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Abstract
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dimensional scalar case. The main idea is still that on each side of a discon-
tinuity the computation draws information from the same side. A numerical
method for ordinary differential equations that models the movement of the
discontinuity curve is incorporated into the algorithm to compute disconti-
nuity positions. Conservation feature of the treatment is presented for the
case of a single discontinuity. Finally, numerical examples are displayed.
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1. Introduction

In this paper we extend the treatment for discontinuities introduced in
[4], 5], and [6] to two dimensional scalar conservation laws

e+ F(), +g(u)y = 0 (L1a)

with initial value condition

u(z,y,0) = u(z,y)- (1.1%)

First we recall the treatment for the one dimensional case in {4]. The
treatment is a shock tracking technique, whose main idea is that the com-
putation on each side of a discontinuity draws the information that jumps
at the discontinuity only from the same side. An numerical method for or-
dinary differential equations is incorporated into the underlying scheme to
compute positions of the discontinuity. As an example for the performance
of the treatment, we describe how it treats a single discontinuity in one di-
mensional scalar case.

Assume the underlying finite difference scheme is a general conservative
scheme:

with =u? = M2 = Flap), (1.2)

where u? denotes the datum of the numerical solution at a grid point (z;,t"),

f;}+1/2 = f(u_?ukq.p T u?-q-k) (1'3)

is a consistent numerical flux depending on 2k variables, A = 7/ is the mesh
ratio, where 7 and k are the time and space increments respectively. Suppose
that on the level n the numerical solution just has a jump in a cell [z;,, 2,41,
on each side of which the numerical solution is supposed to be smooth {as
shown in Figure 1.1). Also suppose that the position of the discontinuity
within the cell is known as 7. The cell is called as a critical cell, to which
the treatment is going to be applied. The treatment performs in the following
four steps: .

1) Extrapolate the numerical solution from each side of the discontinuity
to the other side, and get a set of extrapolated data:

n,4 nAt - n,—
Ui py gy s U a1s s U ks (1.4)
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where the data with “=” are from the left to the right and the data with
447 are from the right to the left.

2) On each side of the discontinuity compute the numerical solution by
using the extrapolated data from the same side; i.e., when z; < z;,,

wrt = u? = Mfy e — f5 ), (1.5)
where ) -
f?.ﬁ/z':f(u?_.k.i_p : u :u31+1, "y ?:l-k) (1°6)
and when z; > z;,,
U?'H =ur— ’\(f_«,+1/2 g 1/2)’ (1.7)
where
f;ﬁ/z f(u?’-+i;+1""“?f+>”;+1’ : ’u?1+k)’ (1.8)

3) Compute £7+1, the position of the discontinuity on the level n +1, by
a numerical approximation to the Hugoniot condition; e.g.,

F(ug) = (k)

r gl
Ue“ u{n

£t =+ 7, (1.9)
where, u’ and uT, are extrapolated data of the numerical solution from the
two sades of the (ilscontmulty at the position of the discontinuity.

4) Determine the critical cell on the level n + 1 according to the new
position of the discontinuity. If {»+1 is still in [z, 2, 4], take the same cell
as the critical cell on the new level. I £7+! moves into the left adjacent
cell [z;,_,,x;], take this cell as the critical cell, meanwhile update uit by
the extrapolated datum of un*! from the right side. If {**1 moves into
[€;,41, %;,42), take this cell as the new critical cell and update upty.

Unlike the traditional shock tracking methods, this treatment does not
need a lower dimensional adaptive grid to resolve the discontinuity, nor com-
putes the numerical solution at points of this grid. Thus, the whole compu-
tation still proceeds on the regular grid, the corresponding algorithm is quite
simple and it is possible to use it to capturing a spontaneous shock.

The numerical solution computed by using the treatment is not conserved;
however, [4] proved that it satisfies

Zu;h = Z:-u?h + O(h), (1.10)



which indicates that it is almost conserved.

To build up the treatment for the two dimensional equation (1.1a), we
first need to extend the concept of the critical cell to the two dimensional case.
Since a two dimensional discontinuity is a curve, we call the mesh intervals
the discontinuity crosses as critical mesh intervals (see Figure 2.2). There are
two kinds of critical mesh intervals, the horizontal critical mesh intervals that
are on horizontal grid lines and the vertical critical mesh intervals that are on
vertical grid lines. A discontinuity in the numerical solution is represented
by a group of horizontal and vertical critical mesh intervals, each of which
contains a position of the discontinuity, i.e., the intersection point of the
discontinuity and the critical mesh interval.

An important part of the treatment is to incorporate a numerical method
for the Hugoniot condition into the underlying scheme. This is relevantly
easy for the one dimensional case since the corresponding condition is an
ODE. However, this is somewhat difficult for two dimensional case since
the corresponding condition is a partial differential equation involving the
normal vector to the discontinuity curve (see [11]). If one discretizes the
Hugoniot condition along the normal direction to compute positions of the
discontinuity, just as what the real tracking method does, the positions of
the discontinuity on the next level will mostly go into grid meshes; therefore
the computation can not mantain only on the regular grid.

In this paper we discretize the Hugoniot condition along the horizontal
or vertical directions rather than the normal direction. We compute the
horizontal or vertical moving speeds of discontinuity positions, and use them
to compute the new positions on the next level. Theorem 2.1 in §2. gives the
formulae for the calculation, which are derived from the Hugoniot condition.
In doing so, the whole computation still proceeds on the regular grid points,
and no information from the interior of the grid meshes is needed.

The paper is organized in the following manner: §2. describes the treat-
ment for a single discontinuity. §.3 discusses the conservation feature of the
treatment and shows that in two dimensional case the numerical solution is
also almost conserved. §4. describes the treatment of interactions of discon-
tinuities. §5. presents some numerical examples of the treatment.

2. Treatment for a Single Discontinuity



The following theorem gives the formulae to calculate the horizontal and
vertical moving speeds of discontinuity positions.

