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Abstract

This article presents a survey of recent results on numerical meth-
ods for rarefied gas dynamics, including grid-based methods and parti-
cle methods,both random and deterministic. Numerical analytic con-
vergence results for particle methods are discussed. Some recent results
on quasi-random (well-distributed) sequences and their applications to
integration and transport problems are described. A set of methods
from linear transport theory are discussed, in which the numerical dif-
ference scheme has the correct diffusion limit.

1 Introduction

The kinetic theory of gases describes the behavior of a gas in which the
density is not too large, so that the only interactions between gas particles
are binary collisions. The resulting nonlinear Boltzmann equation,

OF+E- 2 F=Q(FF) (1)

at g '
for the molecular distribution function F(z,{,t), is a basic equation of
nonequilibrium statistical mechanics. The collision operator is

QUEFYE) = [(FEFE) - FEIF©)B@ 6 - Ehdwdes  (12)
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in which £, & represent velocities before a collision, £', £} represent velocities
after a collision, and weS? represents the collisions parameters.

Rarefied gas dynamics is of increasing techmological importance with
applications to re-entry vehicles, low-orbital aircraft design, particle beams,
vacuum pumps and semi-conductors. Computational methods are necessary
for gquantitative results and for numerical experimentation in rarefied gas
dynamics, as in any modern scientific theory. A particular difficulty of
rarefied gas dynamics is that there are only almost no exact solutions (the
main exception being the solution of Krook and Wu [39}) on which to build
an understanding, Asymptotic methods can be used to produce approximate
solutions in special regimes, such as the fluid dynamic limit [17]. For general
flows however the only way to construct solutions is numerical.

Numerical solution of the Boltzmann equation is difficult mainly because
of the complexity of the problem: The distribution function F depends on 7
variables (t,z1, 22, 23,§1,€2, £3), or at least 4 variables (¢, x,{;, £, ) for a time
dependent problem with planar symmetry. The collision integral Q(F, F)
involves an integral over 5 dimensions (4 in the planar case) for every choice
of the independent variables. To handle this complexity, random numerical
methods are often used. While quite effective, the resulting random errors
in F' can be relatively large and difficult to analyze. On the other hand, the
usual interest is only in moments of F' and not in F itself, which reduces
these random errors,

The focus of this article will be on numerical methods for the collisional
process of the Boltzmann equation. Additional physical processes that can
be important include chemical reactions, dissociation, ionization and even
quantum effects. Realistic boundary conditions and internal degrees of free-
dom for non-monatomic gases are also important but will not be discussed
here, )

The methods to be discussed include grid-based methods (section 3)
and particle methods (section 4), both deterministic and random. Mathe-
matical convergence results for particle methods will be discussed in section
5. In section 6 some recent results on quasi-random (well-distributed) se-
quences and their applications to integration and transport problems will
be discussed. Finally some numerical methods from linear transport theory,
for which the finite difference scheme has the correct diffusion limit, are
described in section 7.

The aim of this article is to provide a survey of some interesting recent
and older results, rather than to provide a comprehensive review of all ex-
isting methods. The emphasis is on numerical analysis for the Boltzmann



equation, which we believe can play an important role in the design of new
computational methods for rarefied gas dynamics, rather than on applica-
tions or computational studies,

2 The Boltzmann Equation

For a molecular distribution F', the macroscopic (or fluid dynamic) vari-
ables are the density p, velocity u and temperature T defined by

p = [ Fd
v =pl fERdE (2.1)
T = p=1 [|£ - uPFde.

The importance of these moments of F' is that they correspond to conserved
quantities, i.e. mass, momentum and energy, for the collisional process,
which is expressed as follows:

f Q(F, F)dt = 0
[¢a, P =0 (22)

JieraE P =o.
(2.3)

These also provide the degrees of freedom for the equilibrium distributions,
the Maxwellian distributions

M(E, p, u, T) = (2nT)~3/2elé=P/2, (2.4)

A dimensionless measure of the importance of collisions as opposed to
the convective terms on the left side of the Boltzmann equation { 1.1) is
given by the Knudsen number &, which is the ratio of the mean free collision
time to a macroscopic time scale. As written in ( 1.1) the length and time
scales for the Boltzmann equation are those of the collision process; if they
are written instead in terms of macroscopic length and time scales, then
( 1.1) is replaced by

d d
7if € o F=€¢Q(FF). (2.5)
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In the limit £ — oo, the Boltzmann equation goes to an equation for free
molecular flow,

