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Abstract

Multi-valued sclutions are cemstructed for 2 x 2 first order systems
using a generalization of the hodograph transformation. The solution is
found as a complex analytic function on a complex Riemann surface for
which the branch points move as part of the solution. The branch point
singularities are envelopes for the characteristics and thus move at the
characteristic speeds, We perform an analysis of stability of these sin-
gularities with respect to perturbations of the initial data. The generic
singularity types are folds, cusps and non-degenerate umbilic points with
non-zero 3-jet, An isolated singularity is generically a square root branch
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point corresponding to a fold. ‘T'wo types of collisions between singularities
are generic: At a “tangential” collision between two singularities moving
at the same characteristic speed, a enbe root branch point is formed, corre-
sponding to & cusp. A “non-tangential” collision, between two square root
branch points moving at different characteristic speeds, remains a square
1oot branch point at the collision and corresponds to a mon-degenerate
umbilic point. These results are also valid for a diagonalizable n-th order
system for which there are exactly two speeds.

1 Introduction )

Multi-valued solutions of nonilinear hyperbolic equations occur due to for-
mation of envelopes for the characteristics. Such multi-valued solutions are
well-known for Burger’s equation (see Section 2). In this paper we construct
multi-valued sclutions for 2 x 2 strictly hyperbolic and elliptic systems, as well
as for n-th order systems that are diagonalizable and have exactly 2 character-
istic speeds. In addition we analyze the generic form of singularities for such
solutions.

A multi-valued solution is more naturally described as a complex analytic
function of a complex variable on an evolving Riemann surface. The function
is singular at branch points, which move on the surface as part of the solu-
tion. In general these branch point singularities move along envelopes of the
characteristics, but if one of the singularities is sufficiently weak it will move
along a characteristic. Interactions, i.e. collisions of singularities, are the most
interesting feature of these solutions.

The significance of these multi-valued solutions for applications such as fluid
dynamics is that they correctly describe the initial onset of physical singular-
ities. For example analytic solutions of the compressible flow equations will
have branch point singularities for complex values of the space variable z. This
description of the singularities is correct up to and including the time that the
branch points hit the real axis, i.e. up to the first time for shock formation.
After the time of the first shock, the multi-valued solution is changed: For a
scalar equation the change consists of putting in shocks that connect solutions
on different branches; for systems, the solution between shocks is not part of
the multi-valued solution found here.

A second example is the Birkhoff-Rott equation for evolution of a planar
vortex sheet, which can be written as a 4th order system with exactly two
characteristic speeds and with lower order non-local terms {8]. Our results
indicate that the generic singularity on a vortex sheet is of square root type, as
predicted by Moore {23, 24] and numerically verified by Shelley {28].

The multi-valued solution is analyzed by introducing a transformation that
unfolds its singularities. For a 2 x 2 system the unfolded system may be made
linear with non-constant coeflicients, using a generalization of the hodograph




transformation. For an n-th order system with 2 speeds, the unfolded system is
still nonlinear, and its solutions are constructed using the Cauchy-Kowalewski
Theorem [9]. In either case, our construction of the solution requires extension
to complex values of the independent variables z and t, so that singularity
development on the real line for ¢t > 0 can be traced back to a singularity at a
complex point in the initial data.

Once a solution is constructed for the unfolded systemn, its singularities in
the original {z,%) plane can be analyzed by geometric methods. The first type
of singularity is an isolated branch point, which corresponds to a fold singular-
ity. Second is a collision of two square root branch points traveling at different
characteristic speeds, which corresponds to a non-degenerate umbilic singularity
with nontrivial 3-jet. Finally a collision between singularities traveling at the
same characteristic speed corresponds to a cusp. These types of singularities
are stable with respect to perturbations of the initial data; all other types of
singularities are unstable. For consistency with the existence result, the singu-
larity analysis will be performed within the class of holomorphic functions. The
same results are true, however, for real singularities.

Our main results concern a first order system given by

¢(F) (1.1
Fof) (1.2)

Fy + M(F)F,
F(z,t=0)

i

in which Fy, F,¢(F} € C* (n dimensional complex space) and M(F') is a com-
plex n x n matrix. Assume that M is diagonalizable and has exactly two char-
acteristic speeds, i.e.

M(F) = A(F)'A(F) A(F)
A(F) = diag(\(F),...,\(F), u(F), . .., u(F)) (L3)
(1.4)

in which A and g have multiplicity k¥ and n — k, respectively with 0 < k£ < n.
We will assume that A # g and that M, A, A, u are all analytic in . We
also assume that the system satisfies a condition of nontrivial coupling of the
components of F. The precise condition is given in Theorem 7.1.

The initial data Fp is assumed to be an analytic function on a Riemann
surface. In particular it is allowed to have branch point singularities in z. Fy
may be locally unfolded by the representation

z = {(v)
F{)(Z) = .‘Fo(v) (15)

in which Fy and ( are single-valued analytic functions of v. The corresponding
value of ¢ in (1.5) is ¢ = r{v) = 0. From the geometric point of view, the
natural perturbations of the initial data (1.5) include perturbations of r, i.e. a



perturbation of the initial data is

;=
Fy = Folv) (1.6)
t = F(v)

in which ¢, Fp and 7 are small perturbations of ¢, Fp and 7 = 0, respectively.
The necessity of perturbing ¢ is discussed further in Section 6.
The following two theorems are the main results of this paper:

Theorem 1.1 (Ezistence of Solutions). Assume that M and Fy salisfy the
assumplions above. Then for a shori time 0 <t < lo, the equation ( 1.1} has
a solution F(z,1) which is an analylic function of z on e Riemann surface with
a finite number of branch poinis of finile order for each t. Fach branch point
starts al a branch point in the initial data Fy and moves at speed either A or p,
i.e. each branch poini iravels along ¢ characteristic or an envelope for one of
the two families of characieristics.

Theorem 1.2 (Generic Singularilies). Suppose thal M and Fy salisfy the
assumpiions above. Under perturbalion of the “initial data” {, Fo and T as in
(1.6), the stable singularity types for ( 1.1) are the following:

1. Fold, This singularily lies on a compler curve z(t) which moves of either
speed A or p. It corresponds 1o a sguare root branch point in z for each t. In
a neighborhood of the branch poini, this singularity can be “unfolded” 1o the
normal form

z = u?

i =,

2, Cusp. This singularity is a single point in (2,t) al which there is a col-
lision of two singularities. The colliding singularities are either both envelope
poinis for the A characteristics or both envelope peinis for the u characleristics.
The normal form of this singularity is

F4 =u3+vu
i =

8. Non-degenerate umbilic. This singularity is alse a single point al which
{wo singularities collide, one corresponding {o X and the other corresponding
io p. Under en additional condition described in Theorem 7.1 below, these are
umbilics with non-irivial cubic terms The normal form in this case is

z =ul4®
t = v?+ud,

Given any solution of system { 1.1) its initial data may always be perturbed
s0 that the resulting solution has only singularities of the above types. In the



case that there is only one characteristic speed ), the non-degenerate umbilic
singularily is not generic.

In Theorem 1.2, the multivalued solution is regarded as a single-valued func-
tion on a surface that is a branched covering of the (z,1)-plane, with a covering
map z(u,v),t(u,v) from@? to @2. The type of a singularity for a map is charac-
terized by equivalence under conjugation, i.e., change of variables in the domain
and range. For example, a point (z,2) = (0,0) is a fold, if in a neighborhood of

(0,0),

¢ o (z,£) o Y(u,v) = (u?,v) (1.7)
for somne transformations ¢ and 1 that are locally smooth and smoothly invert-
ible.

We refer to a map z(u,v),t(u,v) between a surface, locally parameterized
by (u,v) on which the multivalued solution becomes single-valued, and the
original (z,1)-plane as an unfolding map. The classical hodograph inversion
z(f,9),t{(f,g) provides an example of such an unfolding. However, in order to
have sufficient flexibility to analyze the initial value problem perturbatively, we
work in a much broader class of unfolding maps. Indeed, the principal achieve-
ment of this paper is to reduce the classification of generic singularities for
systems with two speeds to the classification of singularities of the unfolding
map.

Stability in this setting means that given a solution whose singularities are
only folds, cusps or umbilics with nonzero cubic terms, then under a small
perturbation of the initial data the perturbed solution will also have singularities
only of these types. In other words the set of initial data producing solutions
with only these singularities is an open set. To establish the genericity one needs
also to show that this set is dense; i.e., one can perturb the data so that the
perturbed solution has only stable smgulantles

For arbitrary mappings z(u,v), t(u,v) from @2 to €2, Whitney s Theorem
states that the generic singularities are folds and cusps. The additional con-
straint that z,t is the unfolding for a solution of ( 1.1) restricts the allowable
perturbations, so that an additional singularity type, the non-degenerate um-
bilics, is also stable. Any other type of singularity is either not realizable for a
solution of ( 1.1) or is not stable under perturbations of the initial data.

Theorem 1.2 is stated in terms of genericity with respect to perturbations
of the initial data ( 1.6). The same result, that folds, cusps and non-degenerate
umbilics with non-trivial cubic terms are the generic singularities, is also true
with respect to perturbations of the equations themselves. Moreover pertur-
bation within the class of solutions of ( 1.1) on an open set is equivalent to
perturbation of the initial data ( 1.6), according to the Cauchy-Kowalewski
theorem. Thus Theorem 1.2 is also true with respect to such perturbations.

A related analysis of singularities for nonlinear differential equations was
performed by Dubois and Dufour [12], who found that under perturbation of
the initial data and {ime, the only stable singularities are folds. Our results show



that cnsp and umbilic singularities are not removed from the solution by such
perturbatzons but are only moved to different locations in space-time. Stablhty
results for singularities of a scalar conservation law were earlier obtained in
[15, 27]. An analysis of singularities in the complex plane for Burgers equation
with viscosity was carried out in [4].

Singular solutions for semi-linear and quasi-linear hyperbolic equations have
been constructed, for example, in [1, 3, 6, 17]. These solutions are constructed in
Sobolev space using micro-local analysis, and are thus much more general than
the analytic solution here. Cn the other hand their singularities are much weaker
than those in the present analysis; in particular, envelopes in the characteristics
are not allowed. Analysis of the strong singularities in the present work seems
to require the strong restriction to analytic functions. Previous results on the
geometry of singularities for nonlinear differential equations are found in {18].
Analysis of singuolarities in mappings coming from the Riemann problem for a
nonlinear hyperbolic equation is found in {19, 20].

