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UNIFORM REFINEMENT OF A TETRAHEDRON
ELIZABETH G. ONG *

Abstract. A uniform refinement strategy for a tefrahedron is presented. Most finite element
theories are based on the assumption that the tetrahedral elements in the refirement do not have
small interior angles. In this paper, we present a strategy that avoids small interior angles. The
refinement strategy to be described is non-degenerate and, strictly speaking, quast-uniform. It can
be used to construct nested, multi-level triangulations. At level j of refinement, an arbitrary non-
degenerate tetrahedron in the initial triangulation is partitioned into 2%/ tetrahedra of equal volume.
This refinement strategy can be easily implemented by partitioning block elements instead of the more
complicated tetrahedral elements. This feature makes the use of tetrahedral elements attractive in a
computer code.
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1. Introduction. The finite element method is often used to obtain discretiza-
tions of second order elliptic problems. It is based on an underlying triangulation of the
domain, which is typically refined to achieve higher accuracy in the discrete solution.
When the domain is three-dimensional, the elements are often taken to be tetrahedra.
In such cases, it is imperative that the refinement of tetrahedral elements result in
non-degenerate tetrahedra. In this paper, we describe a uniform and non-degenerate
refinement strategy for an arbitrary tetrahedron.

We first describe a refinement strategy for four model tetrahedra. Each tetrahedron
is refined into eight small tetrahedra, each of which is congruent to one of the four model
tetrahedra. This congruence to the model tetrahedra ensures non-degeneracy in the
refinement. We say the refinement is non-degenerate if

(1.1) O‘Tzh—Tga YTed, kh=0,1,2,...
Pr

where 7}, is the triangulation at level k of refinement, hp is the diameter of tetrahedron
T, pp is the diameter of the largest sphere inscribed in T, o is the measure of non-
degeneracy of T', and o is a constant independent of 7" € T}, and the refinement level
k. (k = 0 is the initial level of refinement.) This implies that the interior angles of the
tetrahedra in the refinement do not get smaller {and eventually become “flat” in the
worst case) with increasing levels of refinement. When non-degeneracy is satisfied, we
have a regular family of triangulations according to the definition given in [2]. A single
tetrahedron is said to be non-degenerate if o7 # oo. We assume that any tetrahedron
that we refine is initially non-degenerate.

The resulting eight small tetrahedra also have equal volumes. We shall call the
refinement uniform in the sense that every tetrahedron in the domain Q is refined into
eight equi-volume tetrahedra at each level of refinement. A uniform refinement typi-
cally implies that the small tetrahedra generated from the refinement of a tetrahedron
have the same diameters. The diameters of the tetrahedra generated by the refinement
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Fi1Gg. 1. Two prisms in a cube. -

strategy that we will describe differ by a factor of /2. Hence, strictly speaking, the
refinement is quasi-uniform. We say the refinement is quasi-uniform if

(1.2) he, <e¢ VTN, TheT k=0,1,2,...

br,
where hy, and hg, are the diameters of any two tetrahedra 7 and 7, respectively, in
the triangulation 7} and ¢, is a constant independent of T € 7, and the refinement
level k.

The refinement strategy to be described also generates nested tetrahedra such that
the triangulation 7., is obtained by partitioning some or all tetrahedra T' € 7; for
k=0,1,2,....

In Section 2, we describe the uniform refinement strategy for the four model tetra-
hedra. In Section 3, we use the uniform refinement procedure for any of the four model
tetrahedra to show that

1. Any tetrahedron T can be refined at level j into 2% tetrahedra that are equi-
volume and nested,
2. For any tetrahedron T, there exists a refinement that is non-degenerate and
quasi-uniform,
The advantages, usefulness, and limitations of this refinement strategy are discussed
in Section 4. A more detailed discussion of this refinement strategy can be found in

[8).

2. Refinement of Model Tetrahedra. We make use of the cube as a device in
the refinement strategy for the four model tetrahedra. Consider a cube with length
H/v2 and with (2° + 1)? = 8 nodes in the initial refinement, called level 0 refinement
and denoted by 7.

Divide the cube into two prisms, as illustrated in Figure 1, and fit three tetrahedra
in each prism as shown in Figures 2 and 3!. The tetrahedra in the prism in Figure 2

! This particular triangulation of the cube falls under one type of triangulation discussed in [5] and
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Fi1a. 2. Tetrahedra Ty, T2, Ts in o prism.

are denoted by Ti, T,, and Ty while the tetrahedrain the prism in Figure 3 are denoted
by T4, T, and Ts. Note that T3 and T are identical to Ty and T, respectively, while
T3 is a reflection of 7,. The tetrahedra Ty = 7%, T, = T, T3, and Ty are the four model
tetrahedra that we will refine.

