UCLA
COMPUTATIONAL AND APPLIED MATHEMATICS

On the Motion of a IFluid that is Incompressible in a
Generalized Sense and its Relationship to the
Boussinesq Approximation

R. N. Hills
P. H. Roberts

May 1991
CAM Report 91-07

Department of Mathematics
University of California, L.os Angeles
Los Angeles, CA, 90024-1555



On the motion of a fluid that is incompressible in a generalized
sense and its relationship to the Boussinesq Approximation

R. N. Hiris
AND .
. H. RoBERTS

Mathematics Department, Hertot- Watt University, Edinburgh, U.K.

Department of Mathematics, University of California,
Los Angeles, CA 90024, U.5.A.

ABSTRACT
This paper presents a fresh approach to the derivation of the Oberbeck—Boussinesq approximation, an
approximation that is widely used in the theory of stratified fluids and thermal convection. Here it is

exhibited as a particular case of a new continuum model, the generalized incompressible fluid.



1. Tt haslong been appreciated that the theories of fluid dynamics describing incompress-
ible materials are generally more likely to be tractable than their compressible counterparts.
In the literature two attitudes to incompressibility are common. The first approach is per-
haps the more mathematical and stipulates, by definition, that an incompressible material
can only undertake isochoric, that is volume preserving, motions. The velocity field v is
thereby constrained to be solenoidal. Then, from the equation of continuity, it follows that
p = 0 where p is the density and a superposed dot denotes the motional derivative. The
pressure, p, that appears in the equation of motion becomes, in effect, a Lagrangian multi-
plier arising from the constraint V-v = 0. In the second approach the term “ncompressible’
is more literally interpreted to mean that the density of the fluid cannot be changed by
compression. Thus (8p/dp)p = (Op/0p)g = 0, where T is the temperature and S is the
specific entropy. There remains though the possibility of changing p by varying T or S and
so violating the central isochoric axiom of the first approach. To avoid confusion we shalt
describe a material in the less restricted case as being ‘incompressible in the generalized

sense’ and regard ‘incompressible’ by itself as indicating strictly that no change in volume
occurs.

Although the two outlined approaches generally differ, the final results are sometimes
identical. To understand why, we must look more closely at the physical reasoning that
underpins the second view. There we are concerned with situations in which changes in field
quantities take place so slowly compared with the time taken by sound to cross the system
that the velocity of sound, a = /(8p/8p)¢ can be assumed infinite, i.e. (8p/3p)s = 0, s0
that p = (9p/05), S. Suppose now that the conduction of heat is so inefficient that the

entropy of each fluid element changes negligibly. Then § = 0, so that p = 0 and hence
from the continuity equation, V-v = 0. The pressure appearing in the momentum balance
equation then represents the deviation in pressure from the initial state rather than a
thermodynamic pressure. In both approaches the energy equation is abandoned since it
is decoupled from the remaining equations. If these remaining equations are solved, the

temperature field can always be determined, if necessary, by returning to the discarded
energy equation.

One of the objectives of the present note is to provide a continuum theory for the second
approach, and in this way obtain the continuum theory governing a generalized incompress-
ible fluid. We may reasonably expect that such a theory will be a natural environment
in which to discuss the celebrated Oberbeck—Boussinesq {OB-) approximation which un-
doubtedly is the most widely used model in the theory of stratified fluids and thermal
convection. Some regard it as merely a simplifying device that recognises the key physical
ingredient (buoyancy) but which can have no strict physical justification. Others more am-
bitiously have sought to deduce the OB-approximation from the full thermo-mechanical
equations and have attempted to define strict limits for its validity [see for example, Jef-
freys (1930), Spiegel and Veronis (1960), Veronis (1962), Mihaljan (1962), Roberts (1967),
Cordon andVelarde (1975), Velarde and Cordon (1976), Roberts and Stewartson (1977),
opiegel and Weiss (1982}]. This has sometimes led to intricate analyses, and occasionally
to obscurities. In this paper we attempt a fresh approach which, we feel, has the merit of
clarity. We display the OB-approximation as a particular case of a new continuum model,
the generalized incompressible fluid. By taking this model as a starting point, we do not
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have to comsider the limit of large sound speeds that has typified earlier derivations, and
we avoid reliance not only on physical illumination, as provided for example by Spiegel
and Weiss (1982) but also on a systematic mathematical expansion, as for example that
of Roberts and Stewartson (1977). Our analysis constitutes a clarification and correction
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of the approach adopted in chapler 7 of Roberts (1967).