Theorem 2.1 On the (z,y)—plane, an intersection point of a discontinuity
curve of (1.1) with a horizontal line satisfies the following ordinary differen-

tial equation 5 1+ Bla]
T « + Plg :
8t o] (2.3)

and an intersection point of the discontinuity curve with & vertical line sai-

isfies

dy _ off] + Blg]

ot Bl
where z and y are the horizontal and vertical coordinates of the intersection
point, [v] indicates the jump of a quantity v across the discontinuity, (c, B)
is the normal vector to the discontinuity curve at the intersection poini.

Proof. Assume S is a discontinuity surface of (1.1a) in the three dimen-

sional (z,y,t)~space, which cuts a horizontal plane at time ¢ by a curve C
(see Figure 2.1). At a point p on C the two states connected by the discon-
tinuity satisfy the following Hugoniot condition:

i - ([u],[f],[g])= 0, (2.3)

where 7i is a normal vector to S at p (see {11]). This means that the vector
9y = {[u), [f],g]) is tangential to S. Since the horizontal normal vector to C
at p on the (z,y)-plane is (&, B), vector v = (0, —fF, &) is also tangential to
S. Therefore, the vector

01 x 0 = (—a[f] — Blgl, e[u], Blu]) (2.4)

is perpendicular to S at p. This indicates that .S has the following differential
form:

(2.2)

(e{f} + Blg))dt = aluldz + Blu]dy. (2.5)
By taking r and y to be constants respectively we obtain (2.1) and(2.2).
Thus ends the proof.

We assume the underlying scheme is a method of lines approximation to
(1.1) (see [7],[8],[9],{10]) with the predictor-corrector time discretization for



u,. That is

“ﬂ:iﬂ =up.— Li(um); ; — Ly(u ") (predictor)
aft = ulf = L(wt12), ;- Ly(uri/2), (26)
TR ’ " (corrector),
uy = (g T ET),
where
L.f( ) ( i+1/2,5 t—1f2,_7)
(2.7)
A 3 1% %3
Ly(ur)i; = '2”(9’&,.1'+1/2 = §iap)

are approximations to i7f, and %*rgz at point (7,j) with the fluxes f7, /2
and g7, defined as

firil/?,j = f(”?~k+1,j’ h "u?-}-k,j)

(2.8)
Tije = 9l ker > W)
consisting with f and ¢ in the sense that
fla,+,w) = f(a)
(2.9)

é(ua " 'au) = g(u)

We would like to mention that the discussion in this paper applies to methods
of lines approximation with any type of Runge-Kutta time discretizations.

A reason to use this type of schemes is that it is easy to incorporate the
Runge-Kutta methods for the Hugoniot condition, which have been proved to
be effective numerical methods and already been wildly used to solve ordinary
differential equations. Another reason is that we can use fluxes (2.8) with a
Runge-Kutta procedure to get a high order underlying scheme, by which we
avoid two dimensional extrapolation. This will be shown later in this section.

Since the underlying scheme is essentially a combination of two Euler
forward schemes, it is sufficient to build up the treatment for this forward
version

. A . o
'U:L;!.l (ft-i-l/Z '] fin-.-1/2,j) - -2“(9'::3.'_1/2 - 95,5_1/2)- (2.10)
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For a single discontinuity, the treatment generally still performs in four
steps as it does in the one dimensional case described in §1, i.e.

1) prepare extrapolated data that will be used in the computation.

2) compute the numerical solution using the extrapolated data from the
same side.

3) compute positions of the discontinuity on the next level by (2.1)
and (2.2).

4) determine the critical mesh intervals on the next level according to the
new positions of the discontinuity and update the numerical solution
at some grid points if necessary.

However, due to the geometrical complexity, the two dimensional treatment
is more complicated than the one dimensional version, and more details are
described in the follows.

Preparation of the extrapolated data and computation on each side of the
discontinuity.

Due to the use of fluxes (2.8), step 2) is easy to be done. For example,
suppose that we have a discontinuity as shown in Figure 2.2, the two sides
connected by which are denoted by “~” and “+” respectively. The numerical
solution at point Py(z;,,y;,) is computed as follows:

) N
i — Ty Ty ATy ALy
u?f:x uiim o 2(f£1+1/2,j1 - fi'1‘-1/2,.1'1) . (911.Jx+1/2 9i - 1/2) (2‘11)
where
fi+1/2,jl - f(u?—k-l-l,j] TR u::_ NIk u: ’1+1$Jl’ AR -'D f+k131)7 (212)
and

ATLy— o n R "" . ?1.,:— .
gu gJ+1/2 = g(uii,j—k-i-l LRI un,_n-{-l » Uyis 420 " Uy gy +k)‘ (2'13)

The numerical solution at point P,(z;,44,¥;,) is computed as follows:

A A"'|+

+1 — - — Fn,+ —— Attt — At
Uit = Yt 2(f irasza i1+1/2,51) 2(951+1,j1+1/2 9£1+1,:'1—1/2)a
(2.14)
where
A A +
f;+1/2,_11 f( r,‘—k-!-l,.?: A ’u’x‘%z W1 u11+1 gt u?+k;j1) (215)



and

Fut n+

o ﬂ1+ . . n
g=1+1,3+1/2 g(uy.i1+1,j~k+1’ Yy Uy 41,510 :1+131 ’ui1+1,j+k)' (2‘16)

f only uses ext.ra,poia,ted data along the z direction, which are indicated by
a lower index z, while § only uses extrapolated data along the y direction,
which are mdlcated by a lower index y. This is possible since all the variables
in f are on a same horizontal grid line and all the variables in § are on a
same vertical grid line. In doing so, we avoid two dimensional extrapolation,
which, otherwise, might cause comph'cation. Since the extrapolated data are
prepares in such a dimension-by-dimension way, at a same grid point the two
numerical fluxes may use different data that are from different directions.
However, the numerical experiments show that this does not cause problems.
The reason is, as we claimed in [4], that these extrapolated data are es-
sentially ”virtual” since shocks have a characteristic-converging feature and
contact discontinuities have a characteristic-paralleling feature, due to which
the solution on each side of the discontinuity substantially gets information
from the same side.