The cube has volume V = (H/+/2)%. The volume of a tetrahedron is given by:

(2.3) -‘,15 X (area of base) x height.

It can be easily shown that each of the six tetrahedra T, to T; has volume 3V.

We now describe the procedure to refine a tetrahedron uniformly. We use a stan-
dard tetrahedron 7' shown in Figure 4 to illustrate the refinement procedure since any
non-degenerate tetrahedron T can be mapped to the standard tetrahedron 7°; that is,

for any non-degenerate tetrahedron 7', there exists a unique invertible affine mapping
[1, 2, 10]

(2.4) F:zeR®— F(z)= Bz +b
where B is an invertible 3x3 matrix and b is a vector in 2 such that
(2.5) F()=i, 1<i<4.

Here, i and 7 are the vertices of 7' and corresponding vertices of T, respectively. Since
midpoints are preserved by the affine mapping, it follows that

(2.6) F(ih) = m,

appears in [11]. Other triangulations of the cube that are amenable to the refinement strategy are
discussed in Section 4.
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Fia. 3. Tetrghedra Ty, Ty, T in a prism.

where 77 and m are the midpoints of T and T, respectively.

The first step is to connect the midpoints of the edges of the tetrahedron as shown
in Figure 5. This gives four tetrahedra — ,,1;,%;, and #, — formed by chopping off the
four corners of the tetrahedron 7°, and an octahedron p in the middle section of 7.
See Figure 6. In three different orientations, the octahedron P can be viewed as two
skewed pyramids patched together on a common base as shown in Figure 7.

The choice of a diagonal that connects two of the four base nodes in Figure 7
determines the four other tetrahedra — {5, {4, {7, and #5 — obtained from the octahedron
p. There are three possible diagonals and hence three possible sets of four tetrahedra
that can be generated from octahedron p. The three diagonals are formed by connecting
the following pairs of nodes: 5 and § (shown in Figure 8), 7 and 8, and 6§ and 10.
Regardless of which diagonal is chosen, we are able to refine the tetrahedron 7' into
eight small tetrahedra. The choice of a particular diagonal, and hence of a particular
orientation, will be determined when we go back to the original model tetrahedra in
the cube. One orientation will be preferred over the other two.

Let us proceed to show that the eight tetrahedra for any choice of diagonal have
the same volume. If we denote by H the diameter of 7' as shown in Figure 5, then 7"
has volume Vp = {(H/+/2)°. Now the four tetrahedra f;,%,,%, %, shown in Figure 6,
are similar to the standard tetrahedron 7° but with diameter H /2. Hence each of these
four tetrahedra has volume §(Z/+/2)? = 1V,.. Subtracting the volumes of these four
tetrahedra from V3, we obtain the volume of the octahedron $ which is $Vp. What
remains to be shown is that each of the four tetrahedra, fs, f;, ¢;, and s, in p has
volume 1Vj.
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¥1G. 4. Standard tetrahedron.

Fia. 5. Connect midpoints of the tetrahedron.



Fia. 6. Four tetrahedra iy,%z,s,1; and octahedron p.
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F1a. 7. Octahedron as two patched up pyramids in three orientations.



F16. 8, Four tetrahedra is,{s,47,1s obtained from octahedron § when nodes 5 and § are connected to
form a diagonal.



In Figure 8, where nodes 5 and 9 are connected to form the diagonal, #; = f5 and
fs is a reflection of {;. Hence, #; and 75 have the same volume and so do #; and %,
for any choice of diagonal. It is sufficient to show that the volume of any of the four
tetrahedra is V. Once any of the tetrahedra is shown to have volume }Vj, it follows
that each of the four tetrahedra in p has volume 1Vj.

Looking at tetrahedron 7 in Figure 8, the right triangles Aggs and Agss are per-
pendicular to each other. The legs of the two right triangles have length £ /+/2. The
volume of 75 is easily calculated to be (&£ /v/2)2(£//3) = L1V;.

By the same procedure, it can be shown that each of the four tetrahedra in p
obtained by connecting nodes 7 and 8 or nodes 6 and 10 has volume equal to V.
Hence all the eight tetrahedra making up the standard tetrahedron 7', regardless of the
diagonal chosen, have the same volume, satisfying the rule for the uniform refinement
strategy.

