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We propose and analyze the use of circulant preconditioners for the solution of elliptic
problems via preconditioned iterative methods such as the conjugate gradient method. Part of
our motivation is to exploit the fast inversion of cirenlant systems via the Fast Fourier
Transform (FFT). We prove that circulant preconditioners can be chosen so that the
condition number of the preconditioned system can be reduced from O{n?) to O{n). Numerical
experiments also ‘indicate that the preconditioned systems exhibit favorable clustering of
eipenvalues. Both the computation (based on averaging of the coefficients of the elliptic
operator) and the inversion (using FFTs) of the circulant preconditioners are highly
parallelizable.

1. Introduction

In this paper, we are concerned with the numerical solution of linear boundary
value problems of elliptic type. After discretization, such problems reduce to the
solution of linear systems of the form Ax=b. In this paper, we shall only consider
the case where 4 is symmetric and positive definite. In practice, large problems of
this class are often solved by iterative methods, such as the Chebyshev method and
the conjugate gradient method. Contrary to direct methods in which the coefficients
of A are directly transformed, at each step of these iterative methods only the
product of A with a given vector v is needed. Such methods are therefore ideally
suited to exploit the sparsity which A possesses.

Typically, the rate of convergence of these methods depends on the condition
number x{4) of the coefficient matrix A: the smaller x(4) is, the faster the
convergence. Unfortunately, for elliptic problems of second order, usually
x(A)=0(n*), where n is the number of degrees of freedom (e.g. mesh points) in each
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coordinate direction, and hence grows rapidly with »n. To somewhat alleviate this
problem, these iterative methods are almost always used with a preconditioner M
and the conjugate gradient method is applied instead to the transformed system
Az=F where A=M"'2 AM~Y2, =M 2x and b= M ~?p. The preconditioner M
is chosen with two criteria in mind: to minimize x(M ~* A) and to allow efficient
computation of the product M ™!y for a given vector ». These last two goals are
often conflicting ones and much research has gone into devising preconditioners
that strike a delicate balance between the two.

One of the most popular and most successful class of preconditioners is the class
of incomplete LU factorizations, see e.g., [10,2]. The central idea is to factor 4 into
i approximate triangular factors L and U via an climination process such that L and
i U have nonzero entries only where the corresponding element of A is nonzero. For
! some of these preconditioners, it can be proven that x{M 1 A)=0(n) for certain
’?:g_ classes of elliptic problems, see [8,11,2]. This is a much slower growth compared to
|
!

E the unpreconditioned system.

& : One potential problem with the ILU preconditioners is that both the
; computation and the application of the preconditioners have limited degree of
parallelism, due to the inherently sequential way in which the grid is traversed.
Attempts to modify the method (e.g. by re-ordering the grid points) and to devise
other more parallel methods {eg. polynomial preconditioners) ofien result in a
deterioration of the convergence rate.

The purpose of this paper is to propose another class of preconditioners, one
that is based on averaging the cocfficients of A to form a circulant approximation
M. Part of our motivation is to cxploit the fast inversion of circulant systems via
the Fast Fourier Transform (FFT). We prove that circulant preconditioners can be
chosen so that k(M ~* 4)=0(n), just as for ILU type preconditioners. In addition,
we are motivated by recent research on circulant preconditioners for Toeplitz
systems [5,7], which shows potential for favorable clustering of eigenvalues of the
preconditioned system. Finally, both the computation (based on averaging of the
coefficients of the elliptic operator) and the inversion (using FFT’s) of our circulant
preconditioners are highly parallelizable across a wide variety of architectures.

QOur preliminary numerical experiments show that the circulant preconditioners
are quite competitive in terms of number of iterations with the ILU preconditioners
for elliptic problems with mildly varying coefficients. As is well known, the ILU
preconditioners are rather insensitive to the varation of the coefficients and for
such problems they require much fewer number of iterations (than most known
preconditioners in fact). Part of our numerical experiments are designed to study
the cross-over point in this comparison.

Recently, several interesting multilevel elliptic preconditioners have been
proposed in the literature [1,3,18,14] which are highly parallelizable and have very
attractive convergence rates. However, these preconditioners are not directly
applicable when the discrete algebraic problem does not have an underlying
multilevel structure. For such problems, we hope that the circulant preconditioners
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proposed here will offer an interesting alternative to ILU-type preconditioners on
parallel computers.

The idea of circulant preconditioners has been proposed independently by
Holmgren and Otto {12] for preconditioning implicit systems arising from
hyperbolic probiems. For such probiems, the coefficient matrix A is ofien highly
ponsymmetric and nondiagonally dominant and hence many classical preconditioning
techniques are not effective (and sometimes not well defined). For these problems,
the circulant preconditioners are often the oniy ones that work.

We mention that it is also possible to use skew-circulant preconditioners for
general Toeplitz systems. Huckle [13] has shown that skew-circulant preconditioners
and combinations of skew-circulant and circulant preconditioners can be as
effective as the circulant preconditioners. However, we shall limit our attention only
to circulant preconditioners, in this paper.