2. In suffix notation, and with the summation convention, the conservation laws for mass,
linear momentum and energy are

P+ pvi; =0, (1)
pv; = pFy + 0y 4, (2)
pQ — pU — gi i + opidiy = 0. (3)

Here F; is the applied body force per unit mass, o;; the (symmetric) stress tensor, Q the
heat supply per unit mass per unit time, U the specific internal energy, g the heat flux

vector and d;p = -é—(v,-, k + vg,i) the rate of deformation tensor. The entropy production
inequality takes the form

p(TS —U) + opidix — T /T > 0, (4)

where S is the specific entropy and T the temperature.
We are interested in materials whose density can be changed by variations in the tem-
perature, T', but not in the pressure P. This suggests that we formulate the constitutive

theory in terms of P and T and then the natural thermodynamic potential is the Gibbs
energy

G=U-5T+ P/p. (5)
In terms of G the inequality (4) becomes
—p [G'"FST] + P+ [ogi + Pépil dix — g3 T /T > 0. (6)

The simplest constitutive fluid model that embraces viscosity and heat conduction, and
which eliminates the pressure dependence of p, is

G:G(T,P), S:S(T>P)? ,0=,0(T),
Tij = —pdij + Aduubij + 2pds;, @ = —£Tk,

where the mechanical pressure, p, and the material coeficients ), p, & are general functions
of P and T'. The inequality (6) becomes

oG . 8G 1\ .
~o(ar+5) -0 (55-5) 2 6-P

+ )\duudsa + 2Hd13dz_y + KI,:TZ{/T 2 03 (8)



and this must hold for all motions and thermal states that also satisfy the reduced form
of (1), wiz. .

aT = v, ;, (9)
where « ( = —p~tdp/ dT) is the thermal expansion coefficient of the material. To account

for the constraint (9) we introduce the Lagrangian multiplier I' and then in the usual way
we deduce

¢ Ta oG 1
> <3T+p)’ ap ~ p PO &P, 10)
and
A+3p20, p20, &20. (11)

If we introduce the Gibbs energy G=G+T /p we find from (10) that we may eliminate
G, P, T in favour of G, p and

G G 1
oG = -5, — = - (12)
or dp p
In addition, the material parameters are now assumed functions of p and T. Using these

results, we find that the governing equations for a generalized incompressible linear viscous
fluid are

G = Q(T,p) = Go(T) + %

OfT = ’Ug',,;, (13)
poi = pFi — p i + [Avgij + 2pdyj) 5, (14)
pepT — aTp = pQ + (5T:) i + Aduadoo + 2udijdij, (15)

where ¢, = T(85/8T), is the specific heat at constant pressure.

At a boundary of the fluid the usual thermal conditions apply, that is continunity of the
temperature and the normal component of the heat flux. At a stationary, non-slip surface
we have v = 0 while at a free surface, &, at an ambient pressure 7 the stress vector is
continuous. Using (7)s, we may express this condition by

—7 = —p+ AV-v + 2u{n-V)v, nxw = 0, on §, (16)

where n is the unit normal to § and w the vorticity vector. Condition (16) must be
supplemented by the kinematic condition that

n-v=~U, on 8§, (17)

where U is the velocity of § along its normal n.