This paper is organized as follows. In Section 2 we introduce the basic exam-
ples for the unfolding of a tangential and non-tangential coilision: respectively,
Burgers equation and the wave equation. Section 3 introduces the normal forms
for singularities of mappings and defines stability. It also establishes the normal
form for umbilic singularities which will be stable for maps that correspond to
solutions of { 1.1). Section 4 introduces the unfolding map which is used to
transform the original 2 x 2 nonlinear system to a linear system for the unfold-
ing. We use this unfolding transformation to establish existence {Thecrem 1.1).
Section 5 extends the result to higher order systems with two speeds. In Section
6 we reinterpret the unfolding equation as a condition on the jets of mappings
(u,v) — (z,t) and use this to express the conditions for a singularity to be a
fold, cusp or umbilic just in terms of the 1-jet of {. In Section 7 the genericity
theorem is proved. All perturbation calculations are carried out in terms of the
unfolding variables.

Finally in Section 8 we present a more geometrical view of the unfolding of
singularities. The hyperbolic system is encoded in a submanifold T' of jet space.
A solution is an integrable surface S for a distribution of planes on I'. Generic
singularities of the system correspond to generic singularities of the projection
of S into the domain (2,t) of the jets. This elegant reformulation of the problem
of singularities is based on Elie Cartan’s theory of exterior differential systems
[10]. The existence theorem reduces to a geometrical version of the Cauchy-
Kowalevsky theorem also due to Cartan.

2 Examples: Burgers Equation and the Wave Equa-
tion



Two simpie examples motivate the results of this paper. The first is a cusp
singularity and the second is a nondegenerate umbilic. In particular these ex-
amples show that such singularities are realizable from solutions of hyperbolie
pde’s.

2.1 Singularities for Burger’s Equation

A first example of singularity propagation and interaction is given by Burger’s
equation

fetf f=0. (2.1)

For initial data
f(0,2) = folz) (2.2)

the solution is given implicitly by the formulas

f{t,z) = fo(zo)
z = 29 + tfo(2o). (2.3}

The value 25 is the initial position of the straight line characteristic with speed
fo(2e) on which f = fo{2g) is constant.
A singularity occurs when &, f = oo, Since

Of _0f 0 _ Of 02

el A — 2.4
8z Oz Oz Oza' Oz (2:4)

and if 8,, fy is assumed to be analytic and non-vanishing, then the singularity
condition is
O,2=10 (2.5)

ie.
1+tfi(20)=0 (2.6)

The singularity is the point at which the solution f becomes multi-valued.
For real analytic initial data fy that is monotone decreasing in « (i.e. for z =
Rez) as in Figure la, the real solution f(z,t) will steepen until a time ¢., at
which it develops an infinite derivative. At later times the real solution becormnes
triple valued in an interval of z as shown in Figure 1b. The “turning points”
z; and z3 are the singular points satisfying { 2.6). The real characteristics for
J are drawn in Figure 2a.

If f is analytically continued to complex z, the singular points z; and z; are
seen to be branch points around which f has a complex-valued continuation,
as indicated in Figure 1c. The complex solution is triple valued for all 2. For
z; < z < 23z, the three values come from real characteristics, while for z <
or ¢ > g, the additional 2 complex values of f come from characteristics that



start at a complex value of z5. These complex characteristics are sketched in
Figure 2b.

Finally the singularity condition ( 2.6) can be interpreted as saying that
the singularity curve in (Z, z) is an envelope for the straight line characteristics
parameterized by their initial value zg. If fy itself has a branch point singularity,
it also will move along a characteristic or an envelope of characteristics.

As an example consider initial data

L
fo{z0) = =25 . (2.7)
The solution formula ( 2.3) then becomes )
f(t:z) = fD

The solution [ is given by the Cardano formula
1 22 B 1 2 P
i) = (-2 LA RS VSV B SO L L AR VANV 9.

and the singularities travel on the curves

2
3v3

For t < 0, there are two square root singularities traveling on the imaginary
z axis, They collide at time { = 0 at the point z = 0, forming a cube root.
Then they separate as two square root singularities traveling on the real z line.
‘We shall show below that this type of collision of singularities is generic, i.e. it
is the only singularity type that is stable with respect to perturbations of the
initial data fy.

The formula { 2.8) is an unfolding of the singularities and their coilision.
Although f is multi-valued as a function of the variables (2,t), both f and 2
are single-valued as functions of the unfolding variables (fo,1).

=4

13 (2.10)

2.2 The Wave Equation

Consider the linear system

fitf: = 0
gi—g: = 0 (2.11)
with initial data
fz,t=0) = fol2)
glz,t =0} = gof2). (2.12)



Suppose that fy and gg are multi-valued and have branch point singularities.
Assume that these initial singularities are unfolded by the transformation z =
{(v) so that

fo(2) Fo(v)
go{z) = Golv) (2.13)
with Fy and Gy analytic and single-valued in v. In addition to the “space-like”
unfolding variable v, we introduce a “time-like” unfolding variable « and ask that
the characteristic lines z+{ = constant in (z,1) map onto lines v+u = constant
in {v,u). Then the solution of ( 2.11) and { 2.12) is given by
flz,8) = folz—1)= Fo(v—u)
g(z,1) go(z +1t) = Go{v + u) (2.14)

in which 2 and ¢ are given as functions of u and v by

i

z+t = ((v+u)
z—1t = ((v—u). (2.15)

For example if fy and g have square root singularities at 2 = 1 and 2 = -1,
then the singularities are unfolded by the transformation

vi44
Z = —41')3'— (2.16)

ie,
ve=+/24+1++2~1. (2.17)

This is the transformation at ¢ = 0, corresponding to u = 0. From ( 2.15),
z(u,v) and t{u,v) are given by

(v+ u)"‘ + 4
4(v + u)?
(v—u)*+4
4(v — u)?

z+t

(2.18)

or

v+u = Vzrt+1l4vVz+i-1
v—u = Vz—t+14+2z—-t—-1. (2.19)

The multi-valuedness and singularities of f and ¢ as function of z and ¢ are
given by those of v and u in { 2.19).

For each {v,u) there is one {z,t); while for each (z,1) there are 16 values of
(v, u). For fixed ¢, the surface defined by ( 2.19) is 16-sheeted corresponding to



16 choices of the signs of the 4 square roots. On each of these surfaces there
are 4 branch points # = 4t % 1, which are joined in pairs to give 32 distinct
ramification points on the Riemann surface.

For the initial data ( 2.17) there are only 4 sheets, on all of which v = 0.
However the simple formulas f(z,t) = fo(z —t) and g(z,t) = go{z + ¢) are not
sufficient if one wants a Riemann surface on which both f and g are defined.
In fact an initial branch point splits into two branch points traveling at speeds
+1 and ~1. A new cut is opened up between them, connecting the 4 sheets of
initial data { 2.17) to the other 12 sheets of equations { 2.19). Thus at t = ( each
ramification point represent a collision of 4 ramification points. For example
the singular point (t,z,u,v) = (0,1,0,+/2) splits into 4 distinct ramification
points (1, z,u,v) = (¢,1+ ¢, %(\/t F1x41-1), 715(\/t F1++t+1)) and
1=t~ (VI=tx V=T 1), H(VI- T V-t +1)).

Similarly at later collision points, such as (¢, z, #,v) = (1,0, \—}5(1 -~ 1), 71,5(1+
1)), 4 ramification points are colliding. Two of them come from the initial surface
( 2.12), the other 2 come from the other 12 sheets, which we call the “hidden
initial data”.

3 Local Structure of a Singularity

In the present paper we analyze the interaction of propagating singularities
for the equation ( 1.1} by replacing the nonlinear evolution with a linear system
on a complex surface, locally coordinatized by (u,v). This surface maps onto
the complex (£, 2)-plane by a finite-to-one mapping. The singularities are then
encoded in singularities of an analytic map

G :¢* - @?
{u,v}  — {z(u, v}, t{u, v}}. (3.1)

In this section we are going to cite the facts we need about the classification of
singularities of maps €'? — ¢2.
Let P=discriminant variety = the set of critical points of G:

{{u,v) € @? | the rank of DG = rank(%%) < 2}.

If G is not constant, then on the complement of a discrete set of points in
@?, D is a smooth analytic manifold of dimension 1. Collisions correspond to
places where simple ramification points (in u,v) coalesce. These may also be
described as the set of points on D where either D has a singularity (i.e. is not
a manifold) or where G |pr, the restriction of G to the smooth points D' of D,
has a critical point,

10
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which we will always take to be analytic. At first we will recall some standard
definitions.

3.1 [Equivalence, Stability and Genericity

‘We now define some terms which will be used frequently in subsequent sec-
tions. Two analytic maps, G and H : V — @2, are said to be equivalent on
V if there exist a pair of biholomorphic maps ¢; : ¥V — V, and ¢ : €% — @?
mapping G(V) on H(V) such that the following diagram commutes:

wZ i) ar2

L | ¢2

0;12 _G_> @2
The next two definitions assume that we have introduced a topology in the
space of functions mapping ¥V C @2 — @2. In this paper we will work with the
space of solutions of non-linear systems, and the topology will be induced by
C*-topology on a closed bounded domain Vy C @2,

A map G is said to be stable if any map in a neighborhood of G is equivalent
to G. A map with some property is said to be generic (with respect to that
property) if the subset of maps with this property is open and dense.

The goal of cur paper is to describe the generic singularities of the unfoldings
of solutions of the system (1.1}. In the remainder of this section we will describe
two classifications of singularities of maps — classification by local rings and the
Thom-Boardman classification, which will be useful in our analysis.

3.2 Local ring

The classical invariant of a singularity of an analytic map is its loeal ring. A,
will denote the ring of analytic functions at a point p € @2. This ring is naturally
identified with the ring of convergent power series in two variables centered at p.
Furthermore, we let M, denote the maximal ideal of analytic functions which
vanish at p, A, is a local ring; M, is its unique maximal ideal.

If G(p) = ¢, then G induces a natural mapping of local rings

G*: Ay - Ay (3.2)
f(z,1) = flz(u, v),t{u, v)).

11



Clearly, G* M, C M,. The local ring of the map G at p is defined to be
Ralp) = Ap/ A, G" My, (3.3)

Definilion. The dimg Re(p) as a vector space is called the multiplicity of p with
respect to the map G.
The following facts justify this definition:

1. G is locally (near p) finite-to-one iff dimg Ra(p) < oo [16].
2, EG(F-’): ¢ dime Ra(p;i) is constant for f in an open neighborhood of ¢ [223.

Thus, dime Re(p) measures the multiplicity of p as a root of G(p) = ¢.

3.3 Classification of Local Rings of Mappings with Multi-
plicity < 4

The classification of local rings for singularities of multiplicity < 4 is well
documented in the literature on singularity theory. See for example [14}, chapter
7. These results are typically derived for real maps in the C*°-category. We
present a sketch the proof of this classification below which is appropriate for
our holomorphic setting.