The outline of the paper is as follows. In Section 2, we define the circulant
preconditioner and analyze a model problem in the one-dimensional case. Analysis
of the spectral condition number of the preconditioned system are given in Section
3 for the model Laplacian operator on a square and extended to variable coefficient
operators in Section 4. Some numerical experiments are presented in Section 5 to
verify these theoretical bounds and to illustrate the effect of clustering of the
spectrum. Extension to the case of irregular domains are discussed in Section 6.

2. Circulant Approximations to Elliptic Operators: The 1D Case

In this section, we derive various circulant preconditioners for elliptic operators
on rectangular domains, Qur basic strategy is to choose as preconditioner a matrix
¢ which is a good approximation to the coefficient matrix 4 in the sense of
minimizing |4~ C{ in some appropriate norm. In the Frobenius norm, denoted by
|1y, this problem has a trivial solution, first noted in [7]. Let the elements of A be
denoted by a; ; and the clements of the first row of C be denoted by {c;,¢;,..., ¢,

Theorem 1, The best circulant approximation C to a given n-by-n matrix 4 in the
sense of minimizing {4 — Cli is given by

1 n
ci=;Zaj(j+i“1) mod n. 2.1)

i=1

Moreover, C is symmetric positive definite if 4 is.

The above formula has a simple graphical interpretation: ¢; is simply the
arithmetic average of that diagonal of A (extended to length n by wrap-around if
necessary) containing the corresponding element a, ;. For further properties of this
circulant approximation to a general matrix, refer to [6].

We remark that if 4 is a general Toeplitz matrix, one can define other good
circulant approximations to 4, see e.g., [13,16,17]. However, we emphasize that
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some of these circulant approximations, such as the Strang’s preconditioner [16],
are not defined for general non Toeplitz matrix.

Now, consider applying the result on the best circulant approximation C to a
simple elliptic problem in 1D, namely the problem

—(a(x)u,),=f(x) (2.2)

on the interval [0,17 with Dirichlet boundary conditions u(0}=u, and u()=u,.
Using the usual 3-point centered differencing on a uniform mesh with » interior grid
points x/s, the corresponding matrix 4 is a symmetric tridiagonal matrix with
nonzero elements of the ith row given by

(- a(xi—-,t)s alx;—4)+ a(xi+:})= —alx;s4))

The best circulant approximation to A is given by

1 n—1
€3 = Cp™ T '21 alx;yy gh
i=

1
¢y =—2¢c, +;(a(x41-)+ a(X, .+ 43

with all other coefficients ¢s defined to be zero. The coefficients of the circulants
are therefore simple averages of the coefficient a(x) over the grid points.

The question now is how good this preconditioner is, in the sense of minimizing
x(C~ 1 A). As it turns out, C defined this way is not as good as some of the ILU-type
preconditioners asymptotically. Precisely, it can be shown (as part of a result which
we shall prove later) that x(C ™! A)=0(n*?).

The above situation is reminiscent of that of the unmodified ILU preconditioner
[15]. In that situation, the bound for the condition number can be lowered to O(n)
if we modify the preconditioner in a simple way: [8,11] at each step of the
¢limination process, we add enough to the main diagonal entry to make the row
sum zero and then add a quantity of size O(n"?). Borrowing from this idea, we can
modify our circulant preconditioner C by keeping the definitions of ¢, and ¢, the
same, and redefining ¢, as follows:

¢y =—(2c))+pn""% (23)

where p is a positive constant independent of r and «>0. Clearly, this modified
circulant matrix has each row sum equal to pn™%

It turns out that this simple modification is sufficient to reduce (C ™' A) to O(n)
for a suitably chosen . We shall illustrate this for the special case of a(x)=1. In this

constant-coefficient case, A is a tridiagonal Toeplitz matrices given by tridiag
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(—1,2,—1) and C is a circulant matrix with the only three nonzero coefficients
given by ¢, =28+pn"* and ¢, =c,= —f, where p="=L For easy reference by
later discussion, we denote 4 and C for this constant-coefficient 1D case by 4, and
C,, respectively.

Theorem 2. Let A,=tridiag [—1,2,—1] and €, be the circulant matrix with the
first row given by '

(2ﬁ+%,mﬁ,0,...,0,—ﬁ), (2.4)

where f={n—1)/n,p=0(1) and « > 0. Then we have
O < MC5 Ay s O(nY if o < 2
and
O) < MC5 4g) s O Y ifa= 2.
As a consequence, we have
K(Coldg) <0t Hifax2
and
K(ColA) <0 Yyifa > 2.

The optimal value of x(Cg ' Ap) < Ofn) is achieved with a=2.

Proof. See Appendix.

Remark. It can be easily verified that the unmodified circulant preconditioner
corresponds to the case p=2 and o= 1. The results of the above theorem show that
in that case x(Cgy 1 4,) < O(n'?), justifying our earlier statement.