Calculation of normal vectors.

To compute each position of the discontinuity in step 3), the normal vec-
tor (e, f) is needed. This can be numerically computed by interprolating the
nearby discontinuity positions. For example, A is a position of the disconti-
nuity in a horizontal critical mesh interval (as shown in Figure 2.2). Choosing
(A, B) as the interprolation stencil one can compute (o, B) with first order
accuracy,

Ya—Yp

L2 (2.17)

ﬂzLﬂMﬂ,

TAB

where (z,4,94) and (zp,yp) are the coordinates of A and B and r4p is the
distance between A and B, i.e.,

rap = ((z4 —28)* + (4 — ve))"/*.

Choosing (A, B, C) as the interprolation stencil one can compute (e, ) with



second order accuracy,

Y Y Ya— Y
a= —(?'Ac A 2. AB C)/("Ac - TAB)
TAB TAC (2.18)
Tp—Tg Ty —Ig ’
g = (’"Ac-"""‘—— - TAB““““—“")/(TAG - TAB)-
TAB TAC

However, the interprolation stencils are critical to the stability of the
computation. Numerical experiments show that an arbitrary selection of the
stencils, say, symmetrically picking positions on the left and right hands of 4,
may produce wiggles for the discontinuity curve and finally spoil the compu-
tation. The following discussion gives a stable way to select the interprolation
stencils. '

According to (2.3), the movement of a discontinuity curve of (1.1) at
each point is a combination of two movements, a horizontal movement with
a speed [f]/[u} and a vertical movement with a speed [g]/[u]. Based on this
observation, the interprolation stencils can be selected in an up-wind way.
For example, to compute the normal vector at point A, we first evaluate
sa = (g(w) — 9(+é,))/(u7, — ul,), which is an approximation of [g]/[u] at A,
where u!, and 7, are the extrapolated data from the left and right side along
the z direction at point A. If s 4 > 0, which indicates that the discontinuity at
this point moves vertically upward, we select A, B, C, - - - as the interprolation
stencil; otherwise, s, < 0, which indicates that the discontinuity at this point
moves vertically downward, we select A, D, E, - - - as the interprolation stencil.
The vertical critical mesh intervals can be treated symmetrically.

When a stencil is of two points, it is easy to see how this selection elim-
inates wiggles to stablize the computation. Assume that s4 > 0 and A
deviates a little bit leftward from its normal location. This deviation de-
creases the o and increases the § in-(2.17), which increases the z speed in
(2.1). Therefore, A moves faster than normal and on the next level the wiggle
disappears. On the other hand, one can easily see that selecting (A, D) as
the stencil will amplify the wiggle. Other cases also can be verified easily.

Handling of triangles.

The discontinuity curve may intersect a grid mesh obliquely that it cuts
out a triangle. An example is displayed in Figure 2.3, in which discontinuity
curve C cuts out a triangle AOAB from a grid mesh T. Some particular
handlings for this triangle are necessary.



First, when a triangle is very small, the discontinuity positions in the two
related horizontal and vertical critical mesh intervals, i.e. A and B in Figure
2.3, will be very close to each other. Therefore, interprolation stencils for
computing normal vectors might have two very close adjacent points if we
successively choose discontinuity positions on the discontinuity curve for the
stencils. This type stencils might not be good since these two points together
with other points in a stencil might not be in a smooth pattern. To avoid
these stencils, a criterion based on observation of distances between adjacent
positions is set up in choosing points; thus, when A and B in Figure 2.3 are
too close to each other, say, the corresponding distance is less than a constant
related to the mesh size, we give up B and chooses C for the stencil.

Second, the movements of the two related horizontal and vertical critical
mesh intervals must match each other to keep the continuity of the discon-
tinuity curve. Denote the two related horizontal and vertical critical mesh
intervals that contain A and B by CM, and C Mg respectively. Obviously,
only the following two cases are accepted: either both C M, and ¢ Mp move
across grid point O to their adjacent mesh intervals, or none of them does.
There should be different ways to accomplish it, and this paper does it in a
simple way. We define a direction for the discontinuity curve, which gives
an order for the discontinuity position on it. If B is behind A in the order,
CMg’s movement must follow C'M’s, even though the new position of B
might be a little bit out of its critical mesh interval on the new level. The nu-
merical experiments show that such a little deviation from the corresponding
critical mesh intervals for discontinuity positions does not cause problems.

When both A and B in Figure 2.3 cross O, the datum of the numerical
solution at O is updated by the mean value of the extrapolated data from
the = and y directions.

Cases for small o or B.

When one of the components of normal vectors, i.e. « or 8, is very
small, which indicates that the discontinuity curve almost parallels horizontal
or vertical grid lines, the two dimensional treatment has some geometrical
feature the one dimensional version does not have.

First, the moving speeds evaluated by (2.1) and (2.2) might be very big;
therefore, positions of the discontinuity might cross more than one mesh
intervals along grid lines in one timestep, no metter how the mesh ratio is re-
stricted. Figure 2.4-a gives such an example, in which horizontal critical mesh



interval C M, moves two mesh intervals to the right when the discontinuity
curve moves from C* to Cn+! in one timestep. The direction of the discon-
tinuity curve determines whether CM, and CMp cross O to their adjacent
mesh intervals. However, since a is very small, A’s new position might have
a rather big error, it is improper that the direction still determines whether
CM, and C M cross Oy and whether CM, and CMp cross O,, and so on.
We stipulate that C'M,’s movement follow CMy’s and CMp’s movements
so that the later two ones dominate the situation. If CM, crosses O; and
0,, the data at these points will be updated by the extrapolated data along
the y direction. Also an adjustment of A is necessary if it deviates too much
(say, more than one mesh interval) from its critical mesh interval, since this
may cause problems in computing normal vectors. A simple way is to cut off
the part out of its critical mesh interval.

