, 1. 5., and Meurant, G. A., The Effect of Ordering on Preconditioned

Conjugate Gradients, September 1988,

Dupont, T., Kendall, R. P., and Rachford, H. H. Jr., An Approxzimate Fac-
torization Procedure for Solving Self-adjoint Difference Equations, SIAM J.

Numer. Anal., vol. 5, No. 3, pp. 559-573, 1968.

S. Eisenstat, Efficient Implementation of a Class of Conjugate Gradient
Methods, SIAM J. Sci. Stat. Comput. 2, 1-4,

H. Elman, Personal Communication.

G. C. Fox and §. W. Otto, Concurrent Computation and the theory of Com-

plex systems, Technical Report CCCP-255, California Inst. of Technology,
Pasadena, CA, March 1986.

D. Fraser, Array permutation by index-digit permutation, J. ACM, 22(1976),
pp- 298-306.

P. Frederickson, Totally Parallel Multilevel Algorithms, RIACS technical re-
port 88-34.

P. Frederickson and O. McBryan, Parallel superconvergent multigrid, in
Multigrid Methods, S. F. McCormick (editor), Marcel Dekker, New York
and Basel, 1988,

D. Gannon and J. V. Rosendale, On the structure of parallelism in a highly

concurrent PDE solver, Journal of Parallel and Distributed Computing, 3

180

[47]

[48]

[51]

(1986}, pp. 106-135.

A. George and J. Liu, Computer Solution of Large Sparse Positive Definite

Systems, Prentice-Hall, Englewood Cliffs, NJ.

R. Glowinski, W. Lawton and M. Ravachol, Wavelet Solution of Linear and
Nonlinear Elliptic, Parabolic and Hyperbolic Problems in One space Dimen-

sion, Report of the AWARE, Inc,

Golub, G. H., Van Loan, C. F., Matriz Computations, the Johns Hopkin

University Press, 1983, chapter 6.

A. Greenbaum, A Multigrid Method for Multiprocessors, Proceedings of the
Second Copper Mountain Conference on Multigrid Methods, S. McCormick,
ed., 1986, pp.75-88.

A. Greenbaum, C. Li and H. Z. Chao, Parallelizing preconditioned conjugate
gradient algorithms, Computer Physics Communications, vol. 53, 1989, pp.
295-309

L. Gustafsson, A Class of First Order Factorization Methods, BIT, v. 18, pPp-
144-156, 1978.

W. Hackbusch, Convergence of Multigrid Iterations aplied to difference equa-
tions, Math. Comp. vol. 34, pp. 325-340, 1980.

W. Hackbusch, A New Approach to Robust Multi-Grid Methods, Invited Lec-
ture at ICIAM, Paris, June 29, 1987, and Bericht 8708, Christian-Albrechts-
Universitaet Kiel, 1987. Proceedings of the ICIAM’87 Conference, SIAM
books, Philadelphia, 1988,

181

[55]

[58]

W. Hackbusch, Multi-Grid Methods and Applications,

Springer-Verlag,Berlin, Germany, 1985.

Hageman, L. A., Young, D. M., Applied iteraiive Methods, Academic Press,
N.Y., 1988.

S. Hammond, Solving Unstructured Grid Problems on Massively Parallel

Computers, A talk given at the Copper Mountain Conference on Iterative

Methods, 1990.

V. E. Henson, W. L. Briggs, Wavelets: What are they and what do they
have to do with Multigrid? A presentation given at the Copper Mountain

Conference on Iterative Methods, April 2-5, 1990,

O. Herrmann, On the approzimation problem in nonrecursive digiltal filter

design, IEEE Trans. on Circuit Theory, vol. CT-18, 1971, pp. 411-413

P. Hertz, An Algorithm for the Fast Fourier Transform On the Connection

Machine, accepted by Computers in Physics, June 1989.
Hillis, W. D., The Connection Machine, MIT Press, Cambridge, MA, 1985.

Ho, C. T. and Johnsson, S. L., Optimal Algorithms for Stable Dimension
Permutation on Boolean cubes, In the Third Conference on Hypercube Con-

current Computers and Applications, pp. 725-736.

Hockney, R. W. and Jesshope, C. R., Parallel Computers : Architectures,

Programming and Algorithms, Adam Hilger Ltd., Bristol, England, 1981.

