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ROBUST DIFFERENCE APPROXIMATIONS OF
STIFF INVISCID DETONATION WAVES

Bjorn Engquist! and Bjorn Sjogreen®

Abstract. Inviscid compressible fluid with a one step irreversible chemical reaction
is approximated by finite difference methods. We compute detonation wave solutions
using new higher order TVD/ENO numerical methods for the convective part of the
equations, and we show how the source term can be incorporated into the Runge-Kutta
time marching scheme. In this type of combustion problem stiff source terms can lead
to unphysical wave speeds. A remedy for this behavior is developed and implemented.
We present results in one and two space dimensions, showing that the stiffness problem
can be avoided by using this new method. We also give numerical results regarding the
oscillatory behavior of the pressure peak in the one dimensional ZND detonation wave.
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1. Introduction. We consider the equations

p m n 0
m m?[p+p mn/p 0
(L1) n | +| mn/p +{ n*letp | = 0
€ me+p)/p n{e+p)/p 0
pz/ mz x nz y ~Kpze /T

describing the motion of a fluid in the z-y plane in which a one step irreversible chem-
ical reaction is taking place. Initial data is given at ¢ = 0. The dependent variables
oz, y,t), m(z,y,t),n(z,y, 1), e(z,y,t) z(z,y,t) are the density, z- and y-momentum,
energy and the fraction of unreacted fluid respectively. The pressure is given by

p=(y=1)(e = 5(m* +n%)/p - aop)

and the temperature is defined as T = p/p. We will use u = m/p to denote the velocity.
We will sometimes use (1.1) with only one space dimension present. We have
neglected heat transfer and viscos effects. We will focus on the discontinuous solutions
of detonation waves. For these waves the viscosity is not as important as for the slower
deflagration wave solutions. S
The parameters qq, T;,~, [{ correspond to chemical heat release, ignition temper-
ature, ¢, to ¢, ratio, and an equilibrium constant respectively. The equations have
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been non dimensionalized, leaving the choice of these four parameters to completely

determine the problem.
We refer to (1.1) as the reactive Euler equations with Arrhenius kinetics. We will

also consider (1.1) with

(1.2) — K pzeTilT
replaced by
(1.3) - —KpzH(T; - T),

where H(z) = 1 for z > 0 and H(z) = 0 for z < 0. We will refer to this variant of (1.1)
as the reactive Euler equations with Heaviside kinetics.
In some applications it is appropriate to use the source term

(1.4) ~KpzT%e /T

with a # 0, instead of the one in (1.1). The shape of the traveling wave is affected by
the choice of source term. See examples in section 4.

Our objective in this paper is to study numerical methods for these equations. We
shall present two algorithmic innovations. A new class of higher order approximations
and a technique for robust treatment of stiffness problems at detonation fronts.

One difficulty in the approximation is the rapid dynamical behavior and the steep
gradients of the detonation front. In section 2 we shall introduce a class of efficient
shock capturing methods for the 1-dimensional version of (1.1). We investigate the
properties of the methods for different order of approximations and different choices of
flux limiters. Details for the implementation of the algorithms in both 1 and 2 space
dimensions are given in the appendix.

Another difficulty is that a shock wave and a thin combustion layer are located close
to each other in the solution. Modern shock capturing methods can be made to deal
with the shock wave and stiff ODE solvers can handle the source termn when K is large.
There are, however, remaining stiffness problems, due to the interaction between these
two parts of the solution algorithm. It is well known [2,5,10] that for certain parameter
values, non physical waves will occur. This spurious numerical wave is initiated by the
numerical shock profile. Even a modern shock capturing method will have a few grid
points in the shock profile and the corresponding temperature values may trigger a too
early chemical reaction [5].

In section 3 we shall present a robust technique which guarantees that no strong
chemical reaction starts before the shock wave has passed. The technique is based on
extrapolation of the source term and we indicated this idea in [13] for a model problem.
Most of [13] deals with a projection technique which is another method for avoiding the
same numerical problem. The projection technique is, however, not easy to extend to
systems. _

Numerical results for the new methods are presented in sections 4 and 5 for the
one and two dimensional problems respectively.