In the opposite limit ¢ — 0, the solution F of { 2.5) is given by the Hilbert
or Chapman-Enskog expansion, in which the leading tern is a Maxwellian
distribution of the form (2.4) in which p, u, T satisfy the compressible
Euler or Navier-Stokes equations of fluid dynamics. This expansion is not
valid in layers around shocks, boundaries and non-equilibrium initial data,
where special boundary, shock or initial layer expansions can be constructed
[17]. By varying this limit, taking the velocity u to be size £ as well, the
compressible equations are replaced by the incompressible fluid equations
[21,7].

A general mathematical existence theorem for the Boltzmann equation
has been derived by DiPerna and Lions [23], although the solution they
obtain is quite weak. For example, energy conservation is not proved for the
solution, nor is unigueness for given initial data. More specialized results
for spatially homogeneous, near-equilibrium or near vacuum flows or flows
near the fluid dynamic limit have been derived and are referenced in [23].
As usual in numerical analysis, we will assume the existence and regularity
of solutions as needed.

3 Grid-Based Computational Methods

Numerical solution of the Boltzmann equation ( 1.1) consist of two parts:
the convective part for the space-time derivatives on the left side of ( 1.1)
and the collision part for the collision integral Q(F,F). The first set of
methods uses a fixed grid in physical space z, at each point of which the
distribution function is represented in some way. Then the distribution is
evolved by direct evaluation of the collision integral.

One of the earliest numerical methods for the nonlinear Boltzmann equa-
tion uses Monte Carlo evaluation of the collision integral at each point in
phase space (z,£). First derived by Nordsieck and Hicks [53] and more
recently discussed by Yen [64], this method represents the distribution func-
tion F' by a set of values I, = Fzm, &) at a discrete set of points (2, €.
The collision integral ();mn = Q(Zm,&n) is evaluated at each point by pseudo-
random sampling of the possible values of the collision partner £,/ and the
collision parameters w. This method has been successfully applied to vari-
ous problems such as planar shock profiles. The main errors of the method



come from random sampling errors and discretization errors in evaluating
F. A similar method has been developed by Cheremisin [19].

The random errors of this method can be avoided by deterministic eval-
uation of the collision integral, as in the next set of methods. All of these
methods require O(N?) steps for N velocity elements, since they require di-
rect computation of all of the collision integrals. Chorin’s method [20] repre-
sented the velocity dependence of the distribution function using a Hermite
polynomial expansion around a Maxwellian distribution, with coefficients
depending on «,t, i.e.

F(&,z,t) = M(6) D an(z, t)Ha(8). (3.1)

n=0

Differential equations for the coefficients a,(z,t) were obtained using a
(alerkin method, which requires computation of integrals of the form

/ HQ(Hy, H,)dE. (3.2)

{These integrals can be evaluated partly analytically using the formulas of
[22].) The resulting equations were solved in z,t using finite differences.
Various improvements on this method were implemented by Sod [58], and
the method was used for computation of shock profiles in {20,58]. :

A related method using polynomial velocity elements was derived by
Sugano and Sakurai [60]. They used a variational principle of Cercignani
[18] to obtain the equations for the coefficients an(z,1).

Acki, Sone and Ohwada [2,59] have developed a deterministic method
using finite difference in space and time, with finite elements to represent
the velocity distribution., Again the collision integral is directly calculated at
each node (2, £, ). They have applied their method to a wide range of flows
involving evaporation, condensation and shear layers. A similar method has
been formulated by Tan et al. [61].

For the interesting special problem of an infinitely strong shock, Narasimha
and Das [49] derived a numerical method that decomposes the distribution
into a background gas and a particle beam, as suggested earlier by Grad [29].
They then used Burnett polynomials as velocity elements for the background
gas,

For the spatially homogeneous Boltzmann equation, an iteration scheme
has been recently derived by Fujii, Barrachina and Garibotti [25].



4 Particie Methods

In particle methods for transport theory, the distribution F(z,¢,1) is
represented as the sum

N
Fn(a,6,) = 3 8(€ ~ Ea(£))8(x - 2a(2)), (4.1)

n=1

and the positions z,(t) and velocities £,(t) are evolved in time to simulate
the effects of convection and collisions. The most common particle meth-
ods use random collisions between a reasonable number of particles (e.g.
10° — 10%) to simulate the dynamics of many particles (e.g. 10%°). Re-
cently several deterministic methods have been introduced.