When =2, we can show furthermore that the spectrum of Cg !4, is clustered.

Corollary 1, If =2, then at most one eigenvalue of C5'4, lies outside
[e.nf(n—1)], where ¢=4n?/(8n>+ p)+O(n ™).

Proof. See Appendix.
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3. Analysis for the ZD Meodel Problem

While so far we have discussed only 1D problems for the purpose of illustration, the
results do extend to higher dimensions. Consider for example the 2D problems

—(a(x, yhud— (bx,y)u,), =f(x.3)

on the unit square [0,17 * [0,1] with Dirichlet boundary condition. Let the domain
be discretized by using a uniform grid with n grid points in each coordinate
direction, denoted by x; and y; Consider the usual 5-point centered difference
approximation with the grid points ordered in the x-direction first. The matrix A4 is
an n’-by-n? block tridiagonal matrix where the diagonal blocks are scalar
tridiagonal matrices and the off-diagonal blocks are diagonal matrices.

We consider two choices of circulant preconditioners for 4. The first is obtained
by applying the circulant approximation in Theoremr 1 directly to A. This
preconditioner, denoted by Cp, is defined by

¢, =2a+b)+pn"" (3.1)
Ca=Cp— —d, (3.2)
Cat1 = Cn—n+1~ _E’a (3.3)
where
B 1 n #H—1
a=— Z Z a(xi+*ayj)’ (3.4)
n"j=1i=1
and
— 1 n p-1
b==% b(xi yjes) (3.5
B" =1 j=1

and all other ¢s defined to be zero. Again these coefficients are simple averages of
the coefficients a(x,y) and b(x,y) of the differential problem over the grid. We shall
call C, the peint-circulant preconditioner for A.

For the second choice of preconditioner, we preserve the block structure of 4
and define a block-circulant perconditioner Cp as follows:

Cp=C'Q@I+I® " (3.6)
where C® and C® are n by n circulant matrices defined by

Ci=2a+pn™"
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with all other diagenals of C" and C? defined to be zero.

We note that Cp can be inverted on a given vector using n FFTs of size n,
whereas Cp requires one FFT of size n®

Similar circulant matrices can be defined for more general elliptic operators with
more complicated difference stencils and also in higher dimensions.

We now analyze the convergence rate of our method for the special case of the
discrete Laplacian on the unit square with Dirichlet boundary conditions. The
n2-by-n? coefficient matrix A, is given by

A=A, @ T+1® A, (3.7

where A4,=tridiag [—1,2,—1]. In this case, @=h=f={(n—1)}/n. In particular, the
block-circulant preconditioner, denoted by C, now, is given by

C,=Co@I+I®C,, (3.8)
where C,, given by (2.1) and modified by (2.3), is the circulant approximation of A,.

For the block-circulant preconditioner, the results in the ID case can readily be
generalized.

Theorem 3. For the block-circulant preconditioned sysiems for the 2D model
problem, we have

O < AC, 'A< O if e < 2,
and

o) < NG Ay <o Hifaz 2.
As a consequence, we have

K(Cy Ay <O Hifa <2
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and
K(CyrA)s o Difaz=2

et 4 el g S NIV N SN R Pt T
The optimal vatue of «(Cy " 4,) < G(n) is achicved with o=2.

Proof. See Appendix.

For the point-circulant preconditioned systems, we obtain a slightly larger
bound on their condition numbers. For simplicity, we only consider the case where
a=2

Theorem 4, Let C, be the point-circulant preconditioner for the 2D model
problem with a=2. Then we have O(1) < MC,'A4) < O(n logn) and hence

x(C, 1 A,) < O(n log n).

Proof. See Appendix.

4. Analysis for Variable Coefficient Problems in 2D

In this section, we shall make use of the results of the previous section and extend
them to variable coefficient problems. We consider elliptic equations of the form

—~{alx, y)u) —(b(x, y)uy)y = f(x,y) (4.1)
on the unit square, We assume that the coefficients a(x,y) and b(x,y) satisfy

0 <epin <alxy),blx,y)<c

max
for some constants ¢, and ¢, Without loss of generality, we assume ¢_; <1
and ¢,,, > 1. Let A be the n*-by-n* matrix obtained by discretizing (4.1) by the

standard S-point scheme on a uniform » by » grid. Define 4, =c_,.. 4, and
A =c - A, where A, is given by (3.7). We claim that both 4, —Aand A—A_;
are both positive semi-definite matrices.