Theorem 3.1 If the local ring of the map G satisfies 2 < dimg R < 4 then it
is isomorphic, under an enalylic change of variables, to one of the following:

Clfw, ]}/ (2w, ), 0,00} & Clu,e}/{u%,0)  (fold)

Clu, v)/{u? v} (cusp)
@lu, v)/{u?, v} (swallowtail) N
Clu, v]/{u?, v*} {nondegenerate umbilic)

Clu,v)/{uv,1 = v?} (parabolic umbilic)
(3.4)

Skelch of Proof. Recall that M denotes the maximal ideal of R; 1.e. the set
of functions vanishing at (0,0). As a vector space over @, R may be decomposed
as

CoMIMOMIM D ...
Here @ denotes the constants in R. For the first three cases listed in the theorem
the dimension over & of AM/M? is 1; while, for the last two cases—the umbilics~it
is 2.

We will derive the structure of the local rings for the umbilics, the derivations
of the preceding cases being analogous. Since we assume that the mult(0,0) < 4
and since dim(M/M?) = 2 for umbilics, it follows that dim M? < 1. So
consider the quadratic form induced by multiplication:

MIM? @ MIM? = M2,

12



Hthis is a non-degenerate quadratic form, then since all non-degenerate quadratic
forms are equivalent over @, we can find a basis z,y of M/M? such that
r-z=y-y=0and z-y#0. Setting u = z,v = y we derive the relations for
the local ring of the nondegenerate umbilic described above.

In the case where the above quadratic form is degenerate but not identically
zero we can find a basis z,y such that z2 = 0,z -y = 0 and y* = 1. Setting
u = z,v = y this gives the relations for the local ring of the parabolic umbilic.

We now list examples of mappings whose local rings realize each of the above
types and whose geometric realization gives rise to the name associated with
each ring:

z = u? t=w (fold)

z=u 4 vu t=v (cusp)

z=ultvuliteu t=v (swallowtail)

z=u? t =1t (nondegenerate umbilic) (3.5)
z=uf—p? t=uv

z=u?—v? t=ul4?

z = v? t = uv (parabolic umbilic)

3.4 The Jet Stratification of Singularities

We present now a classification of singularities which is due to Thom and
Boardman [5}. Though this classification is cruder than that given by the local
ring of a singularity, it provides a natural measure of the genericity of a singu-
larity or of a singularity in the presence of a constraint. The latter will be most
important when we consider genericity of collisions of singularities in Section
6. Our analysis of singularities for first order systems is divided into two cases:
the fold and cusp singularities, which are of of type X!, and the umbilic sin-
gularities, which are of type L2, Although the details of the Boardman-Thom
classification are not used below, a brief discussion of this theory will highlight
the geometric significance of these two cases.

The Thom-Boardman classification of mappings between two manifolds M
and N (in our case M = N =) is given in terms of a stratification of the space
of jets of mappings between M and N which we now describe. Thom partitions
points in the domain M of G into strata as follows. For a point p € M, we say
that p € ¥ if

ker(dGy : My — Ngpy)

13



has dimension = i. For example the fold, cusp and swallowtail singularities of
(3.5) represent singularities of class ©!. Furthermore in this case rank DG at
p will equal 1. The remaining {(umbilic) singularities of (3.5} are of class ©?
and rank DG = (, Thom proposed a further refinement of this stratification as
follows:

Let I dencte a nonincreasing sequence of integers dimM > i1 > 42 > i3 >

... > 0. The stratum T¢(G) C M is inductively defined by
PRGNS ""'“(G) — E"“(G | S“""”""(G))

For example, the fold is of class X1, the cusp is of class £11°, the swallowtail is
of class £111:0 while the umbilics are all of class £#°, This definition is lawed
in that 2/(G) is not a manifold in general so that the inductive definition breaks
down, Boardman, however, was able to circumvent this difficulty, by defining
these strata in terms of the space of jets of maps from M to N, as follows:

Two maps GG, H from M to N are said to have k** order contact at p € M if
the Taylor expansions of G and H at p agree up to k'* order. Welet J¥(M,N), .
denote the space of equivalence classes of mappings G with G(p) = ¢ under the
equivalence relation of k** order contact. The elements of J* are called k-jets.
The k-jet of a map G can be thought of as a map which assigns to each point
p € M the k' order vector Taylor polynomial of G at p. The k-th jet of G at
p is denoted j:;'G.

The ©! are then defined in terms of universal polynomial conditions on the
k-jet of a map. See [7] for the explicit form of these conditions. In this setting
¥ is a certain (not necessarily closed) subvariety of M x J*{M, N).

For a mapping G : M — N we define the induced mapping M — J*(M, N)
which associates with each point p € M the jet of G at p:

*G(p) = 35 (G).

If for k sufficiently large, j¥G is transverse to all &7 then the sets (G} =
(7*G)~1(Z!) € M are smooth subvarieties, and the codimension of ZY(G) in
M is the codimension of &7 in J¥(M, N).

It is useful to reformulate the definition of folds and cusps. The map G has
a fold singularity at the point p if jG' € Z1°. G has a cusp singularity at p if
ng € ¥11.0 and ;1@ is transversal to £ at p.

We are interested in the maps ¢? — €2, When dim M = dim N the only
cases of codimL! < 2 are £! (codimension 1) and 1! (codimension 2) (see
[2]). Maps with j¥*G transversal to £/ are generic. Therefore we see that the
only generic singularities of maps @2 — @2 are folds and cusps. This result is
known as Whitney’s theorem.

We are going to show that if we restrict ourselves to the maps which are
unfoldings of solutions of the hyperbolic system, then we will find new stable
singularities, nondegenerate umbilics.
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3.5 Normal forms of umbilics

A map,@? — @2, with an umbilic singularity is not stable, i.e. the map

7z =ul4eu
t =v2+€2u

has only fold and cusp singularities, if ¢; and ¢z are nonzero. Moreover, two
germs of maps (€2, 0) — (€2, 0) with umbilic singularities can be non-equivalent.
Throughout this subsection, all of the mappings are assumed to map 0 to 0, This
is denoted by the notation ('?,0).

Example . The maps

z =u®4+48 z =u?
fo_[.t :v2+u3 and fl"‘ t =u2
are not equivalent,
However, among the germs of maps (€2, 0) — (€2, 0) with an umbilic singu-
larity the orbit of the map fp is open and dense.

Theorem 3.2 (Normal form theorem). Suppose thal e germ of a map f:
{€%,0) — (@2,0) has 2-jet f1. If 832/0v® and 83%/8u® are non-zero, then f is

equivalent to fo.

Remark 3.1 By e linear changes of variables (u,v) end (2,%), the 2-jet of a
map with an umbilic singularily can be taken 1o a form fy.

We will say that a map has an umbilic singularity with nontrivial cubic ierms if
it is equivalent to fo.
By completing a square if is easy to show the following:

Lemma 3.1 If f safisfies the conditions of Theorem 8.2, then i is equivalent
to ¢ map with 3-jel fp.

Thus the proof of the theorem is reduced to showing that such a map is
equivalent to its own 3-jet. We will outline the proof of this proposition. Denote
by V, a ball [z|* + [t|* < a® and U, the domain f; (V).

Proposition 3.1 For any a > 0 there erisis a postitve consiani C, such that
if b is analytic in a domain U,, j2h = 0 at 0, and |h| < C,, then there exist
maps

k:Vopp—Ve and g:Uspm—U,

such that ko(fo+h)og=fo .
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The proof is based on an infinitesimal normal form theorem. Consider a family
of maps fr = fo +7h, 0 € ¥ € 1. We wani to find families k, and g, such that

krofrogr=fo (3.6)
for 0 < 7 < 1 with ky = go = identity at 7 = 0. Differentiating ( 3.6) with
respect to T at T = ( we obtain an equation

b= (do)au, ) + Ao, 37)
where o = —0,g and 8 = —8,k are vector fields on CZ , and C?, respectively.

Theorem 3.3 (Infinitesimal normal form theorem) For any map h with zero
2-jel al the origin the equation [ 3.7) can be solved for o and B. If h is
analytic in @ domain U,, then o is analylic in Uy, B is analytic in Vg, and

max|a(u, v)| < Cu(a)lhl, max |8 1)] < Cala)lhl

Proof of the existence of vector fields o and 3. To find « and # one
has to solve equations

hi{u,v) = 2uai(u,v)+ 3v2as(u,v) + Bi(u? + v, v% + ud)
ho(u, v} = 3ule{u,v) + 2voa(u,v) + Folu? + v3,v% 4 u3).

Solve this system for &y and ag;

or{u,v) = {2[hi(u,v) — B1(u? + v3, 0% + u’)]

—3v[ha(u, v) — Bo(u® + 23, 0% + u3)]}/(u(4 — Juv))
az{u,v) = {2[ha(u,v) = Ba(u? + v3, 0% + u®))

—3ufhi(u, v) — Br(u® + 02,02 + uB)]}/(v(4 - Suv)).

Functions a3 and ay exist if and only if the system

2[hy (0, v) — Br(v®, v2)] — Bu[h2(0,v) = Bo(v®,2%)] =0
2[ha(u, 0) — Bo(u?, u)] - 3ufhi(u,0) — S {u%,u%)] =0

can be solved for §; and fs.
We are locking now for functions §;(z,t) and S2(z,t), such that

ﬂ1($3,32) - (3/2)$ﬂ2(£3, 1}2) = hl(O,a:) - (3/2)3}]12(0, :E) = f:ll(.'n)
Ba(z?, %) — (3/2)z51 (22, 23) = ha(z,0) — (3/2)zhy1(z,0) = ha(z).

Note that h;(0) = k{(0) = 0 since £(0,0) = 0. Hence we can express h; as a
sum

hi(2) = p(a?) + 2°6(c?)
with ¢(0) = 0. Let S81,0(2,1) = ¢(t) + 29(t), f2,0(2,t) = 0. We will lock for f;
and Bz in aform f; = Fio+ Bin, 1= 1,2.
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31,1(13, 1!2) o (3/2)zﬁ2,1(z3, :1:2) =0
Ba1(a?, ) — (3/2)2B11(2%, &%) = ha(z) + (3/2zfro = h(z).  (3.8)

Again let h(z) = $(z?) + £3(2?), and look for By ; in the form Ba1(z,t) =
p(2) + tv(2). From the first equation in ( 3.8} we obtain

Bra(a®,2%) = (3/2)2(u(a®) + 2°v(2%) = (3/2){(=*)* (u(=®)/=%) + 2*v(=%)}.
A solution is
Bri(z,t) = (3/2H{t*u(2) /= + 2v(2)}.
The second equation becomes

{n(z®) + =°(z")} — (3/2)2(3/2{="u(=?) [2* + "w(2®)} = p(a®) + =°P(=7),

which has solution
w(2) = 9(2)

v(z) = —(4/5)(z) — (8/5)2(z)-
Note that @(0) = 0, hence ¢(z)/z and B ; are well defined.