In the Direct Simulation Monte Carlo (DSMC) method pioneered by Bird
(10,12,11,13,14], the numerical method is designed to simulate the physical
processes as closely as possible. This makes it easy to understand and to
insert new physics; it is also numerically robust. First, space and time
are discretized into spatial cells of size Az3 and time steps of duration At.
In each time step the evolution is divided into two steps: transport and
collisions. For the transport step each particle is moved from position z,(t)
to 2o (t+ At) = z,(1)+ Atés(t). Boundary interactions may also be included.

In the collision step, random collisions are performed between particles.
In each collision, particles £, and &, are chosen randomly from the full set
of particles with probability pm, given by

S(lém — &)

P = 4.2
Ticicicn, S(I& = &) (42)

in which Ny is the number of particles in the spatial bin, and
S - &) = [, Bl - &l &)

is the total collision rate between particles of velocity & and ;. As written
this choice requires O( N?) operations to evaluate the sum in the denomina-
tor in ( 4.2). By a standard acceptance-rejection scheme [37] however, each
choice can be made in O(1) steps, so that the total method requires only
O(N) steps. In all of the random particle methods, acceptance rejection
methods must be used to reduce the operation count from O(N) to O(N?).



Next the collision parameters w are randomly chosen from a uniform
distribution on §%. The outcome of the collision is two new velocities &,
and £, which replace the old velocities £, and &,,.

The number of collisions performed in each time step has been deter-
mined by several methods. In the original ”time-counter” {TC) method, a
collision time Af, is determined. It is equal to one over the frequency for
that collision type, i.e.

At = 2(nNgS(|&n — &)Y, (4.4)

in which = is the number density of particles. This collision time is added to
the time-counter £, = }_ At.. In the time interval of length At beginning at
t, collisions are continued until £, exceeds the final time, i.e. until 7, > t+At.
For N particles this method has operation count O{N).

The DSMC method with the time-counter algorithm has been enor-
mously successful. However the unlikely possibility of choosing a collision
with very small frequency can results in a large collisional time step that
may cause relatively large errors. To remove such errors, Bird [14] has de-
veloped a “no-time-counter” (NTC) method. The number of collisions to
be performed in time step Af is chosen as if the collision frequency were
exactly Spaz, @ maximum collision probability, for all collision pairs. For
each selection of a collision pair, the collision between £, and £, is then
performed with probability S(}ém ~ £n|}/ Smaz, as in an acceptance-rejection
scheme.

Several similar methods have been developed by other researchers. Koura
[38] has developed a null-collision (NC) technique that also involves rejection
of some collisions. Belotserkovskii, Erofeev and Yanitskii [9] have given an
analysis of the convergence of Bird’s method with the TC technique, using
the theory of restoration processes, and have proposed an alternative method
in which the collision time is chosen from an exponential distribution. As
described their method (called the Bernoulli trials {BT) method) requires
O(N?) steps, but a related method by Ivanov, Rogasinsky and Rudyak [35],
called the majorant frequency (MF) scheme, is again O(N).

The rather different method of Nanbu [48] follows a procedure that more
closely resembles the mathematical form of the Boltzmann equation, rather
than the physical collision process. For the collision step of Nanbu’s method,
first two identical copies {{, } and {7, } of the particles are made. For each n,
a distinct index n' is chosen, so that (£,,7,) is a possible collision pair. The
collision between these two velocities is performed according to a random



decision based on the probability nNoALS{|r — |)/2 that such a collision
should occur in time step At. If the collision is performed then the collision
parameters « are randomly chosen and the velocity £, is replaced by the
new velocity £,. The velocity 7, is not used again, so it does not need to be
replaced.

As formulated by Nanbu [48], this was an O(N?) method. However by
use of an acceptance-rejection method [4], the Nanbu method, with this
modification, also requires only O(N) steps to compute.

This method has the mathematical advantage that no correlations be-
tween the particles will develop, since only one of the collision partners is
retained. This seems to imply that propagation of chaos is automatic. The
use of collision frequencies is also quite straightforward in Nanbu’s method.
On the other hand it has the severe disadvantage that energy and momen-
tum are not conserved, except on average. In fact, Greengard and Reyna
[30} have recently shown that in a spatially homogeneous computations, the
total temperature for the distribution is decreasing at a rate proportional
to N1 for Nanbu’s method.

