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Abstract

Singularities occur in solutions of algebraic equations and partial
differential equations and are important for many problems in math-
ematical physics. A general theory is described here for singularities
in the solution of a hyperbolic equations in a complex space variable.
The solution is defined on a Riemann surface and the singularities are
branch points for this surface. The generic form for a singularity is
found to be a square root. There are two types of collisions between
singularities. At a tangential collision the singularity remains of square
root type generically. At a transverse collision the singularity is gener-
ically of cube root type.

1 Introduction

This lecture will describe singularities in systems of partial differential equa-
tions (pde’s) for which the dependent and independent variables are complex
(as opposed to real). The singularities will be branch points on an appropri-
ate Riemann surface.

Examples of fluid dynamic flows for which singularities arise are the
Kelvin-Helmholtz problem for vortex sheets [3, 6, 9, 10, 11, 12, 13], the
Rayleigh-Taylor problem [15, 16}, and unsteady Prandtl boundary layers [14].
The most interesting singularity problem for fluid dynamics is the possibility
of singularity formation from smooth initial data for the three-dimensional
Euler equations [1, 2].

In each of these problems the singularity would be smoothed out if vis-
cosity, or other smoothing mechanisms, were included. The effects of the
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singularity would remain, however, even if the singularities would not. These
effects include roll-up of vortex sheets in the Kelvin-Helmholtz and Rayleigh-
Taylor problems and onset of separation in unsteady Prandtl boundary lay-
ers. Thus a singularity is an indicator for the onset of complex behavior and
serves as a simple localized phenomenon which may be easier to understand
that a more realistic, complicated flow.

Singularities are most naturally described through analytic functions and
complex variables. The singularity is a branch point at which the analytic
function becomes multi-valued. The singularity can be ”unfolded” by in-
troducing a "uniformizing variable” in terms of which the function is single
valued. The geometric description of this unfolding is the subject of catas-
trophe theory. We shall use both the analytic and geometric viewpoints in
our study of singularities.

2 Singularities for the Laplace Equation

The simplest example of singularities for a pde is in the initial value problem
for the Laplace equation in space versus time

Uy + Uge = 0 (1)
with

u(z,0) = uo(z) uy(z,0) = u;(2) (2)

prescribed initially. This problem with both u, and u, prescribed is well
known to be ill-posed [8]. Part of the ill-posedness is that a singularity can
form in finite time from initial data ug, %, that is arbitrarily smooth.

Through complex extension of this equation, the singularity formation
is easy to understand. Set 2 = iy and denote @(y,f) = u(iy,f). Then
d, = —id,, so that { 1) becomes the wave equation

'EJH - '&yy == 0 (3)

with initial data

W(y,0) = uo(iy) iy, 0) = u; (iy). (4)

The solution of this equation can be written in the form

Wy, )= fly+ )+ a(y—1) (5)



in which f and § and simply related to u, and u,. Denote

f@)= J(—iz)  g(z) = §(~iz) (6)
Then

uw(z,t) = flz — it) + glz + it) (7

Now we can easily understand the process of singularity formation for
the Laplace equation ( 1). Suppose that f and g are analytic on the real
line, i.e. arbitrarily smooth there, but that g has a singularity off in the
complex plane at a point z; = T, + ifp. Then at time £ = y, the solution u
given by equation ( 7) will have a singularity at the point .

This can be stated in a way that is more global and geometric. The
formula ( 7) says that the Laplace equation has complex characteristics,
which are the lines z = z, = if. Singularities, as well as other features of
the solution, will move along those lines. This also shows the advantage of
describing singularities in terms of complex variables. For complex space
variables there is no difference between elliptic and hyperbolic equations
since they both have characteristics. In a later section this result will be
generalized to nonlinear hyperbolic systems.

Finally note that {for Laplace’s equation the singularities on the real line
at later times are of the same type as the initial singularities in the complex
plane. In order to understand the generic form of these singularities, we must
find the generic form of singularities for analytic functions. This is discussed
in the next section.

3 Singularities for Algebraic Equations.

Square root singularities are generic for algebraic equations. Suppose that a
function f(z) is defined through an algebraic equation, such as

ff4ef ==z (8)

For ¢ = 0 this functions has an n-th root; i.e. f(2z) = z}/". For e # 0 all
of the singularities are of square root type. This is seen by noting that a
singularity is a point at which 8,f = oo, i.e. 8;2 = 0. If 8;;2 # 0 then the
singular point is of square root type; while an n-th root is characterized by
the conditions



Yz=..=0}""2=0 Gfz#0. (9)

Since 8;z = nf" + € and 8;;z = n{n — 1)f*~* in this example, the only
multiple-order singularities occur for £ = 0.