Second, the discontinuity might lose critical mesh intervals when it moves.
Figure 2.4-b gives such an example, in which critical mesh intervals C M4 and
CMp are lost when the discontinuity curve moves from Cn to Cnt1,

Third, the discontinuity might get new critical mesh intervals when it
moves. Figure 2.4-c gives such an example, in which critical mesh intervals
CM, and C Mp are got when the discontinuity curve moves from C* to Cr+1.
There are different ways to calculate discontinuity positions for the new-
generated critical mesh intervals; however, in this paper we simply choose
their middle points as the positions of discontinuity.

The adjustment of discontinuity positions and the selection of discon-
tinuity positions for the new-generated critical mesh intervals are not very
accurate and, therefore, the discontinuity curve might have small wiggles
there. However, the numerical experiments show that the stability mech-
anism implemented by proper selection of interprolation stencils described
before will smooth the curve soon after in computation. :

It is easy to see that the two dimensional treatment, just as its one dimen-
sional version, does not need a lower dimensional grid for the discontinuity,
nor adaptive schemes to compute the numerical solution near the disconti-
nuity. The whole algorithm still proceeds on the regular grid. And also, if
the underlying scheme is high order accurate, by using high order extrap-
olation and interpolation in the computation of the extrapolated data and
the normal vectors one can get high order spatial accuracy for the overall
algorithm.

We follow the way described in §6 in [4] to incorporate the treatment
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for (2.10) into the two step predictor-corrector method, which substantially
applies to any Runge-Kutta methods.

1) The treatment should perform in each of the predictor and corrector
steps; however, only the predictor step moves the critical mesh intervals
according to their new discontinuity positions.

2) For a critical mesh interval, the predictor step gives a discontinuity po-
sition £7+1/2, and the corrector step gives a position £7+1, The discontinuity
position on the new level is finally given by

41 = (e + B). (2.19)

3) When a critical mesh interval moves to its adjacent mesh interval in
predictor step, at the point at which the numerical solution is updated, uf,
in the second formula in the corrector step should be replaced accordingly

by an extrapolated datum.

3. Conservation Feature of the Treatment

We first recall the conservation feature of the treatment for the one di-
mensional case. The treatment can be written into a conservation-like form
by introducing some artificial terms; i.e.,

wt =l = MR = ) Y ap —Papt T - (1)

where the artificial terms p» and g™ are nonzero only in vicinity of critical
cells. g™ is called the local conservation error since 3_; (u;‘ — q;‘) is conserved.

[4] proved that

s no—ut
g = 3 31+1/22(u31+1 u;,,) +0(1) (3.2)

for the first order version of the treatment and
1+ L n
R A N e W A ui )€ — )2
% = 9h2
for the second order version of the treatment, where [z, , x; 41] is the critical
cell with a discontinuity position £7, #; 1172 = 3(;, +@;j,41). It is easy to see

+0(h) (3.3)
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from (3.2) and (3.3) that ¢? is uniformly bounded if the numerical solution
is uniformly bounded and " has at least first order accuracy. As a result,

Zjuj;h = Zugh + O(h), (3.4)
2 2

which means that the numerical solution is almost conserved. A geometri-
cal understanding of (3.2) is as follows: Usually, the numerical solution is
considered to be a piecewise constant function

u? when z; <z < ;4479

Ur(z) =
(2 ut,  when zip <z STy

(3.5)

in a cell [x;,z;,,]. If the numerical solution in the critical cell [25,, €541] I8
considered to be
u?* whenz; <z <{*

[‘:fﬂ — Ji
(2) { u? when (" <z < Z; 4

(3.6)

since the real discontinuity is located at £, the principle part on the right
side of (3.2) multiplied by h is just the portion that U "(m) deviates from
Un(z) (as shown in Figure 3.1). (3.3) can be understood in the same way if
we consider the numerical solution to be a piecewise linear function.

Now let’s turn to the two dimensional case. Since the underlying scheme
(2.6) is a combination of two Euler forward versions, it is sufficient to discuss
the treatment’s conservation feature with (2.10) as the underlying scheme.
The two dimensional treatment also can be written in a conservation-like
form if there is no losing and obtaining critical mesh size, and no adjustment
of discontinuity positions. First, we denote

Lj ()i = uf; — Lp(um)y; — Ly(un)s. | (3.7)

Then .
u; ;o = Lfg(u“) ij

1,2
+1
+pa:,:+1/2,3 ,1--1/2,:; + q;th - q:L't g (3'8)
TPyig+1/2 = Pyij-rj2 t Godd — G

f, p., and g, are defined as follows: When [z;, z; ;1] is a horizontal critical
mesh interval on the grid line y = y;,

rn,l . .
L )ii-[»l/z.j when ¢ < ¢ (3.9)
+1/2.4 fip; wheni>iy’



where _f /2,5 and f ir1/2, BT€ the numerical fluxes using extrapolated data
from the left and right sides respectively. When the critical mesh interval
moves one mesh interval to the left,

p;ril‘"l/zr.’i = _qg,il,j + ( n,t]_ J)z( gil JF —u 11113) + ( “"1/2'.7 ::':1/2-,3)
_(ag,il,j)z( ?:Jl - Lf,g(“ irni) ;
q:-:l—lrj pz':‘i —1/2’.1
(3.10)

when the critical mesh interval remains in the same mesh interval,

n,l
q;:l'ﬁ‘ =4 Z,81,F ;T ( 1+1f2,.1 f=1+1/2,3) (3'11)

and when the critical mesh interval moves one mesh interval to the right,
Fr,l
p;,i1+1f2,j 5: 1,7 + ( 1'{"1/2'3 fi1+1/2rj)

qztlﬂ.: q:,z', o + (“2,;1,,-)2 “QLHJ uz g1 J) + (fu+3/2,3 f;:’i?:/?.j)
+(a;,£l,j)2 “:‘11111.5 — Lz ;(um Dir1,9)

' (3.12)
Here, u:’f 4 and ug -7 ; are extrapolated data from the left and right sides
respectively, af ;. is the horizontal component of the normal vector corre-
sponding to the critical mesh interval. The two dimensional treatment has
a large-step behavior described in the previous section; i.e., critical mesh in-
tervals may move across several mesh intervals. Corresponding formulas also
can be set up for these cases. For example, when a horizontal critical mesh

interval located at [z, ,; 41] moves across several mesh intervals to left to

13



[:Ez'z ) mi'z-l—l] b)