We verify the claim for A—4_, . Let us assume that the domain is discretized by
using a uniform grid with n grid points in each coordinate direction, denoted by x;
and y; It is easy to see that every row in A—A_; has at most five nonzero entries
and they are given by

(A~ Amin)j,jﬂa(xj—g-syj)_’_a(xj-l-idyj)_i_ b(xjsyj-—§~)

+ b(xjsyj+-§)—4cmjna
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(4— Amin)i.j— 1™ Crpin ™ a(xj-i-’yj)s

(A= Apindy j+1= Cuin — 8(X54 351,

— Lie w0
min}j,J'—" Cmin - YWY i-4h

{A—4
(A— Amin)j.j+n=cmig_b(xj’yj+{-)v =1, n*

where we employ the convention that (-), =0 if k lies outside the range [1,n?]. Tt is
now clear that the diagonal entries of (4—A4,,,) are non-negative and the off-
diagonal entries are nonpositive. Moreover, we have

ﬂ

(A_Amm _Z (A Amln i |
r#j
Hence by the Gerschgorin Theorem, 4 — A ;. is positive semi-definite. Similarly, we
can show that 4 —A is also positive semi-definite. Thus we see that for all
nONZero vectors x,

0 <x*A x < x¥Ax < X*A X {4.2)

Now let Cy, C,,, and C_; be the the block-circulant approximations of 4, 4.,
and A, , respectively. Clearly, C_,,=c_..*C; and C_,, =c;.* C;, where C,, given
by (3.8), is the block-circulant approximation of A. Consider first the matrix
Cy~C_;,. By our definition of block-circulant approximations, it can be easily
verified that this matrix has non-negative diagonal entries and nonpositive off-

diagonal entries. It therefore follows that

20(1—c0) &
(C Cmm Z !(CB mm J tl + ﬂa = 2 'Zl I(CB_ ijn)j. il '
r#_f i#f

Thus by the Gerschgorin Theorem, the matrix Cy— C;, is positive semi-definite. By

a similar argument, so is the matrix C_, — Cp. Hence for all nonzero vectors x, we .

also have
* & X
0<x*C L x < x*Cpx < x¥C . x

Combining this result with (4.2), we get

* * * *
X*AX  xFApgx  X¥AX  XFAL, X G X Ax
* * T ¥ — ¥ * '
XFCx X CoameX X*¥Cpx ™ x*C X oy, XFGpx

0 < mm

Recalling the results for the constant-coefficient case, namely Theorem 3, we have
the following theorem.
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Theorem 5. Let A be the 5-point discretization matrix of

—(a(x, Yy — (b(x, )1}, = f(x, )

,,,,,,,,,, +

on the unit square with
0< cmin = H(X,y),b(x,y) = cmax

for some constants ¢, and ¢,,, and let Cj be the block-circulant preconditioner of

A as defined in {3.6). Then we have
O ) < AMCF A) < O(nd) ifa < 2,
and
o< ACF A < O0m Hifaz 2.
As a consequence, we have
kK(CplA)y< 0> Hifa<?,
and
k(CptA) < Om Y ifa>2.
The optimal value of k(Cz ' 4) < O(n) is achieved with a=2.

For the point-circulant preconditioned systems, using a similar argument, we
have the following results. As in Theorem 4, we only consider the case where a=2.

Theerem 6. Let 4 be the 5-point discretization matrix of

= (alx, Y1) — (blx, yhuy)y = (x,)
on the unit square with
0 < Cmin S a(x,y),b(x,y) SCmm(
for some constants ¢, and c,,, and let Cp be the point-circulant preconditioner of
A as defined in (3.1)—(3.3) with a=2 Then we have O(1)<A(C;'A)<
O(n log n) and k(Cy* A)< Ofn log n).
Finally, we note that the application of the circulant preconditioners require

O(n? log n) flops, which is slightly more expensive than the O(n?) flops for the ILU-
type preconditioners. However, the FFTs can be computed in O(logn) parallel
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steps with O(n?) processofs whereas the ILU preconditioners require at least O(n)
steps regardless of how many processors are available, '

5. Numerical Experiments

In this section, we compare the performance of our method to the modified
incomplete LU (MILU) preconditioner [2]. In these preliminary tests, we shall
mainly compare the number of iterations, rather than the actual computing time.
The equation we used is

%[(1 +ee"+’)g;} + —%[(1+% sin (2n(x+y)))g;f] = flx,y)
on the unit square and where ¢ is a parameter. We discretize the equation using the
standard 5-point scheme. Both the right-hand side and the initial guess are chosen
to be random vectors and are the same for the different methods. Computations are
done with double precision on a VAX 6420 and the iterations are stopped
when [[rf|l./ilr®|l, < 1075 Here, /' is the residual at the jth step and [(x,,..., %, *}3

xZ, The block- and the point-circulant preconditioners we used are defined
i=1
in Sections 3 and 4. The parameters we choose for our experiments are p=1 and

o.=2 for both the circulant and the MILU preconditioners.

Since the circulant preconditioners are based on averaging of these coefficients
over the grid points, their performance will deteriorate as the variation in the
coefficients increase. To somewhat alleviate this potential problem, we first
symmetrically scale 4 by its diagonal before applying the circulant preconditioners.
This technique has also proven to be very useful when used in conjunction with
other kinds of preconditioners. In our experiments, we apply diagonal scaling to ail
methods.