By property (2.6) of the affine mapping, midpoints of the standard tetrahedron 7T
will map to midpoints of any non-degenerate tetrahedron 7. Moreover, we have the
following differential volume relations:

(2.7) dz dy dz = |det(B)| dz dy d=z

where |det(B)| is the absolute value of the determinant of the affine mapping matrix
B and is constant by the property of the affine mapping. Hence any tetrahedron can be
refined into eight tetrahedra of equal volume by connecting the midpoints of its edges.
In particular, each of the siz tetrahedra Ty through Ty in the cube in Figures 2 and 3
can be refined into eight tetrahedra of equal volume.

Recall that we have three choices of diagonals when refining any tetrahedron in
the cube. We will choose a particular diagonal so that we maintain the tetrahedral
structure in the refinement. In other words, if we refine the cube in Figure 1 uniformly
into eight small cubes, each of the small cubes will have a tetrahedral structure identical
to that of the big cube shown in Figures 2 and 3. We illustrate this in Figure 9. Such a
restriction forces the small tetrahedra to be congruent to one of the four parent model
tetrahedra T} = T, Ty = T, T3, Ty. The diagonals chosen and the refinement of each
of the model tetrahedra T} = Ty, T2 = T¢, T3, and T, are shown in Figures 10 to 13,
respectively, where we denote by T( the small tetrahedra congruent to 7j,i = 1,...,6.
(The superscript (1) indicates one level of refinement.) Notice the énclusion of the smaJl
tetrahedra in their parent tetrahedron. Thus, the nesting condition is satisfied.

This procedure is repeated at each level of refinement. A tetrahedron is refined
into 2% tetrahedra after j levels of uniform refinement. By the uniform refinement
strategy, any tetrahedron can be refined at level j into 2% tetrahedra that are nested
and have equal volumes. In particular, each of the siz tetrahedra Ty through Ty in the
cube in Figures 2 and & can be refined at level j into 2% tetrahedra that are equi-volume
and nested. Notice that after one level of refinement, the cube has (2! +1)® = 27 nodes.
In general, we have (2/ + 1)® = N nodes after j Ievels of uniform refinement.

To measure non-degeneracy of the model tetrahedra, we use Zhang’s formula [10]
to compute the diameter py of the largest sphere inscribed in a tetrahedron T. This
is given by

Vi
(2.8) pr = 6%,
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F1G. 9. Tetrahedral structure preserved in small cubes.

where Vi is the volume and St is the surface area of tetrahedron T. The surface area
&7 is the sum of the area of the triangles that make up the faces of tetrahedron 7.
The following surface areas of the model tetrahedra can be easily calculated:

3+43

(2.9) | Sr, = Sp, = SR
(2.10) Sy, = Sp, = lﬁ‘/f_i,@ﬁrﬂ
(2.11) ST: = ST4 - ! +2\/§H2.

Since the volume of each of the six tetrahedra T through T; is 1V = 1(H/v2)?,
we have by (2.8) the following diameters of the largest spheres inscribed in the six
tetrahedra:

V‘T \/ﬁ

2.12 = = ot = H

( ) Prs Pr, Sr. 3+ V3
A 2

2.13 = =62 = H

(2:13) e = P g T VAL V)
Vr 1

2.14 = =62 = H.

( ) Pr, Pry ST; 2 n \/i

Since the diameter of T; = Ty is H and the diameter of T, = T, T3,0r Ty is \/-‘;‘tH , then
(1.1) and the values in (2.12)-(2.14) give the following measures of non-degeneracy of
9
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FiG. 10. Refinement of tetrahedron T, .
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Fi1G. 11. Refinement of tetrahedron Ts.



F1G. 12. Refinement of tetrahedron Ty,
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F1c. 13. Refinement of tetrahedron Ty,
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the model tetrahedra:

(2.15) o, = E=._"1".1—.‘5£%=3_*-1'/§%'.'.:}.31."':-
’ pr, Py V2

hy. hr 3 (44+vV2(1+3)
2.16 = 2= = -t = 4= ~ 4,82
@10 om = =m0 =V ( 2

. hT hT 3

2.17 = L =gp, =t == (2 2) = 4.18.
(2.17) oy pr Ly 5 ( +2 )