Additional modification of Nanbu’s method have been developed by
Babovsky, Neunzert and co-workers {5,31}. The first modification is to make
the method less random. They use deterministic, “quasi-random” sequences
(described in section 6 below), rather than pseudo-random sequences for
at least some of the random choices. Since quasi-random numbers have a
smaller “discrepancy” (defined in section 6) than that of pseudo-random
numbers, these methods have been named Low Discrepancy Methods. A
second modification has been to effectively replace both velocities &, and n,
by £ and 7, so that momentum and energy are exactly conserved. This
makes the method more like the DSMC method. Computational tests of this
method have been carried out by Lecot [43,44}, with additional references
in the Proceedings of the 17th Rarefied Gas Dynamics Symposium.

A different modification of the DSMC method has been developed by
Goldstein, Sturtevant and Broadwell [26]. They consider a gas in which the
velocities are discrete and can be described on a multi-dimensional integer
lattice. Then the computations of collisions can all be performed in integer
arithmetic, which provides savings by a factor of 7 or so.

These numerical methods, especially Bird’s DSMC method have been
used for a wide variety of flow computations with considerable success; see
for example the many articles in International Symposium on Rarefied Gas
Dynamics from 1990 and earlier years. Computational comparisons of Bird’s
and Nanbu’s methods have been performed in [16], which show smaller errors



for Bird’s method, apparently die to the random variations of energy and
momentum for the latter method.

One of the main advantages of the particle methods in general and of the
DSMC method in particular is that additional physical effects can be added
easily. These could include internal degrees of freedom in the molecules,
chemical reactions and ionization. Inclusion of these effects, as well as a
critical comparison of DSMC with molecular dynamics, is described in [13].

There has been alot of discussion of whether the various particle methods
are derived from the Boltzmann equation or from the underlying Master
equation. This issue is important from the physical point of view, since
it affects how new physical effects are included and how the results are
interpreted. From the numerical analysis point of view however, the formal
resemblance of the numerical method to the Boltzmann or Master equation
is less important than the complexity of the method and its accuracy as a
simulation scheme. As stated in the introduction, we are always thinking
of the Boltzmann equation as the system to be simulated. Note on the
other hand that, as new physical effects are included, the DSMC and other
particle methods can be formulated even if there is no Boltzmann equation,
as pointed out by Bird [14].

Completely deterministic particle methods have also been developed. In
the method of Mas-Gallic [46], the distribution function is represented as

N
Fr( 6,0 =Y an(t)8(€ ~ £,(8))8(z — za(1)) (4.5)
n=}%

with weights a,(t). In each time step, the positions z,(t) are changed ac-
cording to the velocities £:(t). Collisions are simulated by changing the
weights a,(t). Since particle locations are discrete while the collision pro-
cess is local, a spatial smoothing is introduced, so that particles at distance
Az have a probability of colliding that decreases as Az increases. A con-
vergence proof for this method for the linear Boltzmann equation has been
carried out in [46].

A somewhat different deterministic particle method has been developed
by Russo [55] in several contexts, including pure diffusion and the Vlasov-
Fokker-Planck equation. In this method the collisions are represented by
changing the velocities £,(f). Convergence results and numerical trials for
this method are presented in [55].
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Convergence of particle methods for transport equations is only possible
in the sense of weak convergence. If the distribution F(z,£,t) is represented
as the sum

N
Fn(z,6,t)= 3 6(¢ - £a(1))8(z — 2 (1)) (51)

nwl

then Fyy — F' in the weak sense if
f SFydEd — / $Fyded (5.2)

as N — oo, for any continuous function ¢(z,£). Note that since Fy is a
sum of delta functions, it cannot converge to F pointwise.

Particle methods for fluid dynamics have received considerable attention
from numerical analysts. For example the deterministic blob and point vor-
tex methods for inviscid, incompressible flow have been shown to converge in
a variety of contexts, see for example [1,8,28] and references therein. For the
random vortex method simulating viscous, incompressible flow, convergence
has been proved in a more restrictive set of regimes [27,32,45]. The difficulty
of the random methods is caused by the interactions of the particles.