Tables 1a and 1b show the number of iterations required for convergence for
different choices of . The data for the preconditioned iterations are also plotted in

Table 1a. Number of iterations for different systems.

£ 0.0 0.01
n No Block Point MILU No Block Point MILU
4 9 9 9 7 12 9 9 7
8 23 H 12 9 23, 12 12 g
10 26 12 13 10 30 13 13 10
16 43 13 16 13 47 15 16 13
20 53 15 17 15 57 17 17 15
132 82 17 20 19 89 20 20 19
40 10t 18 22 21 106 2t 22 21
64 157 22 25 27 171 25 26 27
80 194 24 28 31 215 28 28 3t
128 307 28 33 40 333 33 34 40




88 R. H.Chan & T. F. Chan

Table 1b. Number of iterations for different systems,

E 0.1 : 1.0
n No Block Point MILU No Block Point MILU
4 13 9 1] 6 14 10 11 6
8 26 iz i2 g 8 i3 i4 9
10 31 13 13 10 34 15 15 10
16 49 16 16 13 51 18 19 13
20 39 17 18 14 61 21 20 15
32 89 20 20 i9 99 25 27 18
40 118 22 22 21 122 28 30 20
64 175 25 27 27 195 35 35 26
80 228 29 29 30 246 39 40 29
128 366 35 36 39 395 50 5t 38

Figs. la-1d. We see that for small values of ¢ (e.g. ¢ < 0.01), the performance of the
circulant preconditioner seems to be beiter than that of MILU. However, the
MILU method is less sensitive to the changes in &, and for larger values of ¢ (e.z.
&> 1.0), MILU requires less number of iterations than the circulant preconditioners,
at least for the values of n used in our experiments. We alsc observe that the
aumber of iterations for the circulant preconditioners grows with a rate slightly

slower than the predicted O(ﬁ) growth of MILU. Therefore, the circulant
preconditioners appear more competitive with MILU as n increases. In all cases,
the number of iterations grows slower than as predicted by Theorems 5 and 6.
Tables 2 and 3 show the eigenvalue distributions of the preconditioned systems
for =00 and 0.1, respectively. In the table, the eigenvalues are ordered as

Ay <iy < dy; <A, We see that for the point- and the block-circulant
preconditioned systems, they have one outlying eigenvalue 1, The rest are in a

102 - . T . g ™
[ e ]
- -+ -
]
£ L 4
g
w 101: P E
E r o ]
z - 4
e ! S ———: . . B + s
ige o lisg 108

Grid Size n

Fig. 1a. epsifon~@.0, o:milu, +:point, * block,
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107 - — — "
2
'I’.'f [~ .
a
2
o 10f - .
g f o ]
0 :
100 101 162 103
Grid Size n
Fig. 1b. epsiton=0.01, o:mily, -+:point, *: block,
102 . . .~
L A E
- 1!0:/ -
8 | = ]
E /"‘t‘;j;f
g et
w10t T R
=} o H re ]
° I ; .
£ I ]
E L ]
Z - _
100 o 1@ 10¢
Grid Size n

Fig. Ic. epsilon=0.1, ¢:milu, +:point, *; black.

89

relatively small interval. In Figs. 2 and 3, we plot the eigenvalue distributions,
leaving out the rightmost eigenvalue 1,. The clustering effect is similar to that of

MIL.U.

To summarize, we make the foilowing observations from the numerical results:

(1) The circolant preconditioners seem to grow slower than O(ﬁ} in number of
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Number of Iterations

167 : -
C e ]
: - //0 i
,/,1";1‘/ el

o~

L & o .
o
e i

10| T |
: - 5
C o 3
100 plis 102 10

Grid Size n

Fig. 1d. epsilon=0.1, o:milu, +: point, *:block.

Table 2a. Eigenvalue Distribution for e=0.0.

No MILU
h ’11 An—l A’R A’l Aﬂ“l }'n
4 0.191 1,559 1.809 0.844 1.312 1332
8 0.0630 1.853 1.940 0.878 2114 2117
16 0,0170 1.958 1,983 0912 3874 3.885
Table 2b. Figenvalue Distribution for ¢=0.0.
Block Point
n ’1! j’n—i )." il 1n—i lu
4 0.730 1.500 2.522 0.759 1.723 4386
2 0.609 2,150 5.132 0.643 2.356 9.045
16 0.553 3.602 10.380 0.575 3.889 18.347
Table 3a. Eigenvalue Distribution for ¢=0.1.
No MILU
n ll ’ln-l An J’t j'erl ’1::
4 0.192 1,589 1.808 0.845 1.302 1.331
8 0.0606 1.863 1.939 0,878 2.106 2114
16 0.0171 1.961 1.983 0.912 3.856 3.864
Table 3b. Eigenvalue Distribution for e=0.1.
Block Point
n 44 dn g e 4, Aoy Ay
4 0.730 1.568 2.528 0.752 1.761 4,400
8 0.604 2.300 5.142 0.637 2471 92,067
16 0.543 3912 10.3%4 0.561 4207 18377
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w2 T T T
e = 0.0
MILY -HE - - -+
Foint -HHtEEHE -+ HE + + +
Block SHHH - 4 - + +
No ~HHHH BB T HE
] | L
—1 1 2 3 4
Fig. 2. Spectra of the preconditioned systems for n= 16,
I 1 T T T
e = 0.1
MiLU - - + + +
Paint HH - -+ + ++ +
Block S 4 4 4 ++ +
No R R
H L 1 1 !
-1 8] 1 2 3 4 5

Fig. 3. Spectra of the preconditioned systems for n=16.
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iterations, which is the asymptotic rate for the MILU preconditioner and also
slower than the bounds in Theorems 5 and 6.