A

n — —g" —{ym 2o ™7 n “.J . fnT )
p3.41—1/213' — q:r:,t'l,j ax,il,j) ui;t,j uH,J) + 2( i1—1/2,j fu-l/2,3)

'-(a:,;l,j)z(uﬁf’jl - Lf,g(“"’r)ia,j)

"y T — —{a"® Zfgn oy, n 2l am T
pﬂ':,t;—3/2,g qxﬂ'l Wi azl“‘l:j) u‘livj uu"’) + (axﬁl.‘i 13-) (uil"‘lrj uu _l'J)

A il 7,7
+5(amar2s — Filaps) — (of ;) (it} = Lg y(0™);, 5)

- a:ﬁ.l vj)2 (u:;tll’j - Lfiﬁ(un,r)ii -1 :j)

i241 A
) rn,l Py
Priat1/25 = "o Z (a:ﬂ'x »i)z(u:j —ug)+ —i(f«":+1f2,j o f:;-rmlz,j)
ig41 .
= 2 (op, VP urd = Lyy(un)is)
=13,
q:j::»j = _p?g-i-l/z,j

(3.13)
Similar formulas also can be set up for the case that critical mesh intervals
move across several mesh intervals to the right.
g, py, and g, are defined almost symmetrically, except that we use (1-
(a;ﬂ._‘i_ 2) rather than (ﬁ“,'.,j)z. That is, assume [y;,, ¥;; 41] is a vertical critical
mesh interval on the grig line z = z;, then

an,b . .

. g: % when j <

gz{ gz B0 (3.14)
9i541j2 Whenjp 2> 7y

where §?ij /2 and ﬁ:t;-t_‘_l j2 BT€ the numerical fluxes using extrapolated data
from the top and bottom respectively. When the critical mesh interval moves

14



one mesh interval to the bottom,

n . n n,t
py;i:jl‘1f2 - —qy,t.,_ﬁ + ( - ( gh 13)2)( y,i,J] - uy:isjl)
an,b an,t
+§(g=',.1'1"-1/2 9i .11—1/2) ) (3 15)
-(1- (a;‘,‘,,,‘,)z)( :l,j;l — L g(u ig) )
q‘:j:}l _'1 Py: ;.71 _1/2

and when the critical mesh interval remains in the same mesh interval,

A,
Gotss = Qyin T E(f::.‘;':-%l/? Fgsap) (3.16)
and so on. The index i, and j, are as follows: [z;,,;, 1] is the horizontal
critical mesh interval on the grid line y = y;, that also crosses the grid point
the considered vertical critical mesh interval crosses. For example, if CM¢
in Figure 2.4-a is the critical mesh interval [y; ,y; 41] on the grid line z = =z;,
the critical mesh interval [z;,, 7;, 1] on the grid line y = y;, should be CM,.
So that the coefficients of u}'}'’s in the right side of (3.8) are 1.

There are terms like (u:‘;"}l — L; ,(ud);, ;) in (3.10), (3.12), (3.13) and
(3.15), which are of O(h), since when critical mesh intervals cross grid points
the numerical solution is updated by the extrapolated data of un+! at them.

To show the conservation feature of the treatment, we separate the local
conservation error ¢* into two parts; i.e.,

"=+ (3.16)
In the case corresponding to (3.10),

=n-1 . n Fnd
Uoi-14 = w=1.7+ ((ﬂxu :) ( -1f23 fi;—1/2,j) : (3.17)

n

an,l
amrui.?ﬂzr‘lvi‘ (9'1—1/2:3 g'l -1/2,j ))

in the case corresponding to (3.11),

=3 +1 _ - J
i = Lopny+ ((ﬁé‘ i) (fu+1/z,; fmd . (a1s)
—a;:tlrjﬁ 111;3('&:.";’1/2:1 §:11+1/2,_1))
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in the case coresponding to (3.12),

— —_ A A -
+1 = 1,7 7.l
Tt = Toing ¥ 5 (Brin sV Uiikaps = Filboras) | (3.19)
~ ,’ Aﬂ,l
'_a::‘.‘l rjﬁ:ﬁ'l 1.?. (g:: +3/21j - g"l +3/23j)

and in the case corresponding to (3.13),

- A . . .
=n4+l __ n,r )
q:ri%j - qzlillj + 5((ﬁ;‘1‘.11j)2 (f'.2+1/2'j - f‘2+1/2!j) ; (3.20)
ATLT an,f
“a:,il,jﬁw»iz,j(gg+1/2,j - 9£2+1/2,j)

and so on, where
~n — pfan - n
Giv1p25 =9 (g 30 YUl p )
qy, ; s just
Lo

~Tl —_—
Uois

Gii ™ Do
qr is separated in a symmetrical way as the g7 is. The following theorem
concerns the conservation feature of the treatment.

Theorem 3.1 Assume that the solution to (1.1) is a piecewise smooth
function with a smooth discontinuity curve. If both the underlying scheme
and the treatment are at least first order accurate (which implies that the
numerical solution and positions of the discontinuity are at least first order
accurate too), and

min(Jo"}, |8]") 2 co > 0, (3.21)

then
o, = e “’-'1+;/2)(“I-§+1,j ~“d) 4 o)

, (3.22)

o, = (B (&7 — 9’51+;/2)(“351+1 ) +0(1)

where £ and £ are discontinuity positions in a horizontal critical mesh
interval [z; , %, 41] on the gridliney = y; and a vertical critical mesh interval
[;,> ¥j,41) on the grid line ¢ = g respectively, and g, ; ; +E’;"i'5 is of O(h) in
¢ weak sense that for any domain D in (z,y)-plane,

Y. (@, + T )0 =O0R). (3.23)

R
(ziw;)ED "
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The condition (3.21) implies that the discontinuity curve intersects the
grid obliquely, so that a horizontal and a vertical mesh intervals that cross a
same grid point (e.g. the critical mesh sizes C M, and C Mg in Figure 2.4-a)
only have a distance in a range of O(h). We believe that such a restriction is
not essential but technical, and by more careful (therefore, more complicated)
estimation we can get rid of it.