In general the solution f of an algebraic equation will generically have
square root singularities (i.e. branch points), since zeroes of 9;z and 8;;2
will only rarely coincide.

Next consider a collision between two square root branch points. Al-
though a collision is a non-generic event, it might occur due to some symme-
try requirments or other constraints. Collision of two roots of 9,z = 0 implies
that 85,z = 0, but generically 8,7,z # 0. Therefore a generic collision of
square root branch points will form a cube root branch point.

We next claim that the same is true {or solutions of complex hyperbolic
pde’s.

4 Singularities for Burger’s Equation.

The simplest example of a nonlinear hyperbolic equation is Burger’s equa-
tion, which is used as a test problem for all nonlinear hyperbolic theories.
Burger’s equation is

Of+10.f=0  f(z0)= folz). (10}

The solution is given implicitly by the formula
f(z,t) = folz) (13)
Z =2+ tfg(Zg). (12)

This says that f is constant and equal to its initial value fo(z,) on the
characteristic line of points z with initial point 2, and slope fy(zp).
Singularities are points at which

00 = 8, f = (0:f0)(0:02) " (13)
If the initial data f; is analytic then this is possible only if

G,,2=0 (14)
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which is exactly the condition that the characteristic lines z(t; 2,) have
an envelope as the parameter 2, is varied. At such an envelope the generic
behavior is again of square root type, since the next derivative 8% z will
almost always be nonzero.

From equation 12 the condition for a singularity is

1+ tfi(z0) =0 (15)

If f, is real analytic and entire entire in 2y, then for small ¢ the solutions
of 15 must be near co. Moreover since fo(2) = fo(%) then solutions of 15
must come inconjugate pairs. Thus singularities for Burger’s equation start
come from oo in the complex plane at ¢ = 0. When a singularity appears on
the real line it must correspond to a collision of two singularities, one coming
from above the real line and the second, its complex conjugate, coming from
below. As described in the previous section, at such a collision the generic
form of the singularity is a cube roof.

The nature of the singularities for Burger’s equation can be understood
also from the implicit solution 11, 12. Consider initial data f; that is
decreasing as in figure 1a. Since points on the solution move at speed f,,
then points on the upper part of the initial curve will overtake points on the
lower part. At some time ¢ = %, the solution f(z,%.) will have a vertical
tangent at some point z. as in figure 1b. At later times £ > £, the curve
will turn over on itself as in figure lc, so that f(z,t) will be multi-valued.
These turning points #, and z, are singular points as described above; so
that they are actually branch points for the solution. There are branches of
the solution that extend beyond these branch points, but on these branches
the solution f is complex valued. This is indicated by the dashed lines in
figure 1d.

The multi-valuedness of the solution and its branch points can also be
understood from the description of the solution through characteristics. In
figure 2a starting at time t,, the real characteristics are shown with their
envelopes. Outside the characteristics, the solution f is single valued; while
inside it has three real values. When f is analytically extended it must
have three values everywhere, but two of the values will be complex outside
the envelopes. The real values of f come from characteristics that start on
the real line and stay real. The complex values of f at time ¢ come from
characteristics that start off in the complex plane and pierce through the
real line at that time. This is indicated in figure 2b.

The effect of viscosity on complex singularities for Burger’s equation is



analyzed in [17].

5 Singularities for a 2 x 2 System with Riemann In-
variants

The results above for Burger’s equation can now be generalized to systems
of pde’s for which there are exactly two characteristic speeds. First this will
be done for a system of two equations in diagonal form, i.e. in Riemann
invariant form. Later it will be stated for more general systems.

Consider a system of two equations in Riemann invariant form

0.f + A(f,9)0.f =0 (16)

For this system singularities will again move along envelopes for the
characteristics. Thus there are two types of singularities, those for the
A-characteristics and those for the u-characteristics. The generic form of
singularities is again of square root type, but now we are also interested in
interactions, i.e. collisions, of the singularities.