We proceed to measure the quasi-uniformity of the model tetrahedra. Using (1.2),
we have

hr, \/§ .
(2.18) Sz 15156

The small tetrahedra into which 1) through Ty are refined are congruent to these
parent tetrahedra. After k& levels of refinement, £ = 1,2,..., the small tetrahedra
congruent to T;, which we denote by T,-(k), i =1,...,6, have diameter hpu = hg,/2F,

where hy, = hy, = H and by, = hy, = by, = by, = \/g H. The diameter of the largest

inscribed sphere in these tetrahedra is p.») = pr, /2%, where pr,,i = 1,...,6, are given
in (2.12)—(2.14). Hence, the measures of non-degeneracy

(2.19) Ope = 0, i=1,...,6,

where o7,,7=1,...,6 are given in (2.15) to (2.17), remain the same for all k. Likewise,
the measure of quasi-uniformity

_ by, _\/ﬁ :
—“’;'I—'lSCQ-— §' 152,I$6

remains the same for all k. Because of the properties given in (2.19) and (2.20), it
follows that the uniform refinement strategy for the model tetrahedra is non-degenerate
and quasi-uniform.

In the next section we show that non-degeneracy and quasi-uniformity are pre-

served when the uniform refinement strategy is applied to any non-degenerate tetra-
hedron.

hTi(k)
h

k
TI( }

(2.20)

3. Extensions to Arbitrary Tetrahedra. In the previous section, we have
shown that with uniform refinement, any tetrahedron can be refined at level j into 2%
tetrahedra that are equi-volume and nested. We now show that for any non-degenerate
tetrahedron T, there exists a refinement that is non-degenerate and quasi-uniform.

We denote by F; the affine mapping that maps the model tetrahedron 7}, ¢ =
1,2,3, (i = 5, 6,4, respectively, yield the same results) to an arbitrary non-degenerate
tetrahedron T

(3.21) T=F{T):2€T;— F(z)= Bz + b, T.

We proceed to prove the following theorem, which shows non-degeneracy of the re-
finement of T' into 23% small tetrahedra at level k, where 7' is the image of any of the
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model tetrahedra T}, i = 1,2,3. This theorem is similar to Theorem 2.2.8 in Zhang’s
thesis [10].
THEOREM 3.1. For any non-degenerate tetrahedron T with

or < ¢,

where op is given by (1.1), there ezists a refinement of T into 2% small tetrahedra
{T,(,?}f;kl Jor levels k = 1,2,... such that?
1. Case 1. If T' is the image of the model tetrahedron T,, then

opey £ coorop, £=1, ey 228 for all k.

2. Case 2. If T’ is the image of the model tetrahedron Ty, then
T70) <o, £=1,..,2% forall k.

3. Case 8. Is T is the image of the model tetrahedron Ty, then

oz < coopor, £=1, s 2%k for all k.

Proof.
1. Case 1. Let T' be the image of the model tetrahedron T} shown in Figure 10
where we have the following affine mapping from (3.21):

(3.22) T=F1(Tl):weT1HFl(m):B1w+b1 ET.

25k

Let T and T be refined into 23 tetrahedra { T,(i)}f-lkl and { Tl(;k,)’t 21, Te-
spectively, at level k. In all four subcases below, we use the relations found in
Theorem 3.1.3 in Ciarlet [2], namely,

h
(32 1Bl < 52, 187 < 22
Py Pr
where || - || denotes the Euclidean or 2-norm. We also have
(3:24) hagy, =
Pr, = 5o

if Tl(':}, is congruent to 1;,¢ = 1,2,3,4.
Subcase 1.1, I T,(,'? is the image of Tl(:]:),b which is congruent to 7}, we have

hroy 1B1lthre,
aT(k) = S =1{fa
" Pr®) 1Bl Pr),
he by bz,
Pry Pr Pry
(3.25) - ook

IA

2 The subscript s is used to denote small.
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Subcase 1.2, ¥ T®) is the image of T , Which is congruent to T3, we have
Py g 1,k

. I L 0
T ppwmy T 1B = oz,
< Prhbr by,
pT: Pr pT;
(3.26) = UTUTxaTg'

Subcase 1.3, If Tf"? is the image of Tl(’i), ¢» Which is congruent to T, we have

Ry (1B ]| hpery
[R] < 1:2,8

Ope) = = T
T PT.(,’;) | B 1HFIPT1{=’:)1
< hz by ba,
- Pr. Pr Pr,
(3.27) C e

Subcase 1.4. T T is the image of T*),, which is congruent to T, we have
2,f lis,d

b i) | Ball oo
O'T(k) —_ 4L < L, £
w ey T BT,
< Do bg b,
- Pr, Pr P1,
(3.28) = UTUT;UT*'

Comparing o7, in (2.15)(2.17), we take the maximum upper bound of the
four cases to obtain

Oop (k) < 090701, < €07, 07,.