A theoretical study of the numerical properties of the extrapolation technique when
applied to simple model problems is given in {6].
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2. Shock capturing methods. We shall describe the one dimensional setting
for the method. Two space dimensions is implemented analogously (see also appendix
A). We introduce the grid points zj,7 = ...,—1,0,1,..., with equal mesh spacing
Az = zjy; — z;. The time levels {o,%:,... are also uniformly spaced with space step
At = tpqy1—tn. Weuseu] either to denote the approximate solution in the point (z;,1,),
or sometimes to denote the approximate cell average of u in the cell [z;_/5,Z;41/2] at
time t,. The difference between cell averages and point values is significant only for
order of accuracy three and higher.

The convective flux derivative

m
pu’ +p
m(e +p)/p

me z

is discretized in space, using an upwind method. Godunov’s and Roe’s [8] methods are
implemented. In the computations almost no difference in the results obtained with the
two methods were observed. The numerical results presented in the following sections,
was computed using Roe’s method, because it is easier to vectorize and thus gave lower
execution time on the Alliant FX computer. On a scalar computer there is no significant
difference in execution time between Godunov’s and Roe’s method.

The convective part of the equations deviates very little from the non reactive
Euler equations, since the extra equation appears as an additional linear field in the
characteristic variables. A detailed description of the formulas used to implement Roe’s
method is given in appendix A.

Higher order accuracy was obtained using piecewise polynomial interpolation of
ENO type, [8]. Piecewise linear and piecewise parabolic reconstruction were imple-
mented. In the problems solved here, it turned out that the interpolation in the physi-
cal variables, instead of using characteristic variables, was sufficient to produce a good
solution. A TVD limiter function was used to the limit the slopes in the piecewise linear
reconstruction.

In summary, the problem after flux discretization is on the form

du;() | Rjvip —hiap
S YT
where
hj+1/2 = h(u;+1(t), ”j_(t))

with h{u,v) the first order numerical flux function, and uj’, u; are the values of u at
the left and right ends of cell j obtained from the piecewise polynomial interpolation.

For the time discretization, a Runge-Kutta method is used. It is well known [12],
that the second order method

u =™ —AALRT

2y _ )]

u® =W —2anl
un+1 = (un + u(2))/2



4

for the convective terms gives a good performance with respect to shocks. Here h;_,,
is the numerical flux function described above, and we use A = At/Az. The source term
is added such that it does not impose any additional stability restrictions and such that
the accuracy is the same as for the convective method (two). We therefore consider the
following method

u =™ — AA LR}, + aAtg(u™) + bALg(u™))

u® =) _ )_\A.I.h?_)l/z + cAtg(u®) + dAtg(u®)

un+1 — (u” + u(2))/2

where g{u) is the source term. It is easy to derive the following one parameter family
of second order accurate methods,

a=1-b, ¢=14+b, d=-b.

For example the explicit method a = 1,0 = 0,¢ = 1,d = 0 is included in this family. By
performing standard ODE stability analysis on the problem with A;_; /5 = 0, g(u) = Au,
it turns out that the only choice which contains the entire left hand plane in the stability
region (A stability) is

a=1/2, b=1/2, ¢=3/2, d=-1/2.

( With no convection, this method yields third order accuracy for the source term.)
This is the method used for implicit treatment of the source term.

For the third order ENO discretization of the convective fluxes, we used a third
order Runge-Kutta method for time discretization. This is another of the so called
TVB-Runge-Kutta methods derived in [12]. Similar to the second order case we add
the source term to this method to obtain

u® =y — AALRT_, 1 + aBitg(u™) + bAtg(u(V)

u® = 3yn g %,;(u‘” = XA LY, ) + eAtg(u®) + dAtg(u®)

) i=1/2
1 2
ut = 2t 4 2@ = AALRD, ) + eltg(u®) + FALg(u™)

A strajghtforward but lengthy analysis reveal that the following values
a=1, b=0, c=-3/4, d=1, e=0, f=2/3

give overall third order accuracy, and A-stability for the method with convective terms
equal to zero. A further analysis yields that the method is A(a) stable for the source
term, when the convective term satisfies a CFL condition. We will not present the
analysis of these Runge-Kutta splitting methods here, instead they will be treated in
full length in a forthcoming paper.