Convergence theory of direct simulation methods for the nonlinear Boltz-
mann equation is only partly developed. Here we describe two recent results:

The first such convergence result was by Babovsky and Illner [6] for
Nanbu’s method. Their result is based on a new formulation of the weak
form of the Boltzmann equation. Consider the spatially homogeneous Boltz-
mann with discretized time, which can be written as an equation for Fjy4,
the distribution after j 4 1 time steps, in terms of F;. The weak formula-
tion of the equation is represented by integration of this equation against a
function ¢(€). They found that it can be reformulated as

[#OFn© = [ [ KeafdB©Fmicar.  (53)

In this equation K¢ ,[¢] is a linear operator on the function ¢ evaluated at
the velocity pair (€,7) defined by

Keald) = (1= At [ B~ 6)dw ) 86+ At [ K€ ~ 7}, )98 (5.4
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The significance of this representation is that the noniinear integral on
the right hand side of ( 5.3), which represents the effect of collisions on
the change in F over one time step, is in a form of an integral against the
density function F(£)F(n). This integral can be evaluated by the Monte
Carlo method. In particular this requires choice of velocity pairs (£, %) for
the integral in { 5.3) and choice of points w for the integral in ( 5.4). If
¥ is represented by a collection of velocities {£, : 1 < n < N}, then the
pair (£,7n) can be chosen from the collection of pairs {({n, ) : 1 < m <
N,1 < n £ N}. This shows that in a direct simulation method the choice of
two particles for a collision amounts to a procedure for representation of the
pair distribution F(£)F(n) for Monte Carlo evaluation of the outer integral
of ( 5.3); while the choice of scattering parameters w is for evaluation of the
integral in ( 5.4). Following this interpretation, a direct simulation method
can be thought of as a series of Monte Carlo evaluations of integrals.

Using this interpretation, Babovsky and Illner [6] were able to prove
weak convergence of Nanbu’s method to a solution of the Boltzmann equa-
tion. The main step is use of the central limit theorem to obtain convergence
of the Monte Carlo representations of the integrals. As usual in such nu-
merical analysis theorems, convergence is proved under the assumption that
a Boltzmann solution exists. This result seems to be restricted to Nanbu’s
method because it does not deal with the correlations between particles that
could develop in Bird’s method.

For Bird’s Direct Simulation Monte Carlo method with the time-counter
technique, a partial convergence theorem has been proved by Wagner [62].
He first discretizes time and space so that Boltzmann equation with full
space and time dependence is replaced by a sequence of spatially homoge-
neous Boltzmann equations on spatial cells, followed by convection of par-
ticles between cells. Each of these processes occurs successively on cells of
size Az® over a time period of size Af. This exactly corresponds to the
discretization of space and time in the DSMC and other particle methods.
Wagner then uses a Markov jump process which represents the solution of
the spatially homogeneous Boltzmann equation over each space cell and time
step. This Markov process can be described as the sclution of a stochastic
differential equation with respect to a Poisson measure. Ito’s formula then
gives the Boltzmann equation as a Martingale representation of the solution.

This jump process and its representation provide the propagation of
chaos that is needed for convergence to the Boltzmann equation; they were
developed earlier by a series of authors [3,62] and references therein. Al-
though Wagner does not consider the continuum limit At — 0, Az — 0, we
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expect thal standard numerical analysis methods would apply to this limit,
as in [6], to show that the discrete solution converges to a solution of the
full Boltzmann equation, provided that one exists.

6 Quasi-Random Sequences

As described in the previous section 5, the solution of most transport
problems can be reduced to a problem of integration over a domain, usually
with a fairly large dimension. Moreover since the integration usually simu-
lates a decision of whether or not a collision should occur, the integrand is
often a discontinuous function. The subject of this section is quasi-random
sequences, which are an alternative to pseudo-random sequences for Monte-
Carlo integration and transport calculations.

Integration using a regular grid of points in a domain of high dimension
encounters several practical difficulties: First, although in principle a high
order method can give results with errors of size N~* for any «, in practice
there are precision problems which make the convergence rate quite slow. It
is just not possible to put very many points in any one direction if the domain
has high dimension s. A second difficulty is that a regular grid cannot be
refined incrementally. In dimension s a refinement in all directions requires
that the number of points N be increased by a factor of 2°, which does not
allow the computation to be very adaptive.