(2) For small variation of coefficients (¢ < 0.1 in our test problem), the circulant
preconditioners seem to be competitive with the MILU preconditioner in number
of ilerations. '

(3} For large variation of coefficients {(¢>1.0), MILU requires fewer number of
iterations.

(4} The circulant-preconditioned systems exhibit clustering of the eigenvalues
around I, similar to MILU.

6. Extensions and Remarks

We first discuss several ways for extending the idea of circulant preconditioners for
solving more general clliptic problems.

First, we discuss how to apply the idea of circulant preconditioners for problems
on irregular domains. It should be obvious that the circulant approximation we use
is sensitive to the ordering of the grid points. The regularity of the coefficient of the
matrix 4 for the natural ordering on rectangular domains, which plays a
fundamental role in the successful performance that we have observed so far, is not
naturally present for irregular domains. We now describe an embedding technique
which does maintain the regularity of the rectangular case. The main idea, which is
similar to one used in the Capacitance Matrix method [4], is to embed the irregular
grid, say €, in an inscribing rectangular grid S. A natural ordering of the grid points
of § is then used. For grid points in €, the difference stencil and right-hand side are
chosen to match those of the corresponding problem defined on Q. In addition, the
difference operator must be chosen so that there is no coupling with grid points in
§\Q. For the grids points in S|, we can use an artificially chosen elliptic operator
and right-hand side, as their choice do not affect the solution in Q. The circulant
approximation (which is defined on the embedding domain §) is then obtained by
the averaging procedure defined in Theorem 1. Note that in this approach, the
iteration is carried out on the whole domain S. Of course, the quality of the
circulant approximation will depend on the operator we choose on § | Q. Intuitively,
one should choose it to be as close to the operator on Q as possible.

We now make some general remarks on the application of the circulant
preconditioners. First, circulant preconditioners can be applied to more general
discretizations (e.g. higher order finite elements) and problems other than second
order elliptic problems with Dirichlet type boundary conditions. As mentioned in
the introduction, the possibility of applying them to nonsymmetric linear systems
arising from discretizations of hyperbolic systems is particularly attractive because
many of the classical preconditioners (e.g. [LU) either are not well defined or do not
perform very well for these problems, primarily due to the nondiagonal-dominance
of the coefficient matrix. Some promising preliminary numerical results have been
reported in [12]. Finally, the type of boundary conditions may also affect the
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performance of the circulant preconditioners, which should work better for
problems with periodic boundary conditions.

We would like to make a final comment on the relationship of circulant
preconditioners to preconditioning by approximations by separable elliptic
operators (and the use of fast direct solvers (FDS)). Boti: derive their efficiency from
that of the Fast Fourier Transform (FFT). For problems on regular domains, it is
possible for the FDS method to produce a spectrally equivalent preconditioner to
the original operator [9] (although this does not necessarily mean it is a more
efficient method for a problem with a given size). Unfortunately, for problems on
irregular domains, the separable preconditioner itself cannot be directly solved
efficiently via FDISs. The usual approach is the capacitance matrix method, in which
an embedding of the irregular domain within a regular one is also made. The
coefficient matrix S of the separable approximation to 4 on the embedded domain
can be written as S=B+ UV, where B is a separable operator on the regular
embedded domain and U and ¥ are low rank matrices. In the capacitance matrix
approach, the system with § is solved using the Woodbury formula and at each step
the necessary application of B™! is computed by the FDS. Thus, this approach
consists of a two-step process: preconditioning A by S and then computing §~'»
via repeated applications of B™'. The circulant preconditioner approach can be
viewed as directly solving the system Ax=b by the preconditioned conjugate
gradient method with a circulant preconditioner B without going through a
separable approximation first. In some sense, one can view the circulant
proconditioner approach as a way of extending the FDS to irregular domains by
using the main tools of the FDS (ie. FF'T) to define a preconditioner.
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Appendix