The piecewise polynomial reconstruction method used is based on cell averages,
and since

1 Titife d 1 Tit1f2 4 5
oo /’ wde) = o o(u)do + O(Aa?)

Ti-1/2



5

it is necessary to change the right hand side treatment for accuracy greater than two.
We have used Simpson’s rule to get the approximation

(9(vf41/2) +49(v]) + 9(v]_1/5))/6

for the right hand side on the explicit time level. Here v}, /20 U5 s Uj_y s ar€ point values,
obtained from the piecewise parabolic ENO reconstruction from the cell averages u7.
The implicit part of the right hand side was implemented only to second order accuracy.
It is necessary to treat the source term implicitly for problems with very stiff chemistry.
It is an easy calculation to show that the nonzero eigenvalue of the linearized right hand
side 1s

-T T
Ay = KeT/T((y = Doz — 1)

if Arrhenius kinetics is used. The convective part of the equations has the maximum

eigenvalue
Ae=u-+e

Thus if
(2.1) Ath./ Dz < At),

the source term will impose an additional restriction on the time step, unless approx-
imated implicitly (assuming for simplicity a CFL stability limit of one). Note that a
large K will lead to a small At, but when KAt — 0, and At{/Az = constant, the
CFL restriction from the convective part will dominate. Condition (2.1) will have to be
checked for each particular problem, some applications will require an implicit method
and some will not.

It is possible to prove, by elementary calculus, that the ratio A, /A, is bounded from
above, with a bound depending on the parameters K, T}, v, go.

An implicit method for the source term means that a non linear equation has to
be solved in each grid point. The equation is (with X as unknown)

(2:2) X = (p2)} = MA4h}y jp — KALXe T/

where

i3 b3 1 s n
TPt = (y = (5T /i = S(uf™)? — @ X/p}H).

The functions e, p, u are already know at t,4+; from the three equations without source
terms. By elementary calculus it is possible to show that there is always one root
X elo, p;.‘"‘}] if the convective step guarantees that (pz)} — AALRT /2 € [0, p7]. We
solve (2.2) using Newton’s method.

It is possible to avoid solving (2.2) numerically, if we neglect the dependence of the
temperature on X. We can then solve (2.2) analytically. The numerical experiments
showed this approximation to lead to stiffness problems and is thus not recommended.

In the case of Heaviside kinetics, (2.2) takes the simpler form

X =(p2)] = MALR} 1 p, T7H < T
X =(p2)} = AARY , p — KALX, TP >T



We solve this analytically to get
X = (pz)] — AR 1135 T < T}

2.3).
23 X = ((p2)} — MR}y o) /(1 + KA2), T > T,

Since X decreases when T becomes larger than Tj, we will get the same result if the
test 7711 > T is replaced by T™ > T}, thereby making it unnecessary to solve any non
linear equation.

3. The extrapolation method. Numerical results for the problem with Heavi-
side kinetics is well known to be sensitive to the size of KAt [2,5,13].

In figures 3.1 and 3.2 we show the density and mass fraction unreacted fluid, com-
puted with Heaviside kinetics using K = 10000 and K = 100 respectively. The other
parameter values were T; = 3,g0 = 50,7 = 1.2. We started with p = 1L,u=0,p =1
to the right and obtained the initial profile by integration of an ODE as described in
section 4. Chapman- Joguet conditions were used to determine the wave speed. The
larger K value causes an unphysical wave, which moves with wrong speed. For the
smaller K value, the solution profile is well resolved and a correct solution is obtained.
See [2,5] for similar results.