Monte Carle integration using pseudo random sequences avoids these
difficulties. Points are added incrementally and the resulting error decreases
at a rate o N"1/2. This rate is usually faster than that achieved for a grid
in high dimension, apparently because the points are distributed uniformly
throughout the domain rather than being rigidly prescribed. On the other
hand the error rate of N~1/2 is rather slow and is due to clustering of the
points.

An improved procedure for choosing the points for a Monte Carlo inte-
gration is to use quasi-random points. These have the advantage that they
can be added incrementally and that they are not rigidly prescribed, yet
they do not cluster as badly as the pseudo-random sequences so that errors
of size N~ can be achieved, at least in principle. For a straightforward
Monte Carlo integration method it is impossible to do better than N™1,
since that is the contribution from just a single point. Basic references on
the theory of quasi-random sequences are [34,40,50,51,52]; more applied dis-
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cussions are presented in {47,54]. A general reference on the Monte Cario
method is [37,34].
The simplest example of a quasi-random sequence is the van der Corput
sequence
1131 7
2438 g
generalization of this to an arbitrary prime p

5 3
"8'" "'éa (6'1)
The Halton sequence [33]is a
and is given by

1 2

2 2
?p’p?"‘p

1 2 1
+'"'§"$ ey TG -t —

0 +—
p p’p p p’p pPp

2
+ R (6.2)
More complicated sequences, such as the Faure [24] and Sobol[56,57] se-
quences, are described in [47]. A quasi-random sequence in R? is formed by
taking each component to be from a Halton sequence with a different prime
p.

The theoretical accuracy of quasi-random sequences is based on the dis-
crepancy. Consider integration over the unit cube I* in R*. Denote F to be
the set of all subcubes in I° and E* to be the set of all subcubes with one
corner at 0. For any “nice” set J C I* and any sequence of N points {z,}
in F?, the error in representing the volume of J is

N
Bn(7) = (X xa(an) = m(9)) (63)

in which x7 is the characteristic function of the set J and m(J) is the volume
of J. The L, and L, discrepancies for the sequence {z,} are

Dy = sup|Rn(J)|
JeE

Ty (BN (I (z,9))) dedy}/? (6.4)

i

{~[(x,y)ef2,x.- <Hi

in which J(z,y) is the cube with one corner at z and another at y. The
*-discrepancies are

Dy = sup |Rn(J)]
JeE*

Ty = { [ (Ru(J(2))da)'/? (65)

13



in which J(z} is the cube with one corner at § and another at z. Ii is easy
to show that
Dy <Dy <2°Dy
Ty < Dy; (6.6)

additional discrepancy inequalities, including a discrepancy taken over con-
vex sets, are found in [50].

For a given set of integration points {z,}, the Monte Carlo approxima-
tion to the integral is

N
1) = %3 f(zn) (6.7)

n=1

and the resulting integration error is

. (6.8)

N
B(f) = l [RCESFDWCS

The basic error bound for quasi-random integration is given by the Koksma-
Hlawka inequality

E(f) < V(£)Dx- (6.9)

In this inequality V(f) is the variation of f, which in one dimension is
defined by

1
vin = [ laf (6.10)
and in dimension s is defined by
k=11<i; <ig<.<ig<a VT | Vo1 Oy

in which fis evaluated at y; = 1for j # ¢. Note that the discrepancy is infi-
nite for functions that are not sufficiently smooth, such as the characteristic
function of any non-rectangular set in dimension greater than one.

A direct relation between the integration error E(f) and the L? discrep-
ancy has been derived by Wozniakowski [63]. He showed that 7% is equal
to the average integration error, i.e.

T3 = Av(E(f)). (6.12)

14
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The average is taken over function space with a measiire given by the “Brow-
nian sheet” measure, which is a generalization of Brownian motion with s-
dimensional “time.” In particular the measure is concentrated on functions
that are roughly half-differentiable, so that they have infinite variation. This
shows that the Koksma-Hlawka inequality is a vast overestimate, at least
for this class of functions. These functions f(t1,...,t,) are also required to
vanish if any fx = 0, i.e. on half of the faces of the unit cube, which may be
an unrealistic restriction.