Proof of Thedrem 2. In the constant-coefficient case,
Ag=tridiag{ —1,2,— 1] (8.1)
and Cy, constructed according to (2.1} and (2.3), is given by
c0=ﬁ*/{A0—e,e;r—e"ef}+§;1, (8.2)

where f=(n—1)/n=0(1) and €; is the jth unit vector,
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To compute 4, (Cg ' Ay), we first note that for all n-vectors x,
% = * * * LA RN * 4 *

x¥Cox=Ppx*Agx+ fx*(e ef +e,efix— Bx*(e; +e e, +e)¥x + X

Since the matrices (e, + e, e, +e,* and 4, —{e, e} +e,ef) arc positive semi-definite,

we have
X*Cyx < 2Bx* Agx + ;%x*x. (8.3)
Using the fact that x*x < O(n®)x¥ A,x and p=0(1), we see that
Q2B+ 0 N1 < Apin(Cq M A)- (8.4)
To compute 4, (C5 ' 4,), we note from (8.2) that for all n-vectors x,
[
—x*x,

Bx*Agx=x*Cyx + —gx"‘(e1 +e,)(e; e x — ﬂgvx*(el —e (e, —e)fx — -

where the last two terms on the right-hand side are always nonpositive. Thus
(3.9

Bx*Agx < x*¥Cyx + gx*ee*x,

where e=e¢, +¢,. Next we claim that for all nonzero n-vectors x,

*k &
X Y Gy Vet O A, < O+ O(n*™ 1), (8.6)

x*Cyx

Substituting this into (8.5), we have

A (Cytdg) € O+ 0.

THax
Theorem 2 now follows by combining this with {8.4).

It remains to prove (8.6). We note that for all nonzero vectors x,

x¥ee*x
T S |G Pee* Ca P =e*Co e
x*Cyx

Since C, is a circulant matrix, Co=FAF*, where

1 .
— 2Zwijk,
F=| "_¢ wifkin s
Jn 0<j<n—1,0<k<n—1
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is the Fourier matrix and A is the diagonal matrix containing the eigenvalues of C,.
1t can easily be shown that

[Al,,;=A(Co) = 2 + 4psin? g,

"
where 8,=mj/n, 0 <j < n—1 Hence
e*Cyle=e*FA™'F*e

_4nt cos® 8,
n <6 p/n"+4p sin? 0,

_4n | gm21 cos® 6,

np n & p/n*+4p sin® 8,

nf2—-1 2 . 2f2 2 .
<opey+ 2"y o8 by Breos b,
nf joper Sin* 8, n S pfn

&

non
) ';

#/2
<Om N+ ij cot® 8d6 + “i“

T n/nu,'Z
< OW Y+ 2z cot{ — |+ O(n*'%)
- Jif:s n*?

< 00 Y+ 0n?), 0

Proof of Corollary 1. We first observe that for any n-vectors x,

o1 +1)?
x*x < (4 sin? ;-—Fn—f) x*A x < (n4n2) x* Ayx.

Thus by (8.3), we have

_ P IV 7! 42 1
o + 2 +0(- .- -
Anin(Co " Ao) 2 (25 4y? O(n)) = 8n2B+p +0 n

Next we rewrite (8.2) as

1
Cot A Cot=—1— L CoimCite,—e)(e, — e Cot

A

+Cot(e, +e)ey te)y Cot.
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Notice that the second and the third terms in the right-hand side are negative semi-
definite matrices. Hence the matrix formed by the first three terms in the right-hand
side will have eigenvalues A < I/f. Since the last term in the right-hand side is a
rank one matrix, by Cauchy interlace theorem, see [10, p. 269], at most one
eigenvaiue of Cy*A4,Cy* has value greater than 1/f. Since Cg* A4o,Co* and Cp ' 4,
are similar, the Corollary follows: O

Proof of Theorem 3. For the constant-coefficient case, we have
A=A, @I+ ® A,

and its block-circulant approximation is given by

C=Co®I+I®C,

.Here A, and C, are given by (8.1) and (8.2), respectively. By (8.3), we have for any

n?-vector x,
X*Cyx=x*(Co ® Dx+x*(I ® Co)x

2
< 28[x*(Ay ® Dx +x*(I ® Ag)x] + ;’S—x*(I ® Dx

2

=2hx*A.x + ;ng*x.

Since x*x < O(n?)x* A4, x for all vectors x, we have
Q2B+0m> M) < Ay (G 1A

To find A

“max

(Cy 1 A), we note that by (8.5), we have

Bx* A x=x*(fA, ® Dx+x*¥( @ fAs)x
< x*Cx + gx* [(] & ee*}+(ee* @ I}]x, (8.7)

where e=¢, 4—3,,. Since (C, ® I) is positive definite, we have for all nonzero vectors
x, x¥Cyx = x*{I @ Cp)x. By (8.6), we then have

x*(I ® ee*)x < x*(I ® ee*)x

- -4 =
Ty S e ey M@ C) U@ et ®

=l ® C5HI @ ee®)(I ® CaH)ll,= |11 ® (Co *ee*Co M),

=||Cqtee*Ci ||, < O™~ )+ 0(n"?).
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Similarly, we have