25 Pressure 1 Mass F'raction

20 0.8} b

15 o6 -

10 041 g
5 02+ 5
00 SIO 100 00 _‘;0 100

figure 3.1, K=10000

40 Preslsurc 1 Mass F'raction

0 50 100
figure 3.2, K=100

This effect stems from the computation of the source term. It can be seen from
(2.4) that if KAt is large, then pz will drop to zero immediately as T increases above
T;. All shock capturing methods will give a few grid points in the shock. This results
in a local error of order 1 in the temperature. The error may trigger the chemistry at
a wrong location. If, e.g. the difference method places one new point in the shock at
each time step, the chemical reaction will propagate with one grid point per time step.
Note that the method for the source term is backward Euler, an unconditionally stable
method for the ODE.
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We shall now show how to avoid this stiffness problem. A detonation wave consists
of a non reacting shock wave which first increases the temperature of the fuel mixture,
so that ignition occurs behind the shock wave. No chemical reactions start before the
shock wave has passed through. We shall emulate this behavior in the numerical method.
Numerically, there are always a few grid points in the shock. We want to make sure
that none of the points inside the numerical shock triggers the chemistry. One simple
way of ensuring this is to evaluate the right hand side a few grid points ahead of the
shock. i.e. instead of solving (2.2) we solve

(3.1) X = (p2)} = M4hD, ), — KAtXe T
where now

n PR i
(32) Trfd = (v=D(efia/eiia — 5(i0) = wX/pf™)

and d is the number of points in the shock, usually one or two. The accuracy will drop
to first order, but higher order accuracy can be recovered by an extrapolation in the

temperature, i.e. by using
) n+l __ pntl
I+l j+2
in place of TTf::il inside the exponentiation in (3.1). Here ijl and T;f;"zl depend on X
through (3.23.
During the computations, we sometimes found that (3.1) had no solution, in such
a case the following approximation was used,

(3.3). X = (p2)} = MALRTy

We tried other choices of X in case of such a failure, but no visible difference from using
(3.3) were seen.

In the formulas above, we have assumed that the detonation travels from the left
to the right, so that the solution at j + 1 have lower temperature than the solution at
J. In a more general situation and in more than one space dimension, the direction of
extrapolation is determined as the direction of decreasing temperature.

The extrapolations of values in the source terms are similar to the extrapolations
in the subcell resolution method by Harten [7}. In [7] all variables are extrapolated into
the computational cell. This approach works very well in one dimension but has so far
been difficult to extend to multidimensional problems.

It would have been possible to use a more complicated algorithm. We could e.g.
have used a sensor to indicate if a certain point is inside the shock layer, and modify
the chemistry only at those points. The method described above is however simpler and
works well, so we found no need to develop a more complicated method. -

4. Numerical results in one space dimension. The test problems solved in
this and next section have been chosen as suitable for comparing numerical methods,
and not for solving a particular applied problem in combustion. They do however,
capture features present in more realistic problems.

Below we show some traveling wave solutions to the one dimensional problem cor-
responding to (1.1) with different kind of chemical terms, where the data are chosen to
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vield a single Chapman-Joguet detonation wave. In general, to find a traveling wave
solution to

(4.1) uy+ f(u)e = g(u)
we insert the ansatz v = u(x — st), into (4.1). The result is the ODE
(s = f'(w))u' = g(u)

which we solve using a numerical ODE solver. s is given initially by the jump conditions.

50 ‘ Pressure . 1 Mass Fractiop

40+ . 08 7

30 I 8 0.6} 5

20F . 0.4 §
16 y 02r §
00 2(l}0 400 600 00 260 460 600

figure 4.1, Arrhenius kinetics (1.2)
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0 200 400 600 0 200 400 600
figure 4.2, Heaviside kinetics (1.3)
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figure 4.3, Arrhentus with & = 2.5 kinetics (1.4)

Note that the Heaviside kinetics gives a qualitatively different wave profile without
inflection point. The Arrhenius kinetics have a flat part behind the shock wave, the
induction zone. The chemical reaction occurs on the negative flank after induction zone,
while in the Heaviside kinetics, the reaction starts immediately at the shock front. This
explains why the stiffness problem encountered in numerical methods (see section 3)
tends to be worse for the Heaviside kinetics. We also conclude that the shape of the
solution is not influenced by the factor T?%5.
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Below we have made the same computation with Heaviside kinetics as in figures
3.1 and 3.2, but now with the source term extrapolated from two grid point out {d = 2
in (3.1)).