The theorem is only a first order result corresponding to (3.2) in the
one dimensional case. A second order result corresponding to (3.3) could
be obtained; however, it needs to consider (2.1) as the underlying scheme
and the discussion might be very complicated. Technically, Theorem 3.1 is
sufficient to display the treatment’s conservation feature since, obviously, it
implies the uniform boundedness of g7 and g7, and therefore,

ZZu"‘”hz ZZuO h%+ O(h (3.24)

Proof. The proof of (3.22) is almost the same as that in [4] for one
dimensional case. It is sufficient only to deal with the first equation in (3.22)
since the second one can be handled almost symmetrically by noticing the
condition (3.21). Denote

Sn = ( 211 3)2(6‘; - $£1+1/2)(uz+1,j o u?h.?') - hq-:,i:»j’ (325)
and we are going to show that
Sntl — §n = O(h?), ‘ (3.26)

from which (3.22) follows. Following the same derivation of (3.17) and (3.19)
in [4], we have

[ — 17 mn 1 2 n I 2
S;"*’l . SI - aw,tm)zd(uutlj/% uutlllz,:f)l
_T((( LU J) )2(fu—1/2,.7 ::—1/2.3) (3-27)

Oy thﬁ: i1 J(gu—lfw !3?1'“1/2 _‘J)) + O(hz)

when the critical mesh interval moves one mesh interval to the left,

1. _— ] ﬂ+1/2 n+1/2
S.:+ S.: - .'L‘t; J) d( ’]+133 ’1:.'1‘ )

(( x‘l 3)2( 1+1/2,3 ::-li-}_/z,_?) (328)
+ 211 pfﬁmi"h.?(g‘l +1/2s.7 g‘] +1/2,J)) + O(hz)
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when the critical mesh interval does not move, and
. ntl/z _ nt1/2
S;;"H - S;;?' - ( 211 _7) (u1+3/23 z1+1/2,3)

—T(((a:: Vi1 J) (f31+3/23 f‘t; ';3,’2,3) (329)
+ 211 Jﬁx,zl 3(5}2’:-3/2,3 gz;+3/2 g)) + O(hz)

when the critical mesh interval moves one mesh interval to the right. Here
=&t~ & u?}"m = $(uff’ + ut,), and u?_:f/;j = 3(uffy; +up;). Since
the principle terms on the right of (3.27), (3.28) and (3.29) are first order
approximations to (2.1), (3.26) follows easily. The case when the critical
mesh interval moves several mesh intervals to the left or right can be handled
similarly by noticing condition (3.21).
Denote by T the left side of (3.23). It is not difficult to see that T+l T
is a first order approximation to the following integral:

r [AA(8)dz + afdy) + lg}(aBda + (a)dy)} =0, (3:30)

where C is the portion of the discontinuity curve inside Domain D and (e, §)
is the normal vector of C; hence (3.23) follows. Thus ends the proof.

4. Treatment for Interactions of Discontinuities

For simplicity, we assume that f and g are convex. When two straight
line discontinuities Iy and L, meet at a point O, with three constant states
Us, Us, and U; between them, a third straight line discontinuity L; may be
formed from O connecting U, and U; (as shown in Figure 4.1). A problem is
when given Iy and L,, and U,, U; and U;, what the third discontinuity L,
(if there is one) should be. Our treatment for interactions of discontinuities
is based on the observation of this problem. Without losing generality we
suppose that O is the origin of the (z,y)-plane. Since I, connects U, and
/5, 1ts normal propagating speed is

_oy[flas+ Bildlas
S P o

where (e, £,) is the unit normal vector of Ly, {f], 3 and [g], 5 are the jumps

of the two fluxes across I;. and [u]y 5 is the jump of the solution across L.
Hence, the equation for I is

oz + Py = St (4.2)
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Also the equation for L, is

@y + Bay = 53, (4.3)
where
oy{flsn + Balglss
S, = : -, 4.3
=T Uk 3
Since I3 connects U, and Uy, its normal propagating speed is
_ aa[flia + Bslgliz,
ST ke )
therefore, L; should be
a3 + Bay = Sat, (4.5)

where (a3, ;) is the unit normal vector of Lz and is to be solved. As the
straight lines I, L,, and Ls meet at the same point O, the determinant

o B 5
o fp S5y |=0. (4.6)

a; B3 S

from which and the restriction as? + fB5° = 1, az and f; can be solved.
Particulazly, when (@, 8;) and (aj, ;) are not parallel each other, there are
k, and k; so that

kyoy + kyoy = o

kyfi+ ko =Ps (4.7)

k151 + ko Sq = 53

Now we are going to build up the treatment for interactions of discontinu-
ities. We call the mesh that is supposed to contain a interaction point a node
mesh. A node mesh should have three critical mesh intervals corresponding
to three discontinuities, though two of them might overlap each other (as
shown in Figure 4.2). In the vicinity of the node mesh, critical mesh inter-
vals of different discontinuities might be very close to each other so that at
some grid points the stencils of the numerical fluxes might cover all of them,
just as the situation in the one dimensional case (see [4]). Therefore, fluxes
with the form (4.1) in [4] might be used, and the order of the extrapolation
might be lowered since we do not have enough grid points in between to keep
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the same order. Also when two critical mesh intervals overlap each other on
an mesh interval, they are treated separately as they are independent to each
other with a hiding middle state between them before the two discontinu-
ities positions cross each other, just as what we did in the one dimensional
case (see [4]). For simplicity, we stipulate that each timestep only one of the
three critical mesh intervals could move away from its original mesh interval,
even though some discontinuity positions might deviate a little bit from the
corresponding critical mesh intervals.