. Case 2. The proof is similar to that for Case 1. T is now the image of the
model tetrahedron T, shown in Figure 11 and the affine mapping is now given
by

(3.29) T=F(T):eechr F(z)=Bx+b,eT.
The relations in Ciarlet are

h h
(3.30) I1B.ll < =, |IB7Y| < ==.

P, Pr

. Case 3. The proof is again similar to that for Case 1. T is now the image of

the model tetrahedron T3 shown in Figure 12 and the affine mapping is given
by

(3.31) T=F():cclyw Fy(z)= Bz + by e T.
The relations in Ciarlet are
by hy,
3.32 Bsll < Bll< =, 0O
(3.32) Il 3”“pn’ Ilsll_pT
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In the following theorem, we show that for any non-degenerate tetrahedron T, there
exists a quasi-uniform refinement of T into 23* tetrahedra at level k for k =1,2,....
THEOREM 3.2. For any non-degenerate tetrahedron T with

or < ¢
there exists a refinement of T into 2°* small tetrahedra {T,(f:) 2 forlevels k= 1,2,...
such that

1. Case 1. If T is the image of the model tetrahedron T, then

hoo

nm 3
hwsl,z = \/;cﬂrm m,n=1,..,2%  for all k.

2, Case 2. If T is the image of the model tetrahedron T, then

hopao

m

< %cuaf-, myn=1,...2% forall k.

P
3. Case 8. If T is the image of the model tetrahedron Ty, then

hT(")

i) 3
hT,(”’,Z < \/;coaﬁ m,n=1,..,2% forall k.

Proof.
1. Case 1. Let T be the image of the model tetrahedron 7 where the affine
mapping is given in (3.22) and the relations in (3.23) hold. Let T be refined into

2% tetrahedra { T,{i) }2Z; and let T; be refined into 2% tetrahedra { Tff,),t e
at level k. Let T.(kn?. and T be the image of Tl(’i)m and Tl(f,),,,, respectively,
where m,n € {1,...,2%}. Let Tl('f,)m and Tl(:k,),n be congruent to the model
tetrahedra T; and T, respectively, where i,! = 1,...,4, so that Tl('f,)m = T,m

and Tl(’?n = T, Using (2.20), (3.23) and (3.24), we have for all k

hog) | Bullkrg || B1 [
egy < TB g~ BT g

hy by, Pz
pr, Pr by’

\/5
5 groT,

3
\/;coan m,n = 1,...,2%,

2. Case 2. The proof is similar to that for Case 1. 7 is now the image of the
model tetrahedron T, the affine mapping is given by (3.29), and the relations
in (3.30) are used.

3. Case 8. The proof is similar to that for Case 1. T is now the image of the
model tetrahedron Ty, the affine mapping is given by (3.31), and the relations
in (3.32) are used. O

IA

IN

IA
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CoROLLARY 3.1. At the initial refinement Ty, let the polygonal domain Q be
partitioned into blocks, each containing siz tetrahedra, where each block is the image of
the cube containing the model tetrahedra Ty to Ty shown in Figures 1, 2, and 8. If

JTSCO VTE%

then there erists a refinement wherein each T € T, is refined into 2% tetrahedra
{Ta(";)}?:; at level k = 1,2,... such that

2 3k
GT.(,"') < Co0T, = 1,...,2
h

k) 3
(3.38) hT.(‘k) < \/;cocrg», m,n=1,..,2%

R

for allT € Ty and all levels k. Here, ,(?1) =T &€ T, which is not refined,
Proof. This follows from Theorems 3.1 and 3.2 and comparing the values o7, , o7, and
or, given in (2.15), (2.16) and (2.17), respectively. O

4. Applications and Limitations. We have described a uniform refinement
strategy for any non-degenerate tetrahedron T that results in a triangulation that is
nested and generates, at level k, 2% tetrahedra that are equi-volume. The refinement
strategy, which employs the model cube containing six tetrahedra, is quasi-uniform and
non-degenerate. (Though refinement of the six tetrahedra in the cube generates small
tetrahedra congruent to the initial six tetrahedra, this is not true of the refinement
of arbitrary tetrahedra.) This strategy applied to the four model tetrahedra happens
to satisfy Zhang’s rule of choosing the shortest edge, that is, the diagonal with the
shortest length, even though the rule is not invoked in choosing the diagonal. Recall
that the strategy chooses the diagonal so that the tetrahedral structure in the cubes
is preserved.