Hwang, K. and Briggs, F. A., Computer Architectures and Parallel Process-
ing, McGraw-Hill Inc., New York, NY, 1984.

182

[65]

[66]

[67]

[68]

[69]

Johnson, O., Micchelli, C. A., Paul, G., Polynomial Preconditioners for Con-
Jugate Gradient Calculations, SIAM J. Numer. Anal., Vol. 20, No. 2, April
1983, pp. 362-376.

S. L. Johnsson, Communication Efficient Basic Linear Algebra Computations
on Hypercube Architectures, J. Parallel Distributed Comput., 4(2):133-172,
April 1987.

5. L. Johnsson and C. T. Ho, Matriz Transposition on Boolean n-cube Con-
figured Ensemble Architectures, SIAM J. Matrix Anal. Appl., Vol. 9, No. 3,
pp. 419-454, July 1988.

S. L. Johnsson and C. T. Ho, Spanning Graphs for Optimum broadcasting
and personalized Communication in Hypercubes, IEEE Trans. Computers,

Vol. 38, No. 9, pp. 1249-1268, September 1989.

5. L. Johnsson, C. T. Ho, M. Jacquemin and A. Ruttenberg, Computing Fast
Fourier Transforms on Boolean Cubes and related networks, In Advanced
Algorithms and Architectures for Signal Processing II, Vol. 826, pp. 223-231,
1987.

L. Johnsson, Rl L. Krawitz, D. MacDonald, and Roger Frye, A radiz-2 FFT
on the Connection Machine, In Supercomputing 89, pp. 809-819, ACM, Nov.
1989,

Jordan, T. L., Conjugate Gradient Preconditioners for Vector and Parallel
Processors, Elliptic Problem Solvers I1, 1983, pp.127-140.

R.A. Kamin III, and G.B. Adams III, Fast Fourier Transform Algorithm

Design and Tradeoffs on the CM, Proceedings of the Conference on Scientific

183

[74]

[75]

Applications of the Connection Machine, Editor : H. Simon, World Scientific
Publishing Co., 1989.

R. Kettler, Analysis and comparison of relazation schemes in robust multigrid
and preconditioned conjugate gradient methods, Multigrid Methods, Hack-
busch and U. Trottenberg, Springer-Verlag, New York, N.Y. 1982, pp. 502-
534

R. Kettler and J. A. Meijerink, A multigrid method and a combined multigrid-
conjugate gradient method for elliptic problems with strongly discontinuous
coefficients in general domain, Shell publication 604, KSEPL, Rijswijk, The
Netherlands

Kuo, C.-C. Jay, and Chan, Tony F., Two-color Fourier Analysis of Iterative
Algorithms for Elliptic Problems with Red/Black Ordering, CAM Report 88-
15, Department of Mathematics, UCLA, 1988.

C.-C. J. Kuo, T. F. Chan and Charles Tong, Multilevel Filtering Elliptic
Preconditioners, STAM J. Matrix Analysis and Applications, Vol. 11, No. 3,
July 1990.

Y. A. Kuznetsov, Multigrid domain decomposition methods for elliptic prob-
lems, Proceedings VIII International Conference on Computational Methods

for Applied Science and Eng. Vol. 2, 1987, pp. 605-616

Creon Levit, Grid Communication on the Connection Machine : Analysis,
performance, and improvements, Proceeding on the Scientific Application of
the Connection Machine, Editor : Horst Simon, World Scientific Publishing
Co., 1989,

164

[79]

[81]

[82]

[87]

R. E. Lynch and J. R. Rice, A high-order difference method for differential
equations, Math. Comp., 34 (1980), pp. 333-372.

McBryan, O. A., State-of-the-art in Highly Parailel Computer Systems, in
Parallel Computations and Their Impact Mechanics, ed. A. K. Noor, pp.
31-46, The American Society of Mechanical Engineers, New York, 1987.

McBryan, O. A., The Connection Machine : PDE solution on 65586 Proces-

sors, Parallel Computing, to appear.

O.A. McBryan, Connection Machine Application Performance, CU-CS-434-

89, Department of Computer Science, University of Colorado, April 1989.

O.A. McBryan and E. van de Velde, Parallel Algorithms for Elliptic Fqua-
tions, Commun. Pure Appl. Math. 38, pp. 769-795.