The estimates in the Theorem 3.3 follow from the formulas for a and 5. §

The transition from the infinitesimal normal form theorem to the proof of
Proposition 3.1 can be done by standard methods (see [2, 14]). This finishes the
proof of Theorem 3.2

4 The Unfolding Transformation

Consider the 2 x 2 nonlinear hyperbolic system

fi+Af: = 0
get+upg, = 0 (4.1)
ft=0,2) = fo(2)
gt =0,z) = gofz)
in which A = A(f,9), # = p(f, 9). We shall assume throughout that A # u

in the region of interest. In Section 5, larger systems with more equations and
forcing terms will also be considered. Introduce new independent variables u, v,
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and look for (z,t, f,¢) to be functions of (v, v). The equations (4.1)for § and
g then become

Zy— My
fom g, o =0
2y — ply
— ————— = }. 4.2
Yu 2y — fity gu=0 ( )

At singular points the denominator (2, — M,) (or (2, — fit,}) will vanish (this
is shown directly below). The transformation (z(u,v), 1(u,v)) must be chosen
so that the numerator (2, — My} (or (2, — pty)) will vanish at the same point,
to make equations ( 4.2) non-singular. A convenient choice of (z,1) to insure
this non-singularity is to require that

Zy — Atu Zy — ﬂtu
s = —— =} 4,
Zy ~ Aly Zy — ity (4.3)

in which a and b are given constants (this eculd be generalized to choosing a
and b as given functions of (u,v)}. The resulting equation for f, g,2,¢ are

fu_afu = 0
gu—bgy = 0 (4.4)

z 1 =AY " /a0 1 =X 2
(t)u_(l—#) (0 b)(l—#)(t)u—g “8
The solution of { 4.4) (for constant a, b} is

flu,v) = fo(v+ au) (4.6)
g(u, v} = golv+ bu)

in which f, ¢ are given at u = 0 by f, and go.

The system { 4.5), with A = A(f,9) = do{v + au, v + bu), is equivalent to
the original system (4.1) and is the system that will be used for most of the
remainder of the paper. It is a linear system with nonconstant coefficients and
with straight characteristics du/dv = —a and dufdv = —b.

Now we are ready to prove Theorem 1.1 for systems of the form (4.1).

Proof of Theorem 1.1 1If “initial data”

2(u=0,v) = C{o(v) (4.7)
(fu=0,v) = mo(v)

is provided for v € §, then ( 4.5) has a solution for all (u,v) € {(u,v}: v+au €
Q, v+bue Q}. If fo,90, A i, o and 7g are analytic, then the resulting solution
(f,9,2,1) is analytic in (u, v).
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to the original equation ( 4.1). Assume that there is an unfolding variable v
such that

z = {olv)

t = 7olv)
fo(z) = fo(v) (4.8)
go(z) = go(v)

with fo, g0, 70 and {p analytic for v € Q. If this data for ¥ = 0 corresponds to
initial data with ¢ = 0, choose mo(v) = 0.

Now we examine the singularities of the mapping (z(u, v),f(u,v)) coming
from this transformation. The discriminant D = z,#, — #,%y4 has a simple form

(zu — Aty )2y =~ pty) ~ (2o — Mo)(24 — pity)

D = N4

= ;:z(z,, — Aty)(z, — pty) (4.9)

Since a # b and A # u then singularities in the mapping (z,t) occur precisely
at zeroes of z, — A, and z, — pt,. Thus for the system ( 4.1) singularities are
found by first solving the regular system ( 4.4), ( 4.5), then locating zerces of
2y — Aby Or 7, — ut,. Since the singularity positions do not have to be kept as an
unknown for the solution, we call this a “singularity capturing” transformation.

The velocity dzp/dt of a singularity z(t) at a zero of z, — Aty is calculated
as follows: Let (u, vo{u)) be the path of the singularity in (u, v). On this curve

dz(u, vo(u)}/du = zu + 2y vou

dt(u, vo(u))/du =ty + tyvoy (4.10)

so that s+ 20
dzg/dt = L2008 4.11
zof o+t Von (4.11)

since 24 = Aty and z, = M, on v = vg(u). Thus the singularities move at the
characteristic speed, i.e. they move either on a characteristic or on an envelope
of the characteristics. Similarly a singularity at a zero of z, — ut, moves with
speed dzg/dt = p.

This concludes the proof of Theorem 1.1 for systems of the form ( 4.1). g

Before proceeding several remarks on this transformation are made;

(1) For fo(z) = go(z) = +/z, we may choose (o{v) = v?. This is a simple
example of unfolding of initial singularities.

(2) The transformation ( 4.3) may be compared to the hodograph transfor-
mation z = z(f,¢), t =t(f,g). It is similar to the hodograph transformation in
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that the resulting system is linear with non-constant coefficients and straight-
line characteristics. This transformation overcomes two defects of the hodograph
transformation: For the hodograph transformation the “initial surface” ¢ = 0 is
complicated. Moreover it may be parallel to the characteristics in some places,
which leads to z and { that are multi-valued functions of f and g. Both these
defects are absent from the transformation ( 4.3). The initial surface is u = 0,
which is never characteristic if a £0, 3 #0.

(3) Under a non-degeneracy condition, the singularity does not move on a
characteristic. Differentiate the equations

2z (u, vo(u)) — A(u, volu) My (u, vo{u)) = 0
2y — Ay = a(z, — Ay} (4.12)

and recombine to get

Apty = Apty

dug{u)/du = —a(l + P v

) (4.13)

which is in general not equal to the characteristic speeds —a. In this case the
path of the singularity is not a characteristic and must be an envelope for the
A characteristics.

(4) Finally, there are two types of collisions between singularities: If two
o = 0 singularities meet, they are both moving at speed A. Thus they collide
tangentially in (z,1), so that we call this a tangential collision. On the other
hand if a zero of z, — Af, collides with a zero of z, — ut,, they are moving at
different speeds A # u, so that we call this a non-tangential collision.

5 High Order Systems

In this section the results concerning unfolding are generalized to nth order
systems that are diagonalizable and have exactly two speeds. The main differ-
ence is that the unfolding transformation results in nonlinear equations, which
are solved using the Cauchy-Kovalevski theorem.

First we prove the existence Theorem 1.1 for systems. Consider

Fy + M(F)F, = ¢(F). (5.1)
The matrix M is diagonalizable, and has eigenvalues Ay = ... = Ay = A(F),
Akt1 = ... = Ay = p(F). Choose the left eigenvectors Iy, ...,{, and the right
eigenvectors r1, ..., r, satisfying

M =Xh=M, i=1,...,k
UM =Nli=ph, j=k+1,...,n, (5:2)
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and
Lrm=bim, s,m=1,...,n,

in which0 <k <n.
Take the inner product of the left eigenvectors with (5.1) to obtain

I;-(6,+ABZ)F =k-¢, i=1,...,k

- (B+pd)F =l j=k+1,...n (5.3)
Use the unfolding transformation (4.5} to convert (5.3) to
L (B — a8)F = 320 (g — pto )l - 6 (5.4)
A—p
fori=1,...,k and
b (B = b0)F = § (a0 = M)l -6 (5.5)

for j=k+1,...n. The equations for z and t are

(-G GHG ). e

The inttial data 1s

t = 1(v)
z = (o(v) (5.7)
F = Fg(v)

for u = 0. The system (5.4), (5.5), {5.6) with data (5.7) has analytic coeflicients
and analytic initial data in v. The Cauchy-Kovalevski Theorem provides a
solution F, z,1 for this system, with F, z,{ analytic in u«,v.

Analysis of the singularities proceeds exactly as for 2x2 case. That is, F(z,1)
being the solution of a system (5.1) is equivalent to (F, z,t) satisfying (5.4), (5.5),
(5.6). Under this constraint all the stable singularities are exactly those for 2x2
system. As before the singularities move at speed A or u, This finished the
proof of Theorem 1.1 for systems.

6 The Differential Equation as a Constraint

6.1 Characteristic Variables

In the rest of this paper it will frequently be convenient to write the unfolded
system in terms of the characteristic variables 7 = u— v and V = u + v. The
system (4.5) or (5.6) then takes the form

Iy = A(f,g)tU,
zv = p(f,9)tv, (6.1)
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We wish to describe the singularities for a solution G : €%, — @ of the system
(6.1).

The system (6.1} acts as a constraint on the mapping (z(U, V), (U, V)). Set
p=1y, ¢ = ty. The Jacobi matrix of the map G is

v tv N\_ [ Ap p
(zv tv)_(uq q)' (62)
The discriminant is D = (A — p)pg and thus the map G is singular if either p
or ¢ or both of them vanish. The constraint (6.1) forces the discriminant I to
be a product of terms that can each vanish separately, which makes the umbilic
singularity stable, as we will show.
We will also occasionally use the following change of variables on the target
of the unfolding map. Set Ay = Aug,vs), po = p(uo, %), 20 = z(ug,vg),
to = t{uo, vo) and consider the new coordinates (Z,T) in €2 ;:

Z = (2‘ - ZQ) - Ao(t - to), T= (Z - 2'0) - [Jo(t - to).

Using (6.1) we find the first derivatives of the functions Z(U, V') and T(U, V) to
be
2y = zy — Aoly = (A - )\u)p,
Zy  =zv — Aoty = (i — ho)g,
Tur = zv — oty = (A~ po)p,
Tv =2y — poty = (4 — po)g
in which A = A(/(U, V), 9(0, V) and s = u(f(U, V), 9(U, V).
Differentiate (6.1} and use the relations tyy = tvy, zyv = 2vy to obtain

pv = qu,
(Apkv = (eg)u,

or
Pv = qu,
6.3
v = (35— Bo). (6.3)

Let (up,vs) be an arbitrary point in the domain Vj. Given the values zp =
z(uo,ve) and ¢ = t{up,vo), equations (6.3) determine the Taylor series at
(uo, vo) for the functions 2 and ¢ uniquely. Therefore the system (6.3) suffices
to describe the singularities of the map G..

6.2 Classification of Singularity Types in Terms of p, g

We will now use the system { 6.3) to express the conditions for a fold, cusp or
umbilic singularity directly in terms of p, g and their derivatives. The following
lemma provides a characterization of umbilic singularities (which are in X?).
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Lemma 6.1 The map G : (U, V) — (2,i) has en umbilic singularily at lhe
point (uo, vo) if and only if p{uo, vo) = g(uo, ve) = 0, but py(uo, vo) and gv (to, vo)
do not vanish. If in addition “aU f(uowa) and 2 35 J(uo,u0) aTE MOR-2ETO, This
umbilic has nonirivial cubic ferms.

Proof. The Jacobi matrix (6.2) is zero if and only if both p and ¢ are zero. At
a point (up, v}, where p = ¢ = 0 we have

ZUUI(uo,ﬂo) = ZUVI("D:‘-’D) =0 TUV!(“D,W!) = TVV](uo,”o) =0
Zvv l(us,v0) (PD = do)av(uo,vo})  Touluowve) (Ao — pio)pr(vo, vo)
Zuuvlweve) = 285pu(ug, ve) Tvvv|uowe) = 288 qv (%o, v0).