3. To discuss the derivation of the OB-approximation we select a simple system: a hor-
izontal layer of fluid contained between a fixed lower boundary z3 = L and a free top
surface z3 = f(zy,%3,t): condition (17) may then be written as

Vg = f on Iy = f (18)
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We also have F = g where g, the uniform acceleration due to gravity, is parallel to the
#z—axis. We choose a convenient reference state (T, p,) and will shortly expand the
thermodynamic variables and material parameters about that state using the notation
a, = a(T,), &y = £(pr, Tr), etc. The expansion for the density about 7, has the form

p(T) = pr [l (T = T5) +...]. (19)

The central physical idea is that typical accelerations promoted in the fluid by varia-
tions in the density are always much less than the acceleration of gravity. As observed
by Roberts (1967), the OB-equations result from taking the simultaneous limits, ¢ — oo,
o, — () but with the restriction that go, remains finite. As we shall see this last require-
ment is essential because otherwise, buoyancy forces are lost. Since ga, is dimensional, it
1s more precise to stipulate that the Rayleigh number

R = ga,BL* /v, k,, (20)
is O(1) as the double limit is taken. Here k = /pc, is the thermal diffusivity, v = u/p
is the kinematic viscosity, L is the vertical scale of the system and £ is typical of the

temperature gradient applied across the system.
Accordingly, we assume that the pressure field has an expansion of the form

p=p"9+p" +p%g+..., (21)

and that for the fields v, T' — T} we have

x=x +x*/g+.... (22)

These expansions can equally be regarded as in rising powers of ay, since g, = O(1) by
hypothesis. A corresponding expansion for the free surface assumes

f=Flg+..., (23)

expressing the fact that in the limit g — oo, gravity holds a free surface to an equipotential
and that for the layer, to leading order, the free boundary becomes planar and horizontal.
Taking the reference state at z3 = 0, the dominant terms of equation (14) give

0 = prbsi — pl, (24)

50 that
P9 = prg@s + pr, (25)

and to leading order p = p,gvi. To leading order the condition (16)1 yields 7 = p,., while
(18) gives vy = 0 on ¢3 = f. Combining this with the remaining condition (16) we have

o1 1 —
vy 3 = Vg 3 =03 =0, on z3 = 0. (26)

5



The dominant term in (13) gives
Uél,i =0, (27)

and we determine the leading order terms of the energy equation as

(pep)r Tt = prgoe(Ty + Tk = p,Q + 5, V2T 4 2p1,.d}, (28)

S Vi

The second term on the left-hand side arises from the adiabatic temperature gradient
[Jeffreys (1930)]. The next order terms from linear momentum conservation are

peti = —p — prgarT i3 + ppv] 4. (29)

Equations (27)-(29), together with appropriate conditions je.g. specified T" together with
(25) and v = 0 on z3 = L}, constitute a closed system of equations determining p*, 7"
and v}. It contains the OB-approximation as we shall see, but it is more general. We
shall call it the “generalized OB-system”. The point here is that, because ¢ — oo in our

limit, (27)-(29) still cling to some vestiges of compressibility. Note particularly that the
adiabatic gradient,

ﬁad - g(CHT/Cp),., (30)

may be large or small compared with 8.

4. To develop the OB-equations, we must assume that the layer is thin, in the sense that
Baa < f. Equivalently

¢ 0, (31)

where e, the dissipation parameter, is given by

€ = ga.L/(cp),. (32)

In short, in our double limit ¢ — oo, &, — 0, we must assume that go, < (cp)r/L
even though ga, = O(v,k, /T, L?); see (20). Thus (cp)r > vrk,/TrL%. This point was
overlooked by Roberts (1967).

To develop consequences of (31) it is perhaps simplest to introduce dimensionless vari-

ables by
i — Lz, 1 (Lz/y,,)t, 'Uz]" - (VT/L)U?:’ pl g (prvf/Lz)p

7. — Lo, T., T'— BLo,T, Q — [ﬂ(vcp)r/L]Q, (33)

where o = v/k is the Prandtl number. Equation (27) is unchanged while (28) and (29)
become

e [T — e(Ty + T)vi] = Q + Tyi + 2(ore/ R)dijds;, (34)
'i:?.i = —RT&'Q, — P -+ Ui, - (35)
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In the limit (31), the last effect of compressibility on the left-hand side of (34) disappears.
Simultaneously, the viscous regeneration of heat, the final term in (34), no longer affects
the energy budget. Returning to the dimensional form, we recover the Boussinesq system
(dropping the superscript 1):

Vv = 0, (36)
T = kV2T + g, (37)
v=—-Vw-a,Tg+ vV, (38)

where @ = p/p and ¢ = Q/c,.
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