There are two types of collisions: When two A singularities (or two p
singularities) collide, they are traveling at the same speed X (or u}, so that
they meet tangentially. We call this a tangential collision. On the other
hand when a A singularity hits a p singularity, they will meet transversely
(since A # ), and we call it a transverse collision. ‘This is indicated in figure
3.

The generic behavior of f and g at these collisions can be analyzed using
a generalization of the hodograph transformation [7] in which the indepen-
dent variables z, t are replaced by new independent variables marking the
characteristics. The result from this is that at a tangential collision the
generic form of the singularity is a cube root, as for a collision of singular-
ities in Burger’s equation. This is to be expected since for singularities on
the same characteristic family, the local variation of the other characteristic
family could be ignored.

On the other hand at a transverse collision, the generic singularity form
is a square root. This is rather surprising since the square root form is not
generic for singularities of algebraic equations, as described in section 3. The
reason for the square root behavior for the transverse collision is that the



differential equation entails some constraints that force the singularity to be
special at a transverse collision.

Although this result can be proved analytically, it is most easily seen
geometrically by looking at the relevant catastrophe surface. For the colli-
sion of two square roots, the catastrophe surface is the swallowtail, which is
drawn in figure 4. The meaning of this picture takes some discussion. The
coordinates of the diagram are (a, b, ¢) which represent the coefficients of
the fourth order polynomial

g(w) = w* + aw® + bw + ¢ (18)

This polynomial represents the local expansion for the Riemann surface
at a fixed time, and the variable w = z — 2z, is a shifted spatial variable, in
which the shift is chosed to make the cubic term in 18 vanish. This means
that near a point z° the relationship between z and f (or between z and g)
can be expressed as ¢(w) = 0 in which (@, b, ¢) are single valued functions
of f (or g). Actually the surface in figure 4 represents only the swallowtail
surface for real values of (a, b, ¢). The surface has an extension for complex
values of (a, b, ¢).

The swallowtail surface is the set of values (a, b, ¢) for which g(w) has
a double root; i.e. at which g(w) = ¢'(w) = 0 for some w. As discussed in
section 3, this implies that the Riemann surface has a square root branch
point. Collisions between two square root branch points occur along the two
curves §;, and S, at which the swallowtail intersects itself and at the cusp
point §,. S, corresponds to phony collisions, for which the two branch points
have the same value of w (or z) but do not meet on the Riemann surface
because they lie on different sheets. Geometrically this is because there is
no degeneracy of the surface at this self-intersection.

On the other hand on the curve §, the two branches of the swallowtail
surface are tangential to each other, which is a degeneracy of the surface.
This corresponds to tru collisions of the square root branch points. Since
the two branches of the surface are tangential, the singularities must meet
tangentially. Thus the curve S, corresponds to tangential collisions. At
points on S, the polynomial g{w) satisfies g{w) = ¢'(w) = ¢"{w) = 0 so that
the Riemann surface has a cube root branch point.

Finally the transverse collisions must correspond to the cusp point S5,
at which g{w) = w*. This point corresponds to a square root branch point
when time variation is also included.



6 General Systems with Two Characteristic Speeds

Finally we describe a generalization of these results for systems of equations
for which there are exactly two characteristic speeds. Consider the system

O.F + M(F)8,F =0 (19)

in which F is a vectorand M (F) is a matrix. The characteristic speeds for
19 are the eigenvalues of the matrix M. The generic behavior of singularities
for this system is stated in the following theorem:

Theorem 5 (Singularities for Complex Hyperbolic PDE’s) [13].

Suppose that the system 19 satisfies the following conditions:

(i) F is a nearly constant.

(1i) M(F) is analytic.

(iii) M(F) has exactly two (or one) distinct eigenvalues X and p and @ full
set of eigenvectors.

Then

(1) The generic form of singularities for F is of square root type.

(2) Singularities for F move on envelopes of characteristics; in particular a
singular point z, moves at velocity either A or p.

(3) The generic form of F' at a collision of singularities is square root type
for a transverse collision and cube root type for a tangential collision.

The precise meaning of the term "generic” is made clear in [5]. The
proof of this theorem is based on the abstract Cauchy-Kowalewski theorem
[4] and on a modification of the hodograph transformation, which causes the
restriction to twospeeds. The behavior of systems with more than twospeeds
is an open question. Also the analysis of this theorem is based on assumption
of singularities in the initial data. Another outstanding problem is how
singularities would form from entire initial data. For example a singularity
might form at points z where A = p.
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