From these formulas and Theorem 3.2, one can see that the map G : (U, V} —
(Z,T)} has an umbilic singularity if pU(uo, vp) # 0 and gy (uo, v5) # 0. Further-
more, this umbilic has nontrivial cubic terms if, in addition, gg— and 3{} are
non-zero. g

According to (6. 1) the characteristic —d-i = A corresponds to V = constant
and the characteristic 4 % = p corresponds to U = constant. Thus the conditions
OX/OU # 0 and 8u/8V # 0 guarantee nontrivial interactions between the
characteristic quantities, Genuine nonlinearity, on the other hand, would be
the conditions 8A/8V # 0 and 8u/8U # 0.

We consider now singularities of rank 1, L.e. those in the Boardman-Thom
class £!. The Jacobi matrix (6.2) has rank one if p = 0, but ¢ # 0, or vice
versa if ¢ = 0, p # 0. These two cases are symmetric and we will consider only
the first.

If the map G : G'E,,V — (E’f', has a fold or cusp singularity then the map

J'G @y — JHT?,@?) is transversal to the manifold A: zyty — zviy = 0.
We say that the map G :@? — @? satisfies the transversalily condition if G is
transversal to A.

Lemma 6.2 Lelt ¢ = ty # 0 in the domain of consideration. The map G
satisfies the transversalily condition if either py # 0 or pv # 0 (or both of them
are non-zere) al any point where p = 0.

Proof. In the domain ty # 0 the manifold A C J(@?%,8?) is a smooth hyper-
surface. Hence, the map j{G) is transversal to A if V§ # 0, at any point where
§(U,V) = zyty — zviy is zero. Using the system (6.1) one can express & as
§ = p(U, V)g(U, VY(MF({U,V)) — p(F(U,V))}). In the domain of consideration
g and A — u are non-zero. Therefore § and V§ are not simultaneously zero if p
and Vp do not vanish simultaneously. g

The following lemma follows from Lemma 6.2 and the last equation in (6.3):
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Lemma 6.3  Let g{ug,vg) = tv(uo,v0) # 0. The map j°(G) is iransversai io
A ai the point (uy, vo) where p = 0 if the three functions

op
» U, and aUu

are not simultaneously zero.

In fact in the 2x2 case % = %J’j,‘-fu -+ g—g‘-gy = -gf],‘—gu, because fy = 0.
Finally a characterization of the fold and cusp singularities can be given.

Lemma 6.4 Let G : (U, V) — (z,t) be a solution of the system (6.3) that
satisfies the transversalily condition and is singular af the point (uo,ve). Let
g(ug, vo) = tv(ue,vo) # 0. Then the map G has at (ug, vo)

(i) a fold, if p{ug, vo) = 0, but py(up, vo) # 0, and

(i) a cusp, if p(ug, vo) = pu(uo, va) = 0, but pyu{uo, vo) # 0.

Proof. Using the notation above, at (ug, vg) one has

ZU('u,o,vg) =90, Zv (uo,v0) = (1 — Ao)q(uo, ”0) # 0;
Ty (10, vo) = (A — po)p(uo, v0), T (uo, o) = 0;

The value p(uo, vo) is zero because G is singular at (ug,v) and g(uo, vo) # 0.
Then

Tou(us,ve) = (Ao — po)pu (uo, vo),
Tyv(ug,vs) = %(uo, vo)g{ua, vo)-

If pu(uo, vo) # 0, then the map (U, V) — (Z,7T) has a fold . If py{ug,vo) = 0,
then
Tyuy =, (A = po)pru(ue, vo).

If p(uo, vo) = pu(to, vo) = 0 then Z&(ug, vo) # 0 by Lemma 6.3, and therefore
to have cusp we only need pyy # 0. 1

The definition of transversality has not been given here, since the only at-
tributes of transversality needed are those of the preceeding Lemmas. In fact
Lemma 6.2 could be used as a working definition of transversality here.

At this point the significance of the perturbations of initial data, including
perturbation of ¢ as in (1.6), can be understoed. If t = 0 for u = 0 then
also #, = 0. Then at a branch point in the initial data where also z, = 0,
the Jacobi matrix (6.2) must vanish because of the equations (6.1), and so the
singularity rmust then be an umbilic point, unless there is some degeneracy.
This implies that an initial singularity will split into two folds moving at the
two characteristic speeds. The branch cut opened up between them is the source
of the “hidden initial data” mentioned in Section 2. On the other hand under
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perturbations of the form (1.6), including a perturbation of {, such a degeneracy
does not occur.

We will now illustrate the effect the constraint has in the situation where the
speeds are constant: A = Ag, 4 = po. For appropriate values of these constants,
the solution of the unfolding system is simply

z=Vv?
T=-U%

Now suppose we consider a linear perturbation of this unfolding:

Z = e(aU +bV) + V2
T = e(cU + dV) + U*.

The jacobian of this transformation becomes degenerate along the locus
where its determinant vanishes:

ade® — (2U 4 €c)(2V + €b) = 0.

As long as a,d # 0 this locus is smooth, along it the rank of the jacobian is one
and singularities of the map are folds.

However, in the limit as @ ~+ 0 or d — 0, the determinant locus becomes
singularat U = -,V = —% where the rank of the jacobian drops to zero and
the folds limit to an umbilic point.

Figure 3 shows, for real values of the parameters a,b, ¢, d, the real part of
the discriminant loci which consist of a family of hyperbolas. For a,d # 0 these
are smooth corresponding to folds while if either of these parameters vanishes
the hyperbola degenerates to a pair of intersecting lines corresponding to a
hyperbolic umbilic.

Now in our example the differential constraint reduces to Zy = 0,7y = 0 or
equivalently ¢ = d = 0. Thus, the constraint forces the hyperbolic umbilic to
persist under perturbation.

7 Genericity Theorem.

7.1 Statement of the theorem.

In this section we will consider singularities of the system (5.1) with zero
right-hand side:
Fi+ M(F)F, = 0. (7.1)
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The analysis for systems with non-zero right hand side is similar. We are in-
terested in the singularities of the solutions of (7.1) in the domain D C G';";"}
where the system has two distinct characteristic speeds. That is, in the domain
D where A(F) # p(F).

Take again left and right eigenvectors Iy, and r, of the matrix M, satisfying

(5.2). Let F = (f1,..., fa). We can rewrite the system (7.1) as follows:

Temtlis(F N +A(fi)s) =0 i=1,..,Fk 12)
:=1Ija((fs)t+ﬂ(fa)z) =0 j=k+1,...,n ’

Suppose that the solution F' = F(z,1) of the system (7.2) defines the surface
Sin D C@"t? Let z{u,v),t(u,v), F(u,v) be a parameterization of a solution
such that v — v = const and u + v = const are characteristics on S. Then
z(u, v), t(u, v), F(u,v) satisfy the system:

E;=llia((.fs)u“(fu)u) =0, i=1|°--sk’

E,=1lja((fs)u + (fﬂ)v) =0, j=k+1,...,n, (7 3)
Zy — Aly = zy - Aly, )
2y — My = —(zy — pty).

Remarks. (1) The parameterization z(u, v), {(u,v) is the unfolding of Sec-
tion 4 with a = 1, b = —1. The lines {z = z(y,u+¢), t = t{u,u+ ¢)} and
{z=2(u,—u+¢), t = t(u, —u+c)} are the characteristics of the initial system
(7.1).

(2) The initial value problem with data on the lines 4 = const, F = Fy(v),
z = z(), t =1o(v) is well posed for the system (7.3).

(3) The parameterization of the solution is determined uniquely up to the
change of variablesiu; 4 v; = ¢{u + v}, u1 — vy = $¥(u — v), with ¢’ and ¢
nonzero.

As in Section 3, we will say that a generic solution satisfies a given property
A

(1} the set of solutions with property A is open, and

(2) the set of solutions, satisfying property A is dense in the following sense:
For any solution s : V C @2, — D C €"%? and for any bounded subdomain
V1 C V, there is a solution s; : Vy — D arbitrarily close to sy, satisfying
property A.

In this section we are going to prove Theorem 1.2, which is restated more
explicitly as the following:

Theorem 7.1 (Genericily Theorem). For a generic solulion s of (7.1) the only
singularities of the unfolding (u,v) — (2,1} are folds, cusps and nondegenerate
umbilica.

If, in aeddition, at least one of the funclions

n ax n
Z m( Z I'mjlj,), 8‘—‘1,...,11,

m=1 F=k+1
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and af least one of the functions

n

k
Z ;’%(Zrmilic), s=1,...,n,

m=1 i=1

are not idenlically zere, then a generic solution hes nondegeneraie umbilics with
nonirivial cubic terms.

7.2 Overview of the proof for the Genericity Theorem

Consider a solution s : V — D and a bounded domain V; C V. At first we
will construct s; such that the only singularities of 5, with

rank ( f: ;‘: ) =0 - (74)

are umbilics (Section 7.3). Then we will perturb s; to obtain a solution which
satisfies the transversality condition (cf. Section 6.2) at its singularities. After
perhaps another perturbation, this solution will have only folds and cusps as
singularities at points where the rank of the Jacobian is equal to 1 (Section 7.5).

Again, as in Section 6, introduce new coordinates U = u—vand V=u+v
and denote p = ty,q = ty. Let Tl denote the standard projection I : D — @'%,.
The system {7.3) then takes the form:

Yoeetlis(F)(fi)u =0, i=1,...,k,
Yomlis(FY(fov =0, j=k+1,...,n,
Pv =4qu

— 1 a A\
pv = 55 (31— 57p)

(7.5)

The singularities of the map IT o & are described in terms of functions p, ¢
and their derivatives by Lemmas 6.1 — 6.4. In the cases of umbilics and cusps
Lemmas 6.1 and 6.4 can be summarized in the following way: The singularity
in each of these cases is described in terms of a certain pair of analytic functions
« and £ in V, which depend on the 1-jet of s. For the cusp a = p and 8 = py
(or g and gv); while for the umbilic o = p and § = ¢. The map Il o s will have
a singularity of the prescribed normal form (either an umbilic or a cusp) if the
corresponding map (a, 8) : V — @ has a zero of multiplicity 1.

The openness of the set of functions with fold, cusp or umbilic singularities
is an immediate corollary of this representation: Suppose that the map (a, ) =
(of-; F,p,0), B(-; F,p,q)) has zeros only of multiplicity 1, and let (Fy,p1,q1) :
V — @"*? be a small perturbation of (F,p,q). Then the map (a1,5:) =
(a(+; F1,p1,91), B(-; F1,p1,41)) will have zeros only of multiplieity 1, close to
those of (o, ).
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We now turn to a main principie in our analysis of density of maps with
folds, cusps and umbilics, We want to show that given any solution of system
(7.5) in the bounded region V we may, by perturbing initial data, arrive at a
solution whose branch point singularities are all equivalent to one of cur normal
forms. First note that because our solutions are all analytic in the unfolding
variables (u,v)}, with existence of solutions given by the Cauchy-Kowalevsky
theorem, perturbations with respect to initial data are entirely equivalent to
perturbations within the class of solutions on V. In particular perturbation of
the data along u = 0 is equivalent to perturbation along the line u = up for any
ug.