The derivation of ( 6.12) in [63] was simply a calculation of each side of
the equation. Here we present a new derivation that follows naturally the
properties of the Brownian sheet measure. First rewrite the integration error
E(f) using integration by parts, following the proof of the Koksma-Hlawka
inequality [50]. First note that

. .
RN(I(@)) = {5 3 8(a — 22) ~ 1} de. (6.13)

n=1

Now assume that f(z) = 01if z(?) = 1 for any component 2, ...,z of z.
Note that Ry(z) = 0if 20} = 0 for any i, which implies that the boundary
terms all disappear in the following integration by parts:

E(f) = |p f@)e -4 T S(en)]
= Iffa{l . ]%f EnN=l b(z — ﬁ’n)}f(‘f)dmi
= |f1: Bn(J(z))df (<} - (6.14)
A basic property of the Brownian sheet measure used in ( 6.12) is that
Av(df (z)df () = 6(x — z")dzdz’. (6.15)

Thus the average square error is

Av(( [, En (I @)df(@)))

Av(( [ Rn (@)@ [, Rn (NI "))
= [, BN @) RN ) Ao @) ()

/I! RN(J(a:))zdx
= (Iy)" (6.16)

Av(E(f))

i
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The discrepancy for the Halton sequence in R* with primes pi has the
bound
-1
g Ny . ((ogN)"
. d
D < O+ 0 ~ (6.17)

in which the constant C, depends on the primes py. There are similar bounds
on the discrepancies for the Faure and Sobol sequences. This bound and
the Koksma-Ilawka inequality( 6.9) indicate that the quasi-random Monte
Carlo integration has error decreasing like N~! for smooth functions, On
the other hand these bounds are not very useful for large s, as pointed out
by Morokoff [47}. In fact the bound ( 6.17) is worse than the trivial bound
Dy <1lfor N < €°.

Extensive computational tests were performed by Morokoff [47] to de-
termine the dependence of quasi-random Monte Carlo integration error on
dimension of the domain, smoothness of the integrand and choice of the
quasi-random sequence, For integration of smooth functions the error is
almost always much better than that of pseudo-random Monte Carlo inte-
gration., Nevertheless as the dimension increases, the rate of error decrease
in a fixed range of N goes from N~! to the pseudo-random rate N~1/2. This
loss of decay is more dramatic for functions that are not smooth, such as a
characteristic function of a non-rectangular set. But even for such functions
the errors are still much better than the psendo-random error.

General conclusion on the comparison on different quasi-random se-
quences are that in low dimension (s < approzimately 6) Halton is superior,
while in high dimension Sobol is better. Many previous comparative stud-
ies of quasi-random sequences were found to be flawed in that the primary
errors came from transients, such as a sequence started at a special point at
which the integrand was unusually large.

Quasi-random sequences have been used in a number of transport compu-
tations. In the simplest problem, Morokoff [47] used quasi-random sequences
for a diffusion problem in ®°. At each time step and for each particle, a
quasi-random vector is used to decide what the next step should be. In one
dimension (s = 1) errors of size N1 were achieved by reordering the particle
labels according to their position, so that the quasi-random numbers were
used in this order. If such relabeling is not used, then the ordering of the
quasi-random numbers is effectively randomized, since the particles arrange
themselves in a random order, which can lead to non-convergence for the
simulation. In higher dimensjon this reordering is only partly possible, so
that Jarger errors are encountered.
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One of the most difficult problems of transport theory is that there may
be wide variation of mean free paths within a single problem. In regions
where the mean free paths are large there are few collisions, so that large
numerical time steps may be taken; whereas in regions where the mean free
path is small, the time and space steps must be small. Thus the highly
collisional regions determine the numerical time step, which may make com-
putations impractically slow. On the other hand much of the extra effort
in the collisional regions seems wasted, since in those regions the gas will
be nearly in fluid dynamic equilibrium, so that a fluid dynamic description
should be valid.

A partial remedy to this problem is to use a numerical method that con-
verts to a numerical method for the correct fluid equations in regions where
the mean free time is small. This allows large, fluid dynamic time steps
in the collisional region and large collisional time steps in the large mean
free time region. Such a method has been developed for neutron transport,
as described below. We also describe an application of the same ideas to
the Broadwell model of the nonlinear Boltzmann equation for rarefied gas
dynamics.