The node mesh will move, which is caused by the interaction of two of
the three discontinuities. The critical mesh intervals corresponding to the
two interacting discontinuities could either be the same type or different
types. Figure 4.3-a and Figure 4.3-b give two typical cases. In Figure 4.3-a,
horizontal critical mesh intervals CM; and CM, belonging to discontinuity
L, and L, merge since their positions of discontinuities cross each other,
and generate a new critical mesh interval, which belongs to L3, During that
time the node mesh moves from mesh M; to M,. In Figure 4.3-b a vertical
critical mesh interval C' M, belonging to L, moves one mesh interval to the
top so that the node mesh moves from mesh M; to M;. During that time
the discontinuity L, loses critical mesh interval CM,, which becomes a new
critical mesh interval of L;. More general cases always can be reduced to one
of them.

Just the same as in the one dimensional case, the important thing is still
the calculation of the discontinuity position for the new-generated critical
mesh interval of L;. We calculate the new discontinuity position by assuming
that L, and L, are straight lines and the new position is on the straight line
of the discontinuity L, with which L, and L, form a triple point described
before. I, might not be the real third discontinuity L;. What we expect
is a formula similar to (4.2) in [4], which calculates the new position of the
discontinuity by the two old ones. Obviously, our treatment only has first
order accuracy for we suppose the discontinuities to be straight lines near
the triple point. However, since interactions of discontinuities only happen
at a rate of O(h?) if the solution is piecewise smooth, the overall algorithm
still can have second order accuracy. High order treatment could be built up
by the same idea, however, will be rather complicated.

Now we begin with the case presented in Figure 4.3-a. Denote by {7, and
E“ the discontinuity positions of the critical mesh intervals C' M, and CMZ,
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which cross each other. Also denote by {7, the discontinuity position of the
new-generated critical mesh interval. Denote by O the triple point formed
by L,, L, and Ls on the level n with the coordinates (zo,yo). Since {;'1 is
on L;, which passes O and has the normal vector (o, f1), &y satisfies

az(‘f:,l — z0)+ Bi(y;, —vo) =0, (4.8)

where P(z; ,y;,) is the left end point of the critical mesh interval. By the
same argument,

(€7, = zo) + Balys, —v0) =0, (4.9)
and
0’3(5:,3 ~ 20) + Pa(y;, —¥o0) = 0. (4.10)

Multiply (4.8) and (4.9) by k, and k, defined immediately after (4.6), sum
them, subtract (4.10) and use (4.7), then

n klalgz,l + k2a2§:'2
61- 3= ’

3! as

(4.11)

which is what we expect.

For the case presented in Figure 4.3-b, we adopt all the notations in Figure
4.3-a, except we denote by E" the discontmulty position of C'M,, since it is
a vertical critical mesh mterva.l By the similar argument we have

ay(z;, — o) + )61(63,1 ~yo0) =0, (4.12)
and (4.9) and (4.10), from which

kl (0.'1 :cil + ﬁl (E;,l - y_’u )) + k2a2€2,2

a3

n
z,3

(4.13)

The treatment also has a conservation feature in some weak sense; how-
ever, the discussion will be quite complicated and a separated paper will
mainly focus on it.

5. Numerical Experiments
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In this section we shall display three numerical examples in which we
use the treatment to track discontinuities. The numerical fluxes used in
the underlying scheme (2.6) for both f and g are a second order TVD flux
described in {7}.

EXAMPLE 1. This is an example for linear case. The partial differential
equation is

sty +u,=0 | <L, (5.1)
with initial data
0.75cos((z + y)m)cos({z — y)7) =2+ y2<0.6
u(z,9,0) = uo(z,y) = { ( y) Joll " otherzvzse ’
(5.2)

and a periodic boundary condition. The exact solution of this problem is

u(z,y,t) = uplz — 1,y ~ t), (5.3)

which has a discontinuity circle with a radius of +/6. The X in (2.7), i.e
the mesh ratio, is chosen to be 0.5 and Az = Ay = 0.05 Figure 5.1-a shows
the numerical solution at ¢ = 2 (160 timesteps); Figure 5.1-b shows the
discontinuity circle of the numerical solution, which is obtained by connecting
the discontinuity positions by straight lines; and Figure 5.1-c and Figure 5.1-
d show the intersection surfaces of the numerical solution at z = 0 and
y = 0.45 respectively, where the circles present the numerical solution and
the solid lines presents the exact solution. Figure 5.2 shows the same stuff
as Figure 5.1 at time ¢ = 16 (1280 timesteps). We can see in the figures that
both the numerical solution and the discontinuity posxtxons approximate the

exact ones quite well.
EXAMPLE 2. The partial differential for this example is

et 4y = —puu— 1)~ ), (5.4)
which is a linear advection equation with a source term that is stiff for large
p. This equation is interested since it models the reacting flow problem, and
many difference methods for it would produce wrong propagating speed if its
solution has a propagating discontinuity (see [3]). Chang (see [1]) have used
the subcell resolution proposed by Harten (see {2]) to the one dimensional
version of this problem and got a very good numerical result. Here, we use our
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treatment, which is similar in some sense to the Harten’s subcell technique
(see [5]), to track the two dimensional propagating discontinuity. -

The initial data is still (5.2), which indicates that the solution has the
same propagating discontinuity curve as in the previous example. A, Az and
Ay are chosen as before. A Strang type splitting method suggested in [3] is
used to solve this problem, in which the same numerical solution operator
with our treatment solves the convection equation without the source term,
and a implicit predictor-corrector method for ordinary differential equations
models the chemistry. Figure 5.3-a shows the numerical solution for g =
0.15(non-stiff) at time ¢ = 1, and Figure 5.3-b shows the discontinuity circle
at the same time. Figure 5.4 shows the same stuff as Figure 5.3 for u = 150
(stiff). In the figures we see that numerical solutions for both stiff and non-
stiff cases have correct propagating speeds. _

EXAMPLE 3. This is an example for nonlinear case. The partial differ-
ential equation 1s

1 1
wt () + (557, =0, (5.5)

with Riemann type initial data

uy z>0,y>0
U, z<By>0
u(z,9,0) =vo(@y) =1 0 <G:§ Zo- (5.6)

uy z> 0y <0

The following three cases are tested:

case 1,

('MI, U2, U3, Ur4) - ("’0-2, "'_1.0, 0-5, 0.8)
case 2.