The following Reduction Principle exploits this observation to provide a
method for establishing the density of solutions having singularities of a pre-
scribed type (namely fold, cusp or umbilic). This Principle will be used repeat-
edly throughout the remainder of this section, and it will be directly verified in
each application. The proof of the Principle always follows the same pattern,
however, which is sketched below.

Reduction Principle. Let (a,8) : V x J} — @2 be a map which is ana-
Iytic in V and depends continuously on J' = {3*(p), 1*(q), 3} (F)} the I-jeis of
solutions to system (7.5). Suppose thal, for the I-jet of a particular solution
0,0, F, the zeroes of (@, B) are isolated points in V. Then for generic periurbe-
tions of the 1-jel of p,q, F, the perturbed map (&, 5) has only isolaled zeroes of
multiplicity 1, i.e. af each of which the local ring for (&, 8) has dimension 1.

Scheme of the Proof: Since (e, f) is analytic and V is bounded, the zeroes
of {a, ) are a finite set, {x1,...,2n} at each of which the local ring of (a, )
has finite multiplicity m;. Let N = Y., m;. The principle is established by
(decreasing) induction on Y i, (m; — 1).

The induction step is effected through a succession of perturbations. At the
i-th point z; = (u;, v;), perturb (p, ¢, F) along the line u = u;, so that this point
remains a zero of (o, f) but with multiplicity one. One then uses the Cauchy-
Kowalevsky theorem to eonstruct a solution initialized along this line. In this
way the multiplicity at z; is reduced and the perturbation remains within the
class of solutions to system (7.5).

We must still insure that the perturbation does not introduce new singu-
larities other than by splitting the old ones. On each induction step choose a
small ball B; around each x; such that no two of these balls intersect. We will
a]ways take perturbations sufficiently small so that, under the perturbation, the
total multiplicity of zeroes within a given B; remains constant as does the total
multiplicity within V . This can be established by a covering argument since
the number of zeroes and their multiplicities is finite and because we have con-
tinuous dependence of the solution on the data, which is prescribed on the lines
U=y g

In order to verify this principle in a specific application it will suffice to show
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that one can perturb (p, g, F) along the iine u = u;, so that z; remains a zero of
(o, 8) but with multiplicity decreased by at least one. In each of the following
subsections we will describe corresponding functions @ and 3, then show that
for a generic solution the map {«, §) has only isolated zeros, and finally verify
the Reduction Principle.
Throughout the remainder of this section denote Fy(v) =

(F2(v), ..., f2(v)), po(v), and go(v) to be the restrictions of a solution s =
(F,p,q) of the system (7.5) on a line u = ue.

7.3 Genericity of umbilics.

By Lemma 6.1 the map II o s has an umbilic singularity at a point (o, vg)
if the map (p,q) : V — @2 has a zero of multiplicity 1; i.e.,, p = g = 0 but
pu # 0,qv # 0 at (uo, vo).

In this section we will show that generically solutions of the system (7.5)
have only umbilic singularities with nontrivial cubic terms, at points where
p = g = 0. The argument is developed in three steps. First we show that the
common zeroes p = ¢ = 0 in V are a set of isolated points. Then we show that
the solution may be perturbed so that when p=¢ = 0, py # 0 and gv # 0.
Finally we show that after perturbation g—-;}-(ug,vo) # 0 and 53 (uo, vo) # 0 at
the umbilic points. Thus by Lemma 6.1 these umbilic points have nontrivial
cubic terms, so that such singularities are generie,

‘We start by characterizing the structure of the set p = ¢ = 0.

Lemma 7.1 Given a solution s of the system (7.3}, consider the sel p= ¢ = 0.
Hs connected components are either all of TL,, or isolated poinis, or character-
tstic lines V = const, or U = const,

Proof. Let functions p{(U, V) and ¢(U, V) give a solution of the system (7.5).
Suppose that a point (u,vy) is a non-isolated point of the set p = ¢ = 0.
Suppose also that in a neighborhood of (ug,vg) this set is not one of the char-
acteristics I/ = Up, or V = Vg, If the point (up, vp) belongs to a smooth arc of
the set p = q = 0, then there exists a neighborhood U of (ug, ve), where this arc
is a zero set of a function U — 4(V}, and %' in U is not identically zero. Then

plu = (U = v(V))*p1, gl = (U —YV)) g1, (7.6)

where p1(Y(V), V), ¢1(7(V), V) are not identically zero. From equations (7.5)
one has:

EU -7V (Vg = HO -y (V) ta+ (U~ 1(V))' 58
—(U - T(V))k%:

KU -9V Y Vip = (U =V )V audh/(A~p) (1.8)
—(U = AV)E(Zp:/ (A~ p) + L)

(7.7
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— it a® 3 T T h Fa 1 = oy 1 1 ¥ M S 2
From the equation {7.7) one has & = {, and from ihe {7.8) & — 1 = {. Bui ihis
1s a contradiction, which proves the lemma. g

Now we are ready to establish the first step of our argument.

Lemma 7.2 A generic solution of (7.5) in a bounded domain V has only iso-
lated zeros of the map (p, g).

Proof. Note that if p = ¢ = 0 at the point (uo,vs), then pyv(uo,v) =
qu(uo,v0) = (25q — 22p)/(A — p) = 0. If in addition py = 0 at this point,
then the derivative of p in any direction is zero, and in particular pj({ve) = 0.
Similarly, if g{uo,vs) = gv(uo,vo) = 0 then gj(ve) = 0. H plv=const = 0 then
PU|v=const = 0, and, similarly, if glu=const = 0 then gv|v=const = 0. Per-
turb now the restriction of the solution on the line ¥ = up in such a way that
po(v) and (po)'(v) are not simultaneously zero, and also go(v) and (go)'(v) are
not simultanecusly zero. We can retain the restriction Fy(v) unchanged. Let
§ : V' — D be the solution of the system (7.5) with the functions py, g0, and Fp
on the line ¥ = 0 as initial data. For the solution & none of the characteristic
lines I/ = const or V = const can belong to the set p = ¢ = 0. Otherwise at the
point of intersection of this characteristic and the line 4 = ug either py = pf, = 0
or gg = gy = 0. Therefore the set p = ¢ = 0 for 5 will consist only of isolated
points. §

We now turn the second step: perturbation of the common zeroes of p, g
to umbilic points. This requires verification of the Reduction Principle for the
map («, §) = (p, q).

Consider a solution s which has a finite number of points where p=g=01in
Vi. Let (up, vg) be a point where p = ¢ = 0 with maltiplicity k > 1. Let po, go be
the restrictions of p, ¢ to the line u = up. To justify the usage of the Reduction
Principle, we have to verify that we can perturb the restrictions py and g¢g so
that the point (ug, vg) will be zero of (p, ¢) of multiplicity 1 for the corresponding
solution.of (7.5). At (uo,v0), pv(uo, vo) = pv(a, vo) — pp{ve) = —pi{ra), and
gv(uo,v0) = gh(ve) + qu(uo, vo) = gf(vo). Therefore it suffice to take po and
go which have zero values and non-zero derivatives at vg. This establishes the
Reduction Principle in this case, and shows that, at points with p = ¢ = 0, the
singularity is generically a nondegenerate umbilic.

Lastly we show that generic umbilic singularities have nontrivial cubic terms
under the conditions of Theorem 7.1. Along the line u = up, {f;)v = (f°)'(v)+
(f:)u. Therefore, on u = up the first two equations of (7.5) are

zlia(f:)U = 0, i= 1,...,k,
L

Shilfu = -Trln(0)(),  i=k+1,...,n

s=1
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¥, 3‘3.—’:“ ?:k +17mjljs) are not all identically zero, then at each umbilic
point (ug,ve) we can perturb the initial functions f7 (retaining the generic
properties of py and gq) so that (ug,vo) will become an umbilic point with
82
W(ug, ‘Ua) ?5 0

In a similar way, if not all (3", _, %“:Elermglg,) are identically zero then

we can also find a perturbation of the initial functions such that -g%(uo, vo) # 0.

7.4 Generic maps with singularities X1,

Since the Jacobi matrix has the form (6.2), it has rank 0 only at points
where p = ¢ = {J, which are generically umbilic points according to the previous
subsection. Now we consider singular points where the Jacobi matrix has rank
1, which are the singularities in &*. In a neighborhood of an umbilic point all
other singular points are folds. Therefore we need only consider ¥? singularities
that are away from umbilics, i.e. we can now assume that in the domain V the
rank of the Jacobi matrix of a map e s : (U, V) — (2,1} is at least 1.

In this section we are going to prove the following:

Lemma 7.3 Letl s be a solulton for which the rank of the Jacobi matriz of
Mos :V — D is al least 1. For any bounded subdomain Vy, with V; C V,
there exists a solution §, arbitrary close to sly,, such thai Il o § satisfies the
transversality condition (Lemmas 6.2, 6.8).

The proof of Lemma 7.3 will follow the scheme stated in Section 7.2, We
will exploit the assumption that A, y, and the matrix (I;,) do not depend on
z and t. Therefore by fixing a solution F' of the first n equations in (7.5} we
fix the functions 3—3 and g{-}. We will show that transversality can be satisfied
by perturbing only p and ¢. We continue to assume that ¢ # 0 in the domain
under consideration.

We must first treat separately the extreme situation where % is identically
ZEro.
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Lemma 7.4 If-gg—, ts tdentically zero, then after small periurbaiion the solulion
has only fold singularilies in the domain where g # 0.

Proof. If 'gt% = 0 then the last equation in (7.5) takes the form

pv = —p-g%/(A - K. (7.9)

We solve (7.9) with respect to V starting from the lineu=0,ie. V=-U=v.
Denote po(v) to be the restriction of a solution p(U, V) on the line u = 0. The
solution p(U, V) of this equation can be written as follows:

v
o0 V) = U, ~V)exp( | (g0 = w)aV

v
= po(~U)exp( | U(gé-/(x — p)dv. (7.10)

In particular p(U, V) = 0 on the whale line U = Uy if po(—Up} = 0. If also
p(Us, V) = 0 then by differentiating (7.10) with respect to U and substituting
po(—Uop) = 0 one has

v
pulUa,V) = ~pi(-Un)exp( | (g /(= w)av.

Therefore, the set p = py = 0 also consists of a collection of whole lines U =
const. One can now perturb the values of pg on the line u = 0 in such a way that
po and pfy do not vanish simultaneously. Then for the solution § with this initial
data, p and p, do not vanish simultaneocusly. By Lemma 6.4 all the singularities
of I o § at which the Jacobi matrix has rank one are then folds. g '

We assume now that gﬁ 15 not identically 0, and proceed according to the

scheme of subsection 7.2, with a = p and f = g—{—‘;. We will first show that the
common zeroes of a and § are isolated.