40 Pres‘sure 1 Mass Flraction ,
10} 1 0.8 .
0.61 .
20+ -
0.4% 1
10F ] 02} !
0 L o .
0 50 100 0 50 100
figure 4.4, K=10000
40 Pn:slsurc 1.5 Mass Flraction
30 -
1 -
20F 4
0.5 i
10f A
0 x 0 N
0 50 100 0 50 100

figure 4.5, K=100

The unphysical waves for K = 10000 (fig. 3.1) has disappeared and the solution
for K = 100 is not seriously affected by the small error deriving from the extrapolation
of the source term.

Next we shall investigate how well we can capture the behavior of the peak pressure
at the ZND spike. It is possible to increase the pressure in the left hand state, and
thereby give the detonation wave a so called overdrive. For a detonation moving with
speed s, the overdrive, f, is defined as f = (s/scj)* where scy is the speed of a
Chapman-Joguet detonation. Thus we always have f > 1, since weak detonations are
not physically admissible. For certain values of f the pressure peak is oscillating in
a periodic way, for other values it is stable, and for some values it is oscillating in a
chaotic way. For an analysis of these phenomena, see [1,3].

To capture this oscillatory behavior a large number of grid points is usually required.
We next investigate how the resolution required is affected by the accuracy of the method
used.

We here use the parameter values T; = 50,90 = 50,7 = 1.2, K = 10000 and
Arrhenius kinetics. The values are taken from [1] and 3] ( except for K'). An overdrive,
f = 1.6, was given, a value corresponding to a case where the pressure peak oscillates
periodically [1,3]. We compute on a domain of length 1, which is moved along with the
wave. Initially the exact ZND profile is given by solving the traveling wave problem
using a fourth order Runge-Kutta method. The boundary values are givenasp=1,p =
1,u = 0 to the right and extrapolated (wo = w;) to the left, the wave travels to the
right. All computations were run to time = 1.

Below we compare a few different numerical methods, one first order and two second
order TVD schemes with different flux limiters and one third order ENO scheme. We did
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not use extrapolation of the source term in these computations. We used explicit time
discretization of the source term, since condition {2.1) showed that the CFL condition
for the convective part of the equations was sufficient to ensure stability for the overall
method. For the second order scheme, we compare results from using the minmod flux
limiter and van Leer’s flux limiter [14].

100 15t order, N=200 100 Ist order, N=360 100 15t order, N=400
90 1 90F 1 sor i
_ 80} y 80r ]
80 L o
70 . 70 f\l 1 70 f\/_ 1
60 . 60f 1 6or 1
. 50 : 50 !
500 a5 1 0 0.5 1 0 0.5 1
f=1.6, 200 points f==1.6, 300 points f=1.6, 400 points
figure 4.6 First order TVD method
100 Minmed, N=200 100 Minmeod, N=300 100 Minmod, N=400
90t g QO b 90F T
801 E 8O- R 80
[-% [~
70 WM 70 M/\M/\: 0
60 E 60+ - 60
£ L 50 .
500 05 1 500 0.5 1 0 0.5 1
f=1.6, 200 points f=1.6, 300 points f=1.6, 400 points
figure 4.7 Second order TVD, minmeod limiter
100 van Lec(. N=200 100 van Lee:‘-, N=300 100 van Lccg, N=400)
901 - b 90 90
80} 1 80 80
i=N £,
" ‘\t/\v/\n/\o/\»/\m 70 "
60+ T 60 60
50 . 50 £ 50 g
0 0.5 1 0 0.5 1 0 as 1
f=1.6, 200 points f=1.6, 300 points f=1.6, 400 points
figure 4.8 Second order TVD, van Leer's limiter
100 3rd order, N=200 100 3rd grder, N=300 100 3rd order, N=400
90} . 90 90
80 80 80
- [~"]
70 70 70
60 60 60
50 . : x 50 .
0 0.5 ! % s 1 0 0.5 1
£=1.8, 200 points f=1.6, 300 points f=1.8, 400 points

figure 4.9 Third order ENO
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The first order scheme can not capture the correct behavior, not even on the finest
grid. This is hardly surprising, first order schemes are too dissipative. It is more
interesting to note the difference deriving from different flux limiters in the second
order methods. With van Leer’s limiter, we can capture the right frequency, {(but not
amplitude} with as few as 200 grid points, while the minmod limiter requires at least
300 grid points for a similar resolution. The third order scheme performs best, we get a
solution with both frequency and amplitude reasonably well represented using 200 grid
points.