('U.l, U2, U3, U4) == (—1-0, 0.5, "‘0.2, 0.8)
case 3.

(Ul, Uqg, 'U:3, u4) = (_1-0, —0.2, 0.5, 0.8)

X is still chosen to be 0.5 and Az and Ay are chosen to be 0.025. Figure 5.5, -
5.6, and 5.7 show the numerical results at time ¢ = 1 for the case 1., case
2. and case 3. respectively. All the pictures with “a” show the numerical
solutions, all the pictures with “b” show the discontinuity positions of the
numerical solutions, in which the circles present the numerical positions and

23



the solid lines present the exact discontinuity curves; and all the pictures
with “c” and “d” show the intersection surfaces of the numerical solution
at z = 0 and y = 0 respectively. In the figures we can see that both the
numerical solutions and the discontinuity positions approximate the exact
ones very well.

The discontinuity curve in the Case 2. has a very sharp corner; how-
ever, Figure 5.6-b shows that the computation of the discontinuity positions
around this corner is stable and still have a reasonable resolution. Case 3.
has a triple point formed in interactions of discontinuities. The treatment
for interactions is applied and the result is quite good.

6. Conclusions

We have built up a treatment for discontinuities for the two dimensional
scalar conservation laws, which is the extension of the treatment for one di-
mensional case introduced in [4]. We also have presented the conservation
feature of the treatment for a single discontinuity, for which we wrote the
overall algorithm into a conservation-like form involving local conservation
errors and proved that the local conservation errors are uniformly bounded.
Treatment for interactions of discontinuities also has been set up; however,
the corresponding conservation-feature is still expected. Numerical experi-
ments show that the treatment is very effective in tracking discontinuities.

Acknowelegements

The author thanks professor Ami Harten, professor Stanley Osher and
Dr. Rosa Donat for helpful discussions and/or correcting English.

References

[1] Shin-Hung Chang, On the application of subcell resolution to conserva-
tion laws with stiff source terms. NASA TM-102384 (1989).

[2] A. Harten, J. Comput. Phys. 83 148(1989).

24



[3] R. J. LeVeque and H. C. Yee, A study of numerical methods for hy-
perbolic conservation laws with stiff source terms. NASA TM-100075

(1988).

[4] D. Mao, A treatment of discontinuities for finite difference methods.
UCLA CAM Report 90-19 (1990).

[5] D. Mao, A treatment of discontinuities in shock-capturing finite differ-
ence methods. to appear in J. Comput. Phys.

[6] D. Mao, J. Comput. Math. No. 3, 256(1985) (in Chinese).

[7] S. Osher and S. Chakravarthy, Very high order accurate TVD schemes.
ICASE Report 84.44, 1984, IMA Volume in Mathematics and its Appli-
cations, —bf Vol. 2, Springer-Verlag, 229(1986).

(8] S. Osher and S. Chakravarthy, SIAM Numer. Anal. 21, 955(1984).
[9] S. Osher, SIAM Numer. Anal. 21, 217(1984).

[10] Chi-Wang Shu, Math. Comp. 49, 105(1987).

[11] D. H. Wagner, SIAM. J. Math Anal. 14 , 3 (1983).

25



FIGURE 1.1

Numerical solution on the level n just has a jump in the critical cell
[z;,,%; 41}, on each side of which the numerical solution is supposed to be
smooth. ¢# is the discontinuity position in the critical cell.



FIGURE 2.1

Discontinuity surface S cuts a horizontal plane by a curve C, (o, 8) is a
horizontal normal vector to S at p.
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FIGHUR 2.2

Discontinuity curve C is represented by a group of critical mesh intervals,
which are indicated by horizontal and vertical braces. A, B,C, - - are discon-
tinuity positions in the critical mesh intervals. The two sides of the numerical
solution connected by C are indicated by “—” and “+” respectively.
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FIGURE 2.3

Discontinuity curve C intersects the grid mesh T' obliquely that it cuts
out a triangle OAB. CM,4 and CMjg are the horizontal and vertical critical
mesh intervals whose movements should match each other.
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(a)
Critical mesh interval C M, moves two mesh intervals to the right when
the discontinuity curve moves from C* to Cn+1, The direction of the dis-
continuity curve determines whether CM4 and C Mg cross O. However, the
movements of C Mg and CMp determine whether they cross O, and O,.
A+
F—— I C
| AT ———T- - e ”
CMa CMpg

(b)

Critical mesh intervals CM, and C My are lost when the discontinuity
curve moves from C* from Cn+1,

CMa | M,
; S e ) er

(c)

Critical mesh intervals CM, and C My are obtained when the disconti-
nuity curve moves from C* to Cn+l. The middle points are chosen to be P

their discontinuity positions.

FIGURE 2.4
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FIGURE 3.1

The dash line is Un(z) defined by (3.5) and the solid line is Un(z) defined
by (3.6). The shadow is the difference between U”(z) and 7 (z), which is
just the principle part of (3.2) multiplied by A.
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FIGURE 4.1

Two straight line discontinuities-L, and L, meet at a point O, connecting
three constant states U,, U; and U, a third straight line discontinuity L,
forms from O connecting U, and U;.
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FIGURE 4.2

A node mesh M has three critical mesh intervals CM,, CM, and CM,,

two of them are overlapped. In the vicinity of M, two critical mesh intervals
CM] and C'M] belonging to L; and L, respectively are close to each other so
that stencils of the numerical fluxes near point P might cover both of them.
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FIGURE 4.3-a

Two horizontal critical mesh intervals CM; and CM; of L, and L, merge
to generate a mew critical mesh interval for L;, meanwhile the node mesh

moves from M; to M,.
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FIGURE 4.3-b

Horizontal critical mesh interval CM; of L, moves one mesh interval to
the top so that L, loses critical mesh interval C'M;, which becomes a critical
mesh interval of L,, meanwhile the node mesh moves from M; to M,.
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