Lemma 7.5 Afier a small perturbalion of the solution z,t the poinis where
p= -gﬁ =0 in a bounded domain V are all isolated.

Proof. The set {24 = 0} in V consists of a finite number of smooth components

and a finite number of critical points. Let ¥,...,Y: be the smooth components
of {g{} = 0} belonging to the set {p = 0}. Consider perturbations of the
solution so small that no components of {22 = 0} other than ¥; (i = 1,...,7)

(and isolated points) can completely belong to the set {p = 0}. Note that we
keep the F(U,V) and, therefore, the set {% = 0} fixed, because the first n
equations in (7.5) depend only on F, and we are perturbing only the solution
of the last two equations.
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Let (ug,vo) € Yi. We can aiways periurb the resiriciion of the souluiion OB
the line u = up so that p(up, ve) # 0, and hence the set {p = 0} intersects with
Y; only in isolated points for the perturbed solution. Continuing this procedure
(and restricting to smaller and srna.ller perturbations) in no more than r steps
we can make all the solutions of p = 2% = 0 in V isolated. §

To establish transversality we use the characterization given m Lemma 6.3.
We will show that genencally pu # 0 at the points where p = U = 0, which
are isolated in V by the previous lemmma. We use a slightly modified version of
the Reduction Principle to establish this.

Consider all such zeros zj,...2x of (p, g{j—) in ¥, where py also vanishes.
Each point z; = (u;, v;) has a finite multiplicity m; as a zero of (p, gv) Proceed
by induction on N = YK | m;. At each step we perturb restrictions of p and ¢ on
the line 4 = u; in such a way that the point {u;, v;) remains a zero of p = g{} =0
but py becomes non-zero. As in the case of the Reduction Principle, in each
induction step cover points z; by nonintersecting balls, and consider sufﬁcaeutly
small perturbations of s so that the sum of mulhphmtles of zeros of (p, -55‘—) inside
these balls remains constant. Then after each step the sum of multiplicities of
zeros of (p, +5) where py is also zero is reduced by at least 1.

Take a zero (ug,ve) of (p, -5“5-), where also py = 0 and let pg, go denote the
restriction of p,q to the line 4 = ug. To establish the Reduction Pr1nc1ple it
suffices to to find a perturbation such that (ug, vo) remains a zero of (p, 24), but
pu(uo,vg) # 0. Perturb pg and ¢o such that pg = 0 but py # qg /(A — p) at
(ug, o). Then according to (7.5) onu = ug, py = pv—pp = qg /(/\ wy—ph #
0 at {up, vo). This establishes the Reduction Principle and ﬁmshes the proof of
Lemma 7.3.

7.5 Genericity of folds and cusps.

We have proven that a generic solution s of the system (7.5) satisfies the
ransversality condition. For ! singularities this was established in the previous
subsection; while for umbilic points the map j(II o 5) is transversal to A =
{zyty — zviy = 0}. In the rest of this section, we will consider only solutions
with I? singularities that satisfy the transversality condition. As in the previous
subsection we can assume that in the domain of consideration the rank of the
Jacobi matrix of the map (U, V) — (z,1) is not less than one, and that ¢ = ty #
0. The singular points of the map Tl o s are the points where p = 0.

By Lemma 6.4 at a point (ug, vo) the map I o s, satisfying the transversality
condition, has a fold if p = 0, but py # 0, and a cusp if p = pU = 0, but
pou # 0. At a point where p = py = 0, the derivative py = -—q # 0 for
a solution satisfying the transversality condition (see Lemma 6.3). Hence the
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condiiion pyy # O al a poind means that this point is a zero of {p, pv) with

multiplicity 1. In this final subsection we will show that we can perturb s in
such a way that every zero of (p, pr) has multiplicity 1.

Once more we isolate the points where p = py = 0. As shown above, we
may assume that 8u/8U # 0 at such points.

Lemma 7.6 For generic solulions, the set p = py = 0 consisls of isolated
poinis.

Proof. If p = 0, then pv = q%/()« — #) # 0 outside % =0} Ifpy =0
along the smooth curve p = 0 then, by the implicit function theorem, it is a line
V = const (note, that py 3 0). Therefore the only non-isolated components
of the set p = py = 0 are characteristics V' = const. Bui we always can
choose initial data on the line ¥ = 0 in such a way that plu=o = po{v) and
Pulu=o = —Ph(v) + go(v) 254 /(A ~ p) are not simultaneously zero. g

We can assume now that the points where p = py = 0 (which are the points
where II o s does not have a fold) are isolated. Suppose that p = p, = 0 at
(10, v0). To establish the Reduction Principle with e = p, # = py, it suffices to
find a perturbation of Fg, po, g0 on ¢ = ug such that p = p, = 0 but pyy # 0 at

(‘uu,‘vu).
From (7.5) calculate
pvu = 350 = i)a - S5/ - )
+( (A=~ mhav = (§/( — w)pu,
pvv = f (/= m)e = g (B - e

+(E /(O — v — (B /(A= u))pv.

Note that qu = pv = (Zfq — 22p)/(A — p), and that gj(v) = —qu + qv on
u = ug. Therefore if p = pr = 0 at (g, vg), then

0= pu = Ph(v0) — v (s, v0) = Fh(30) ~ (e /(A = )aolv0)
and

pou(uo,vo) = pg(ve) — 2PUV(U6, to) — pyv (ug, Vo)
mpo(vo) 25 (25 /(A — 1)Ygolve) + (55 /(A — #))*g0(vo))
— (Bh /(- ﬂ))QO —(B4/(A—p)) Qe(”n))
—(m*‘f - %%)ph(vu)/()\ - #)-

Therefore by retaining the values of pg(vo), QQ(‘Ug), po(vo), g4(ve), and changing
the value of pfi{vy)) we can perturb po and gp in such a way that p(ug,vg) =
pu(ug, vo) = 0, but pyy(uo,vo) # 0 . The point {ug, vo) remains a solution
of p=py = 0, but has now multiplicity 1. This establishes the Reduction
Principle and finishes the proof of the Theorem 7.1.
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8 Geometrical Constructions.

The theory of first-order nonlinear systems can be geometrically reformu-
lated in terms of jet spaces. Though it is not directly used in our analysis, the
geometrical picture gives another point of view of the unfolding construction,
and we hope it will help to extend our results to more complicated systems.
The geometrical theory of differential equations is highly developed, and only a
few facts are cited here. A more detailed review and references can be found in
[29]

For simplicity consider the diagonalized system

Fy+ AF, =0, (8.1)

where F maps @'? with coordinates z,t to €™ with coordinates fi,..., fn and A
is a diagonal matrix

A = diag{d1,..., \},

with Ay = ... = X = A(F}), Agg1 = ... = Ap = p(F). The functions A, g, Ii;
are supposed to be analytic, and A(F") # u(F).

8.1 Solutions as Submanifolds in the Jet Space.

Consider the space J}(V,€") of 1-jets of maps V to @" with coordinates z,
t, F = (fi,...,fn), and denote & = 8, fi, = & f;. Any mapping ¥V — C*
naturally defines a submanifold in the jet space. A 2-dimensional submanifold
S of JY(V,@™) corresponds to some function, if its projection to €2 is nonde-
generate (i.e,, it is a local diffeomorphism), and for all s df, = §,dz+15,dt on 5.
The last condition just says that £, and 5, are partial derivatives of the function

fi=Fh (z ) t)-

Definition. Given a manifold M and r 1-forms ay,...,a,, a submanifold
5 ¢ M is called an fnfegrable manifold of a distribution of planes o; = a3 =
vo.o=ap=0,ifforall s =1, ..., r the forms a,|s vanish.

We can define now a mulli-valued funclion as an integrable manifold in
JY(V,@") of a distribution

o, = df, — £,dz — p,dt =0, s=1,...,n (8.2)
The equations of (8.1) can be considered as equations on J*(V,C"). They
define a submanifold I' C JY{V,€™) on which 5, = ~)\,£,. Hence, we can say

that a mulli-valued solution of the system is a submanifold of T which is an
integrable manifold of the distribution (8.2).
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8.2 Integrable pianes, Characterisiics and Cartan’s The-
orem.

H an integrable manifold S of a distribution 58.2) is the graph of a function,
F = F(z2,t), with & = (£,);, s = (fs 1, then & = 82 je.

dalh"’s _ .= da,.lq‘,s ={.
Consider a manifold M and a distribution of planes K, = {oy = ... = a, = 0}.
If S is an integrable submanifold of the distribution of planes a; = ... = a, =0,

then for any point z € §
doq|r,s = ... =day|pr.s = 0.
Definition ([29]) A plane 7 C Ky C Tp M is called integrable if
doly = ... = day|y = 0.

Definition ([29]) A non-zero vector ! € K is called a non-characteristic
vector if 1-forms

doalr,(1,),. .., doelr (1,-)

are linearly independent. Otherwise { is called a characierisiic vector.

The generalization of the Cauchy-Kovalevsky theorem for the systems a; =
... = a, = 0 is due to Cartan [10]; see also [209]. We will not formulate it here
in full generality, and give only the variant we need.

Definition. The distribution of planes has genre 2 if at any point and for
any noncharacteristic direction, the maximal dimension of an integrable plane,
containing this direction is 2.

Remark. If the distribution of planes has genre 2, then the integrable plane
containing the given noncharacteristic direction is determined uniquely.

Theorem 8.1 Let an analylic disiribution of planes {K.} have genre 2. Then
for any nonchaeraclerisiic curve C, fangent to the distribuiion {K;} and any
point ¢ € C there ezists (locally) @ unique 2-dimensional analytic integrable
manifold containing C.

We conclude this subsection with the description of the characteristic direc-
tions and integrable planes in T for the distribution (8.2). On I, »; = —A&;,
i=1,...,k, and 5; = ~pé;, s = k+1,...,n. The functions z,{, F and &,,
s=1,,..,n can be taken as coordinates on I', and instead of the distribution
{8.2) we can work with the distribution

& = df; ~ &{dz — A(F)dt) i=1,...,k,

=0,
&j =df; —&(dz—p(F)dt) =0, j=k+1,...,n (8.3)
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gives
ddilazo = (—d&i A (dz — A(F)dt) + &30, g%%ldfa A dt)]a=o
= —d§; A(dz — Adt) + &(T ey £ )dz A dt (8.4)
= (—déi + 25 (Tro £6)(dz — pdt)) A (dz — Adt).

In a similar way,

diglamo = (—df; + ()~ M) Az = ). (85)
s=p ¢

From equations (8.4) and (8.5) we see that

diila=o =1 ABxr, i=1,..,k, (8:)
dédjla=o =7 ABu, JF=k+1,...,n :

where By = dz — Adt, B, = dz — pdt, and the 1-forms 71,...,7n, 81, By are
linearly independent.