We did not use the half reaction time as time unit. Nevertheless, by numerical inte-
gration of the steady solution profile, we found that ¢;/, = 0.0212 and the corresponding
half reaction length A;/, = 0.0193. This means that 200 grid points corresponds to
roughly 4 points per half reaction length, this seems to be the fewest possible number
of points required to capture the oscillations using the best (3rd order) method. The
period of the oscillations is 8 half reaction times, in accordance with previous results
[1,3].

In order to capture the dynamics correctly the time step had to be chosen so small
that no instability of the type in figure 3.1 occurred. The extrapolation technique was
thus not needed. Low order extrapolation introduces local truncation errors which may
interfere with the dynamics.

5. Numerical results in two space dimensions. Computations of a two
dimensional traveling detonation wave are presented. We used a second order TVD
method in all computations in this section.

Consider a two dimensional channel of width 1/2, the upper and lower boundaries
are solid walls. We start a with a ZND profile in the z direction, but given a slightly
curved shape through a sinusodial perturbation,

uo(z,y) = w(z + Azsin 2n(y + -3;))

where w(z) is the one dimensional detonation wave. See figure 5.1 for the initial data.

e,

b i Bl T . 300.

figure 5.1 density contours

The solution was computed on grid of 100x50 points which was moved along with
the detonation wave. We solved equations (1.1) with Arrhenius kinetics, and parameter
values T; = 50, ¢o = 50,7 = 1.2, K = 10000. To the right, we give the freestream values
p=3,p=1,u =0 and the ZND profile w(z) is obtained by numerical integration as in
the one dimensional computations.

The figure below (5.2) shows density contours at six different times.
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figure 5.2 density contours

One important feature of this solution is the triple points, which travel in the
transverse direction and bounces back and forth against the upper and lower walls.

An discussion of the mechanisms driving this solution is given in [9]. The trace of
the triple points can be seen in experiments with smoked screens as a cellular pattern
[4]. By plotting contour lines in the y-¢ plane we can obtain a similar pattern for our
numerical solution. The figure below shows 7 detonation cells.

figure 5.3 density contours in the y-f plane

The CFL number in this computation was 0.4. We next increase the time step by
taking a CFL number of 0.85. The solution at six different times are showed in figure
5.4

figure 5.4 density contours

After some time the triple points cease to move, and a triangular shape extends
from the detonation front. In the y-t plane in figure 5.5 it is clearly seen that the triple
point dynamics ceases.
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6—*%

figure 5.5 density contours in the y-{ plane

The solution is completely wrong, due to stiffness problems. The modified method
will help to overcome this difficulty, as we show next. In figure 5.6 we display the
same computation as in 5.4, but with the source term extrapolated, using d = 1. The
direction of extrapolation is taken from the lowest temperature direction as described
in section 3. There is no artificial numerical detonation spike.

figure 5.6 density contours

The dynamics is recovered and the solution have the same structure as the one
computed with smaller time step (figure 5.2). From the y-t plane plot, we conclude that
the detonation cell sizes deviate very little from the solution in figure 5.3.

1b0.
figure 5.7 density contours in the y-1 plane
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Appendix A.

We shall give the eigendecomposition necessary for Roe’s approximate Riemann
solver. We assume that -y is constant. Consider the system without source term

(2N "N )
mo pus +p _10
pz/ mz . 0
The Jacobian of the flux function has the eigenvalues
M=u—¢ Md=u M=u M=u+tc

where u = m/p and ¢* = vyp/p. The corresponding right eigenvectors are

1 1 1 1

U—c U _ U _ u+4c

TTZ 1 b e 271 w22 BTN w24 0 = htuce
z 0 1 z

where h = (e + p)/p. There is a one parametric freedom in the choice of r, and r3. It
is also necessary to solve the linear system of equations

(rireryry)a = Au.