‘ The one-dimensional, one-speed transport equation in an isotropic ma-
terial is

€0, Y% + B,V + e or ¥ = (¢ o —£04)B° + eQ (7.1)
in which the scalar flux is
1
() =3 [ V(). (7.2)
-1
As € — 0, the solution of ( 7.1) has the expansion
z _ _ _i 2
U =0 EaTa,m,@ + 0(e*), (7.3)
in which © solves the diffusion equation
1 1

For neutron transport, this is the analogue of the the fluid dynamic limit
for rarefied gas dynamics.
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Now consider a discretization of the transport equation { 7.1) with dis-
crete space and time scales Az and At, and a discretization of the scattering
integral { 7.2) with a discretization size Ap. ¥ Az, At, Ap are much smaller
than g, then the discrete solution is nearly a solution of the transport equa-
tion ( 7.1). On the other hand in regions of small mean free time, we want
to let the discretization scale be much larger than the collision scale €. So
we consider the limit in which the numerical parameters Az, Af, Ay are
held fixed, while ¢ — 0. We say that the discretized equation has the correct
diffusion limit, if in this limit the solution of the discrete equations for { 7.1)
goes to the solution for a discretization of the diffusion equation ( 7.4).

Larsen, Morel and Miller {42} have investigated this diffusion limit for a
variety of difference schemes for { 7.1) and have found that many of them
have the correct diffusion limit only in special regimes. They have con-
structed some alternative methods that always have the correct diffusion
limit. Jin and Levermore [36] have applied a similar procedure to an inter-
face problem to get a constraint on the quadrature set for the discretization
of the scattering integral { 7.2). So far generalization of these ideas to multi-
dimensional problems has not been successful [15}. Another class of methods
that use information from the diffusion limit to improve a numerical trans-
port methods is that of the “diffusion synthetic acceleration methods” [41].

As afirst step in applying these ideas to nonlinear rarefied gas dynamics,
consider the equations of the Broadwell model:

fi the =50 = Ig)
g~ =W - fo) (75)
hy = “‘i‘(hz ~ fg).

The fluid dynamic variables for this system are p = f+2h+gand m = f—g.
Denote also z = f + ¢. Then ( 7.5) can be rewritten as

Pt + Mg = 6
my 4oz = 0 (7.6)
atme = 5(p? +m? — 2p2).

The Euler equation corresponding to ( 7.5) is just the first two equations of
( 7.6) in which z is replaced by zo{p,m) = (p*> + m?)/2p, which makes the
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right side of the third equation vanish [17],i.e.
pr+my = 0
ms + %(p +m?[p)s = 0. (7.7)
The corresponding Navier-Stokes equations are found by replacing z by
zi{p,m) = 20(p,m) + (20,0 m + 2mGz20 — e )[2p (7.8)

which makes the third equation of ( 7.6) vanish to O(¢).

Now consider difference schemes for the Broadwell equations { 7.5) and
look at the fluid dynamic limit ¢ — 0, as the numerical parameters are
held fixed. The most natural difference schemes do not necessarily have the
correct fluid dynamic limit. A simple scheme with the correct Euler and
Navier-Stokes limits is the following centered difference scheme: Define the
centered difference operators

Duf(k,m) = 5 (f(ksn+ 1) = f(kn— 1))
D, (k) = 5= (f(k +1,m) = f(k —1,m)). (1.9)

The centered difference method for ( 7.5) is

Dif +Def = (¥~ fo)
Dy -Dag =~(h - fo) (7.10)
Dt = —<(# - 1g)

for each (k,n).
The difference scheme can be rewritten in the form (7.6)as

Dip+ Dom = 0
Dim+D,.z= 0 (7.11)
Diz+ Dym = £(p* + m? — 2p2).

As ¢ — 0 with At and Az held fixed the solution of ( 7.11) satisfies

z = z(p,m)+ (2, Dem + 2om Dyzg — Dym)/2p. (7.12)
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the model Euler or Navier Stokes equations, at least away from transition
regions.

This formal analysis leaves many questions unanswered, such as the fol-
lowing:

(1) What happens to the difference scheme in transition regions, such as
shock and boundary layers, where the mean free path is small but the gas is
not in equilibrium? Perhaps the method of Jin and Levermore [36] can be
generalized to this problem.

{2) Can the difference scheme ( 7.11) be modified to preserve positivity
and still have the correct diffusion limit?

(3) Are there particle methods for the Broadwell equations or the full
Boltzmann equation which have the correct diffusion Emit?

We believe that a method such as this which uses fluid dynamic informa-
tion to improve the collisional step for rarefied gas dynamic computations
could be of great utility.
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