The refinement strategy is easy to implement and can be automated. A polygonal
domain {2 can be partitioned into blocks, each block partitioned into eight blocks at
each level of refinement. At the final level of refinement, say level 7, six tetrahedra will
be fitted into each of the 8 blocks in the same manner as six model tetrahedra were
fitted into the model cube. This achieves the same triangulation as when each of the
initial blocks in the domain ) are fitted with six tetrahedra and the tetrahedra refined
according to the uniform refinement strategy. This can be easily seen by assembling
the refined tetrahedra in Figures 10 through 13 into a cube.

The refinement strategy has applications to finite element methods in general. A
typical concern in using tetrahedral elements is the generation of small interior angles
in the refinement which leads to poorly conditioned systems of equations {3, 9]. The
non-degeneracy of the refinement strategy avoids this problem.

The refinement yields a nested triangulation that can be used for multigrid and
other nested multi-level methods [4, 7]. The optimal operation count of O(N), where
N is the number of unknowns, is likewise obtained. This is easily shown by summing
over all levels the number of unknowns or nodes in the cube which is the same number
of nodes in the blocks making up the domain Q2. That is,

zj:(zk +1)° = O(N)
i 18
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Fi1a. 14. Connectivity of a center node.

since (2/ +1)* = N.

There are some limitations to this refinement strategy. First, the non-degeneracy
and quasi-uniform bounds obtained using the model tetrahedra in the cube are not
optimal. A refinement using the model tetrahedra in [10] produces smaller bounds.
However, the tetrahedra in [10] cannot be used to triangulate a cube.

Second, the coefficient matriz associated with the tetrahedral refinement is not
relatively sparse. There can be as many as 15 nonzeros in each row of the matrix as
opposed to 7 nonzeros in the usual 7-point discretization of a second order differential
operator in three dimensions. Figure 14 shows the connectivity of 14 nodes to a center
node in a cube partitioned into six model tetrahedra and refined according to the
uniform refinement strategy.

An interesting question is how many ways can we triangulate a cube into tetrahedra
and which of these triangulations is amenable to the uniform refinement strategy.
The refinement strategy applied to a cube generates tetrahedra that are nested, equi-
volume, congruent to the model tetrahedra, and conforming so that the tetrahedral
elements match at block interfaces. Moreover, small cubes into which a parent cube is
partitioned have the same tetrahedral structure as the parent cube.

A theorem in [5] states that there exist exactly ten essentially different vertex-true
triangulations of a cube into tetrahedra. A vertex-true triangulation requires that each
vertex of a tetrahedron in the cube is a vertex of the cube. These triangulations are
classified into six cases depending on the number k,, of tetrahedra with m = 0,1,2,3
external faces on the cube. The triangulation of the cube presented here is the case
with kg = 0,k; = 2,ky = 2, and k3 = 2 since there are two T, tetrahedra with one
face on the cube, two tetrahedra (73 and T,) with two faces on the cube, and two
T, tetrahedra with three faces on the cube. Another realization of this case which is
amenable to the refinement strategy is shown in Figure 15 and is basically a different
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Fi1G. 15. Triangulation of a Cube, ko = 0,k1 =2, kg = 2, ks = 2.

choice of diagonal. The only other case amenable to the refinement strategy has
ko = 0,k; = 0,k; = 6,k3 = 0. This is shown in Figure 16 and appears in [6]. It has
only two types of tetrahedra, namely, T; and T;. In the case of the cube containing the
four model tetrahedra in Figures 2 and 3 and the cases represented by Figures 15 and
16, a key thing to note is that the diagonals on parallel faces of the cube align. This
guarantees that the tetrahedra match at block interfaces. Again, uniform refinement
strategies that have the properties of the uniform refinement strategy discussed in
the previous sections can be defined for the cases represented in Figures 15 and 16.
These strategies will be non-degenerate and quasi-uniform. The tetrahedra generated
from the refinement will be equi-volume and nested. The small cubes generated from
the refinement will have the same tetrahedral structure as the parent cube. This
refinement strategy can also be automated by working with the cubes. Since the
cube in Figure 16 has only types T3 and T, tetrahedra, it is interesting to note that

the tetrahedra will have the same diameter \/gH /2% at level k of refinement (the

conventional uniform refinement strategy) and the measures of non-degeneracy will be
better (compare oy, = o7, With o7, in (2.16) and (2.17), respectively).
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