K f ok

B DX o= 1)+ 0 (),
x*Cpx

Thus by (8.7),

A (CrYA) < Om Y+ 0n?). 0

max(

Proof of Theorem 4. We first observe in this case,
P
Cp=BA—fLut 31, (8.8)
where L,, is a symmetric matrix of rank 4n given by
n a1
L4,,me1e:‘2 + Z ejefhn-kj + Z ejne;rﬂ
J=3 i=1
n nh—1
+epef + 21 €y pa€F T 'Z; it 1€
Fha Ji=

By the Gerschgorin Theorem [10], we can easily check that 4,+ L, is a positive
semi-definite matrix. Thus for any #s?-vector x, —x%*Lg,x <x*A.x. Since
x*x < Q{n?)x* A.x, we have, by (8.8)

X*C,x < (2f+ O(D)x* A.x

for any vector x. Thus A, (C,'4,) = O(1).

min

Next, we claim that 4 (C; 14} < O(n log n). By (8.8),

max(

- oy 1 £ - -y
CP%AcszmE(I~—;2~CP 1)+C‘TJ *L,,Co 7. (8.9)
Let
. n n? n n—t
Lan = Z ejef + Z e;ef + E el Z Cins 1€t
=1 j=at—n+i j=1 ji=0
and
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then it is straightforward to check that

n
M= ‘ZI (efmenz—n+j)(ejwen2—n+j)*-
j=

rR—1
+ Z (ej _ejn+i)(ejn_ejn+1)*+(e1_enl)(e1_en2)*s

which is clearly a positive semi-definite matrix.

Rewrite {8.9) as

1 _
Cotd,Crt= E(I - ;’}C;l) ~ CIAMCy i+, Ot (8.10)
For j=1,2,---,n?, since
2,(C,}=48 sin* (%‘Jf) + 4B sin? ("1;?) + g, (8.11)
we have
P
%+ 8 2 2,(C)) = 5.
Therefore,
(=P V<12 V<o 8.12)
max ﬁ nz b —‘B p+8,ﬂn2 - i N

Since C, *MC* is a positive semi-definite matrix, to get a bound for 1, (C, 1 4,),
it remains fo estimate the Z-norm of the last term in (8.10). We notice that for all
, 2
j=1,....,n%

IC, tesef Cp o= llef Cr el =[Ch 'y

the jth diagonal entry of C,''. Since C;' is circulant and positive definite,
[C, *1,;=4d for all j, where d is some positive constant. Thus

HC D, Crtl, < 4nd. (8.13)

Next we estimate d. By the Trace Theorem and (8.11), we have

12 1 12 /(p A . z(nj))“‘.
d > ,-;1 cy) ,-;1(112 + 48 sin (nz) f sin -
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Since

A {Cp) = %+ 4 Siﬂz(‘ﬂ - —J)+ 44 sin (mt - E)
n 7n n
=P a2 f W £
=— 4 =1+ 4 = A,
3 4B sin (nz) B sin ( - ) A{C,),

for j=1,--,n*/2, we see that

n*2 i —1
ds—zf (p + 4p sin (w)ﬂidlﬁ sin (nj)) +“2*- (8.14)
n® =1 n P

2
We now compute the summation in (8.14) by partitioning the interval [1,%—] into

n subintervals of length 4n.
Let k=0, -.,5—1. We first consider the case when kn+1 < j<kn -+ 5. Since

> 2

i +
0™ Tt (k:;l)nsﬁ/z,

z— nZ

:S

we see that
j J
4f sin? (;13) > 16;3-’;;
Similarly, if we let [=j—kn, then ni/n < 7/2, and we have
o P
48 sin > 16,3——
Thus using the substitution [=j—kn, we have
kn-tnf2 : -1
3 (p+4ﬁsm ( >+4ﬁsm (nj))
j=knt+1 n? n

- 'f( 16B(l’+k”) L ap s [n(l:kn)])—l

? 21kn k2 , AN

12 kz 12 -1
p

I=1

2
2
b

n
-
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s .
2 (p+16B(K2+1%)~ 1. (8.15)

For kn+in+1 <j<kn+n, we let I=j—kn and use the same argument as
above, we have

kntn 7[-2 - -1
3 %4-4;; sin?{ L )+ 4 sin? [ 2
j=kn+tin+1 n h
i p k* , /AR
< s+ 168 — + 48 sin®* | —
DI AR -
in—-1 2 -1

_ p k .ol
- z “};“i“+16,8n—2+4ﬁ Slﬂ2 ;

nf2

n* Z (p+ 16807 + 1)

I/\

Combining this inequality with (8.15), we see that (8.14) becomes

nf2~-1 nf2
i<4"S' ¥ (o+i6p0e+ F))"l+%— (log 1)

=0 1=0

Hence by (8.13), |C, ¥ L,,C, ¥, < O (n logn). Applying this result and (8.12) to
(8.10) and noting that C, *M C; ¥ and C;*4,C,* are positive semi-definite, we see
that

(C,1A)=1IC; ¥ A,C ¥, < O(n logn). 0

max
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