The formulas to do this are
a1 = (v — 1)/(2c))(Ae + 1/2u* Ap — uAm — gy A(p2)) — (1/(2¢)(Am — ulp)
as = (Am — ulp)/c+ aq
a3 = A(pz) — zay — zoy
oy = Ap—ay —ag — oy
In Roe’s Riemann solver, the eigendecomposition is evaluated at a weighted average
in the same way as for the Euler equations, i.e.
= wij+ (1 —wuj
h= wh_,- + (1 - w)hj+1

z=wzj + (1 — w)zj41
where w = /p;/(,/P;+1 + \/P;)- This gives the desired property
fit1 — £ = Ajpr2(ujs1 —uy)

for the eigendecomposed matrix A;; /2
We next list the eigenvectors and eigenvalues for the two dimensional problem (1.1).
On a variable grid, metric coeflicients enter into the equations and we are led to consider



16

the flux function

m T
m?/p+p mn/p
oF+BG=a| mnfp |+8| n*fo+p
(p-L'n\/n g—i—n\/r_

e )\

with F and G the z and y dlrectmn fluxes in (1.1) respectively and «, # represents the
metric. We define

1
u=m/p, v=n/p, p=(y-1)e—5p(u’+v")=gp2)
The eigenvalues of the jacobian of aF + G are
M=U—8¢c, A=l=M=u, As=1u+sc

with # = au + fv and s = 1/a? + 2. The eigenvectors are

1 1 \ 1
u— ke u — ko
ri = | v—kae rg = v+ ke r3 = v
h — Ge ¢%/2 — kauc+ kyve + go q?/2
z 1 0
1 1
u 4+ kac u+ kic
ry = v—klc s — v+k2c
g% /2 + kauc — kyve + qo h + dc

1 z /

with the definitions

b= o/ VaTT R, k= BV ET R,

G =ku+kov, ¢=ul+0l E=4p/p
The eigenvectors are independent, since
Det(r; ry r3 rq r5) = 4ct/(y~ 1)

To solve the system of equations

4 dm
(r1 s I'y I'y I‘5) = dn
Is de
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define ) .
a; = 7; (de + gz—dp — udm — vdn — gody)
- dn — vd
a2=k1dm Cudp+k2 n Cv P
dm — ud dn —vd
as = kg c P k] A P
then the solution is
ay — aa
Iry == )
dy — zay — a3
2ETT
T4 =T +as
ay +az
Is = 2

zs = dp — (21 +$2+?4+$5)

To do ENO reconstruction in the characteristic variables and to implement far field
boundary conditions, the left eigenvectors are required. They are

ﬁc—{—(’y—l)i; ﬁc-m(*y--»l)zgzi
- 1 | “Fe—(y—1u r 1 —kgc+ (v — Duz
l; = 57 —kze—(y—1)p |, L =53 kic+ (v — 1wz
v-1 —(y—1)z
=7 =10 ¢ + (7~ 1)z
262 — (v = 1)g*(1 — ) —be—(y—1)2%
- 1 20y —Du(l —2) s 1 kye+ (v — Duz
I; = 5.7 22(8 — 11))12(1 —12)) , I = 57 —»klcE{— (71—)1)92
7= 1)z~ ~(y—1)z
2(7 — 1)go(1 = ) ~ 2¢* ¢ + (v~ 1)goz
2
—tic + (y - 1)%&-
kic—(y—1u
15T=— kee — (v — 1) y O =kou— kv
202 v
v—1
—(v— Do

The matrix with the I's as rows is the inverse of the matrix with r:s as columns.

In the exact (Godunov) Riemann solver, we first solve the Riemann problem for
the non reactive Euler equations. The additional equation

(p2)s + (upz)e =0

is incorporated by choosing pz = (p2)1 to the left of the contact discontinuity and
pz = (pz)Rr to the right. The situation analogous to the two dimensional non reactive

Buler equations, where the tangential velocity component v is convected along the u
characteristics.