If k and n — k are not less than 2, then any vector [ such that Sy (1) = 0 or
Bu(l) = 0 is a characteristic vector. If I is non-characteristic, then the system

dadazo(l,) =7(B D=0, i=1,...,k .7)
déjla=o(l,) =By —Bul)y; =0, F=k+1,...,n :

defines a 2-dimensional plane. Therefore, the distribution & = 0 is a distribution
of genre 2.

Remark, If &k = 1,n— k > 2 then for [ to be characteristic one needs either
Ay =711{1) =0, or Bu(I) = 0. Similarly, if k > 2,n = k + 1, either Br(I) =0,
or B,(I} = v41(l) = 0. At last, in the case k = n — k = 1 the characteristic
vector satisfies either S5 (I} = () = 0, or Bu(l) = v(l) = 0.

Though all the vectors {, such that (dz — Adt)(I) or (dz — pdt)(I) vanish,
are characteristic, the characteristic vectors which lie in the integrable planes
satisfy additional equations.

Lemma 8.1 An integrable plane of the disiribution & = 0 in T, such that Bi|x
and B,|r are linearly independent, is spanned by two characieristic vectors Iy
and l,, satisfying the equations

H)  =xulh)=0, 1Li<k,

Bully) =7y)=0, k+1<j<n

Proof. Take an integrable plane 7. If 85|y and B,|y are independent, then 7 is
spanned by two characteristic vectors Iy and l,, such that S\ (I\) = B.(l,) =0,
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but Fa(is) and Su{ix) do not vanish. The iemma foiiows now from ihe formulas

(8.7). g

The independence of ) |» and f,]~ means that 7 has nondegenerate projec-
tion on @%. Using (8.4), (8.5) and Lemma 8.1 we can write the general form
of an integrable plane 7 in ' which has non-degenerate projection on €7 as
m =< Iy,1, >, where

h =&+r&+ E?=k+1£.f(A - #)'5"8]_ +
k
E;:ﬂfi(E =1 af, £:)ag, + E,;-k+1 4] af, )
L = “%'FP?}*Z"'ELA&(I""\)"BT"*‘
Tier1&i (Cien 8_{. € e, + Yieiig B¢
Here a;, 1 <i< kand b;, k+1 < j < n are arbitrary numbers.
Remark If the 2-dimensional plane # C {& = 0} has a non-degenerate

projection on Gi'pz %, then the restrictions (dz — Adt)|w and (dz — udt)|y are
linearly independent.

8.3 Infinite Derivatives.

We present now a construction that will allow us to take into considera-
tion solutions that have infinite derivatives. The manifold T has the struc-
ture of a product of JO(@?,&™) with coordinates z,t, f1,...,fn and G'éf =
Tl e X (L'&“‘ ¢ Consider now a product I = J°@%,a™) x P* x P"*
with homogeneous coordinates (g : ¢1 ... 1 gk) X (Pr41 1.+t Pn : Png1) in
P* x P"% Let 0 < k <k k+1<v<n+1 Denote Ay, the affine chart
gx # 0,p, # 0in I'. The manifold T is just the chart Agn41:

a=% =L 1<i<k k+1<ign
o Pn41

In the remainder of this section, the indices ¢ and #p will always take values

between 1 and k, and the indices j and jp between k£ + 1 and n.

Lemma 8.2 . A distribution of planes (8.8) on I' can be eztended o a distri-
bution of (n + 2)-dimensional planes {K;} C T; T on T of genre 2.

Proof. On T’ we have 1; = —)¢; and n; = —pf;. Therefore on I’ = Ag 1, the
zeroes of the n 1-forms

aﬁ:quf;—q;(dz——/\dt) i:l,...,k
and

a}:pﬂ+1-—-pj(dz—-pdt) i=k+1,...,n
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define the same distribution of planes as 8 “GJ COES}&&? ncw a chart Alu,n-rl

with affine coordinates § = qg)/q,‘,,,& = ¢i/Gi,, Where i # o, and & = pj /Pni1.
Define the forms
&, = o},/G, = §dfi, — (dz— Adt), (8.8)
& = (anel - wel)/(@2) = (@ —Gdf), 1<i<k ifio.
The n linearly independent forms &;,, &, i # o and &; define a distribution of
(n + 2)-dimensional planes in A; 41 which coincides with (8.3) on Agn41 N

Aignt1
In a similar way, in a chart Ap;, with coordinates &, § = pn41/pj, and
& = p;[p;, for § # jo the distribution is defined as zeros of forms &; and

&, = a;u/PJ'o = pdf;, — (dz - ’Jdt)’ ~ (8 9)
&; = (pj,0f = pja )/ (Bp,) = dfy = &dfeg, K+ 1< <n, §# o
Lastly, in a chart 4;, ;, we take zeros of the forms &;, ..., &, defined by (8.8)

and (8.9).
We can calculate now the differentials in each of the charts. For convenience
we will put &, = £, = 1. In A;, ny1 we have:

d&s'u EK.: = (d'f (Z, 1 aj‘ﬁl + E f=k+1 %&fj)dt) A dfim
dé| k. _df,/\df.u, z;éao,
dijlx, = (dé; + 3 p(zu 18}, i+ 31, 87)4t) A (@dfi, + (A — p)dt),
where 1< i<k, k4+1<j<n
We see that these differentials have the same structure as dé,|sz=¢. By the
same reasoning as in the previous subsection, we conclude, that the distribution

has genre 2 in the chart Aj; n41, and that any integrable plane = with linearly
independent dfi,|x and dt|, is spanned by

h = at +)‘az +3 = k+15:(’\ l‘)a_,r +
3 i=1 Bf,ft +Z: ...k+laj_., ‘15.1)54 + Li=prbi afJ
b =32 ar“‘u )\8; +Z:s— g+
E'-—k-{-lpwx(zr—l 35 &+ Z j=k+1 0;, 95:)55 + E.;&. “l‘a'g + %y 57 ag-
Here again a;, 1 <{ < k, and §;, k+ 1 < j € n, are arbitrary numbers. As
before, if a 2-dimensional pla.ne *CK;is pro_;ected non-degenerately on Cpt?,
then df.-ohr and dt|r are independent.

The case Ap ;, is symmetric to A;, n41. Integrable planes that project non-
degenerately on G'}ff are spanned by pairs of vectors

h = z ,u & +AA-,‘ 5; + PR IF. 35; +
pDr “1)\ ,,(21_1 af,Pff '*‘E fok+1 35 af. +EJ#JO Jae +bjo'§ﬁ!
by + P‘az "*’E;-qfs()‘ I‘)aj

(Ef—} aj,PE* + Z j=k+1 a;,f.’)ap + Eg_z i ag
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d&;, = ("{&" (Z--l 54 flP**‘ E_a q)den) Adfig,

diy; =d£,'/\df.u, 1< i<k, :qéiu, (8.10)
daj, = (df- (T B e+ SE D) A ds,

daj =dfAdfy,, k+1<35< ﬂ,J # Jjo-

From (8.10) we derive that the distribution &; = ... = &, = 0 has genre 2,
and also find the characteristic vectors, spanning integrable planes that project
non-degenerately on €2

h = T-L;gt AILJ 57 + En~k+151 a5+

5 (Tt 865+ Diarnn 816055 + s bi a7, + bio 35 (8.11)

IF‘ _,—u—LXBi_’_#p Aaz+El—IE'B,
g
o ,\(Er’lﬁj E=P+>:, k+18j fJQ)ap +25 ;e.g“laf + iy 53

Let I denote the projection T' onto J 0@%,a"™). As in previous sections
we will denote by Tl the standard projection J¢(@",@?) = @pt? — C%. We
can define now a mulfi-valued solution of the system (1.1) as an integra.ble
submanifold S of a distribution of planes {K} in T', such that the projection

Il.|s is non-degenerate.

Remark The last condition guarantees the projection pr(S) to be a smooth
submanifold of J*(@%,0™).

The problem of describing singularities of the solutions of the system (8.1)
can be reformulated as a problem of describing the smgulantles of a projection of
an integrable manifolds of the distribution {K,} in T’ onto 2. The difference
between the geometrical construction and the unfolding transformation, the
main theme of our paper, is that in this section we realize the unfolding as the
projection of an integrable manifold S in T onto @2,. This choice of the unfolding
transformation amounts to parameterization of the surface S by characteristic
coordinates U, V, viewed as a proper choice of the local coordinates on .

In ' we have a subvariety at “infinity”: I = T =T =T — A n41. The
projection o1l is singular at the points of intersection of a multi-valued solution
S and the subvariety I. I is a union of two sets I = {ps41 = 0} and I, =
{go = 0} (recall that (q{) t...t qe) and (Pr41 b .. ! Pn41) are homogeneous
coordinates in IP¥ x P"-*,

Lemma 8.3 Al a point z where S5 meels I transversely, the projection § — €7,
has

(i} a fold, if either z € I — I, and the characlerisiic direction l) is transver-
salto Iy, orz € I, — I, and I, is transversal lo I,; or

(i) o cusp, if either # € I\ ~ I, and the field Iy is langent o I), with firsl

40



arder of tannenru
LIGLT Uy sGenyihiiy,

gency with I,; or
(iii} an umbilic singularily, ifz € I, N1,.

orwm e 1 I, and ike diveclion field 1 hac
oT T T iy iy anad ine derechion jleid 1, Ras

Lemma 8.3 is a reformulation of lemmas 6.1,6.3, and 6.4 in geometrical terms.
We show here how this reformulation goes in the umbilic case,

Consider a chart A;, j,. At the point z, the tangent plane T, S is spanned
by characteristic vectors {8.11). We can take U = f;, and V = f;, as the
coordinates on 5. We have now

o Z0Sh il

2 = Ap = HK)h v = HeAH—A),

(fiu =0, v =&, (8.12)
G =6, G =0.

Pv = (Tl Bh + Lo g, (8.13)

- k g -
v = ﬁ(zi:l g_}"slp + E?:k-}-l 56"%53‘1)

The projection S to @2, has zero differential if § = § = 0. The manifold § is
transversal to L NI, = {p=§ =0}, if a;, = v # 0 and b;, = §v # 0. Take
now p = p/(A— p) and ¢ = §/(¢ — A). The statement of Lemma 8.3 in the
umbilic case is exactly the same as that of Lemma 6.1.
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(2a)
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Figure 2. Characteristics in x vs. ¢t for multi-valued solutions: solid lines are real

characteristics, dashed lines are complex characteristics, dark curves are envelopes of
characteristics. (2'-3,) shows real characteristics and their envelopes. (2b) shows real

and complex characteristics coming to points in two different regions.



Figure 3a. Folds (a#0, d #0)
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Figure 3b. Umbilics (a=0 or d