S. McCormick and J. Thomas, The Fast Adaptive Composite Grid (FAC)
Method for of Elliptic Equations, Mathematics of Computation, Vol. 46, No.
174, April 1986, pp. 439-456

S. McCormick, Multilevel Adaptive Methods for Partial Differential Equa-

tions.

Meijerink, J. A., and Van der Vorst, H. A., An iterative Solution Method for
Linear Systems of which the Coefficient matriz is a symmetric M-Matriz,

Math. Comp., Vol. 31, no. 137, pp. 148-162, 1977.

M. E. G. Ong, The 8D linear hierarchical basis preconditioner and its shared
memory parallel implementation, Preprint, Department of Applied Mathe-

matics, University of Washington, Seattle, WA 98195

185

[88]

[90]

[92]

[93]

A.V. Oppenheim, and R.W. Schafer, Digital Signal Processing, Prentice Hall,
1975.

Grtega, J. M., Iniroduction to Parallel and Vecior Solution of Linear Sys-

tems, Frontier of Computer Science, Plenum Press, New York, 1988, Section

3.4.

Ortega, J. M., and Voigt, R. G., Solution of Partial Differential Equations on
Vector and Parallel Computers, SIAM Review, Vol. 27, No. 2, pp. 149-240,
June 1985.

Poole, E. and Ortega, J. M., Multicolor ICCG Methods for Vector Computers,
SIAM J. Numer. Anal. 24, pp. 1394-1418,

Y. Saad, Practical Use of Polynomial Preconditionings for the Conjugate
Gradient Method, SITAM J. Sci. Stat. Comput., Vol. 6, No. 4, Oct. 1985.

M. Schultz and Y. Saad, Parallel Implementations of Precondi-
tioned Conjugate Gradient Methods, Department of Computer Science,
YALEU/DCS/TR-425, Yale University, October, 1985.

B. F. Smith, An Optimal Domain Decomposition Preconditioner for the Fi-

nite Element Solution of Linear Elasticity Problems, Preprint.

B. Smith and O. Widlund, 4 domain Decomposition Algorithm based on a

change to a hierarchical basis, submitted to STAM J. Sci. Stat. Comput.

G. Strang and G. J. Fix, Wavelets and Dilation Equations : A bricf Intro-
duction, SIAM Review, December 1989, pp. 614-627.

186

[97]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

G. Strang and G. J. Fix, An Analysis of the Finite Element Method, Prentice-

Hall series in automatic computation, 1973,

K. Stuben and U. Trottenberg, On the consiruction of fast solvers for elliptic

equations, Computational Fluid Dynamics, Rhode-Saint-Genese, 1982.

P.N. Swarztrauber, FFT algorithms for vector computers, Parallel Comput-

ing, 1 (1984), pp. 45-63.

P.N. Swarztrauber, Multiprocessor FFTs, Parallel Computing, 5 (1987), pp.
197-210.

P.N. Swarztrauber, The FFT a s a Multigrid Algorithm, Draft, January 5,
1989.

C. H. Tong, Preconditioned Conjugate Method on the Connection machine,

International Journal of High Speed Computing, 2nd issue 1989.

C. H. Tong, C. and P. Swarztrauber, Ordered Fast Fourier Transform on a
Massively Parallel Hypercube Multiprocessor, Accepted by Journal of Parallel

and Distributed Computing,

R. 8. Tuminaro, Multigrid Algorithms on Parallel Processing Systems, PhD

Thesis, Department of Computer Science, Stanford University, Dec. 1989,
R. 5. Varga, Matriz Iterative Analysis, Prentice-Hall, Englewood Cliffs, NJ.

P. Vassilevski, Iterative methods for solving finite element equations based on
multilevel splitting of the matriz, Preprint, Bulgarian Academy of Science,

Sofia, Bulgaria, 1987

187

[107] J. Xu, Theory of multilevel methods, Ph.D. Thesis, Department of Mathe-
matics, Cornell University, N.Y. 14853, 1989

[108] J. Xu, Iterative Methods by Space Decomposition, A talk given at the Copper

Mountain Conference on Iterative Methods, 1990.

[109] J. Xu and J. Qin, On Some multilevel preconditioners, Submitted to SIAM

J. on Sci.and Stat. Comput.

[110] D. M. Young, lterative Solution of Large Linear Systems, Academic Press,
New York, 1971.

[111] Yserentant, H., On the Multilevel Splitting of Finite Element Spaces, Numer.
Math., Vol. 49. 1986, pp. 349-412.

188

