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Abstract

A modified triangle based adaptive difference stencil for the nu-
merical approximation of hyperbolic conservation laws in two space
dimensions is constructed. The scheme satisfies the maximam princi-
ple and approximates the flux with second order accuracy.



1 Introduction

In this article we modify a scheme developed by Louis J. Durlofsky, Bjorn
Engquist and Stanley Osher [1]. Our modified scheme inherits all the advan-
tages of the original scheme. For example, the modified scheme is a so-called
second order accurate TVD scheme ( i.e. formally second order accurate at
the non-extrema of discrete solution and first order accurate at the extrema),
which applies to an unstructured triangular grid. The scheme is based on
a finite volume discretization and is particularly straightforward to imple-
ment. It relies on a very local adaptive interpolation idea, which results in
computational efficiency. In addition to those virtues, the scheme satisfies
the maximum principle in either the usual spatially independent flux case
or variable coeflicient flux with divergence free velocity field case. This is
proven theoretically and numerically in this article. By a “maximum prin-
ciple”, we mean both a maximum principle and minimum principle. The
modified scheme costs only about 20% more computation than the original
in our experiments. The scheme i1s almost the same as the original scheme
except for some restrictions on triangulations, modifications in the limiting
procedure , and in the variable coefficient flux case the divergence free veloc-
ity field is required in order to satisfy the maximum principle.

The outline of the article is as follows. In §2, we first discuss a condition
for a solution of conservation law to satisfy the maximum principle. Then we
describe finite volume space discretizations both in the spatially independent
flux case and the variable coefficient flux case. Finally we present a TVD
time discretization. In §3, we first present a triangulation, and, secondly,
we then introduce concepts of real overshoot and undershoot, replacing the
concepts of overshoot and undershoot in [1], we then select an appropriate
linear interpolation from four candidates ( the first three of them are exactly
the same as described in [1]; however the last one is a constant ). We then
prove the scheme satisfies the maximum principle. Numerical experiments
for constant and variable coefficient linear advection, as well as for nonlinear
flux functions { Burgers’ equation and the Buckley-Levetett equation with
source ), are presented in §4.



2 Finite Volume Discretization

Before we present space and time discretizations, we observe that an
obvious necessary condition for a solution of conservation law satisfying the
maximum principle is the following: If a solution of conservation law

w4+ - F(X,u,t) =0
satisfies the maximum principle, then
{'/_"X -ﬁ(X,’U,,t) =0,

where X is a space vector.

In this article, we only consider two kinds of hyperbolic conservation
laws. One has the usual spatially independent flux and the other has the
variable coeflicient flux with divergence free velocity field. We present them
as following L

u, + v F=0,
U(X,O) - uo(X): (2.1)

where F = F(u) in the former case and F = a(X }f(u) in the latter case (
d(X) is a velocity field satisfying 7 - @(X) = 0 ). Obviously the condition
Ty ﬁ(X ,u,t) = 0 holds in both cases. That is the reason why the numerical
solution of (2.1) has to satisfy the maximum principle.

As we mention in the abstract, we consider the hyperbolic conservation
law (2.1) only in two space dimensions. We do the space discretization by
the finite volume method using a triangular grid{See Fig 1). Integration of
(2.1) over A po gives

2 fapoudA=—1s (v - F)dA, (2.2)

where A po represents the region ABC. Applying the divergence theorem
to the right hand side of (2.2} and defining

Vase = Japo UdA/ | Asse |

to be the average of u over A 454, where | Aupo | denotes the area of A 454,
gives us :



F{g 1

L 0



2Vipo = iy P fap di+ 0 Ffipe di+ fiy, Foiigadl],  (23)

where 7 is the outward unit normal. Obviously Vg is equal to the value
of u evaluated at the triangle centroid X p¢ to within O(] A e |)-

To obtain second order accuracy, particularly in A 45, we construct a
linear interpolation L,{z) approximating the solution « in the triangular
region A 0.

Let X,z be the midpoint of the side AB, Xpo be the midpoint of the
side BC, and X4 be the midpoint of the side CA. Let La(Xi) and
La(X4g) denote the limits of Ly(z) as + — X,p from inside and outside
triangle ABC respectively, and LetLa (X§,,) and L, (Xg,) denote the limits
of La(z) as £ — Xpe from inside and outside triangle ABC respectively,
and Let L, (X% ,) and Lo(Xg ,) denote the limits of Ls(z) as & — X, from
inside and outside triangle ABC respectively.

In the following several paragraphs in this section we are going to present
the approximations to three line integrals f; ~F-wiapdl, [ F-i g dl and
Jioa F-fig,dlin (2.3) to obtain our semi-discrete approximation to (2.3) in
both the spatially independent flux case and the variable coefficient flux case.

We first consider the spatially independent flux case. At any side of A 4p4,
say at AB, we introduce a two-point Lipschitz monotone flux h,g{w,,w,)
which approximates ¥ - i, g in following sense

hAB(waw) = F(“’) ‘T4,

where h4p{w;,w,) is a nondecreasing function of wy, and a nonincreasing
function of w,, and has the conservation form

hAB(wla wz) = —hAB(wz: wl)-

The k  5(w;,w,) could be EO, Lax-Friedrichs, or Godunov flux ( see [1]} and
references therein }. Now by the midpoint formula for integral, our second
order accurate, semi-discrete approximation to (2.3) is

L(Vape) = §Vasc(t) = mopl hap(La(Xp), LalXgp))as
+hBG(LA(Xiac)7LA(X%c))ZBC’ (2'4)
+hoa(La(XE ) La(Xg ) oal,
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where [,z is the length of the side AB, g, is the length of the side BC, and
lo4 18 the length of the side C A.

Now we consider the variable coefficient flux case. The line integrals

D fi'* Rapdl= [, fap - @X)f(u)dl,
higo o fipgdl = [y, fipe - @(X)f(u)dl,
fzm Fiigadl= f:cA fica * A(X)f(u)dl

in (2.3). In order to approximate them, first we pick two of three sides of
A s arbitrarily, say AB and BC, and then we approximate the correspond-
ing i p-@(X) f(u) and fige- @(X) f(u) also by two-point Lipschtz monotone
flux functions 7 4p - 4( X )g(w;,w,) and fige - d( X )g(w, ,w,) respectively, which
appoximate them in the following sense

Aap - @(X)g(w,w) = 7iap - a(X)f(w),
fipe - A(X)g(w,w) = fige - a(X)f(w),

and they are nondecreasing functions of w; and nonincreasing functions of
wy. By the midpoint formula for integral, we obtain

Dias 1::' g dl= fap - A Xap)lapg(La(Xip), LalX95))
LBC F- ﬁBC dl = ﬁBC’ . &(XBC)IBCQ(LA(XE;GL LA(X%G)).

Finally, at C'A the last side of A 4g¢, We approximate the line integral f;_, F.
fig 4 dl by the following way

f[m ﬁﬂm dl = (Rapd(Xap)lap—fisc-#Xpc)ipc) loAg(La(XéA)aLA(XEA))-

loa

It is casy to understand that &H42 'E(XAB)IA,E;"”&BC'E(XBC)IBC) g(wy,w,) is also
two-point Lipschiz monotone flux function, which is nondecreasing function

of w, and nonincreasing function of w,. We denote

hAB(LA('X;:;B)v La(Xsp)) = f}:AB . ?":(XAB)Q(LA(XQBL La(X595)),
hpe(LalXho), La(X8p)) = fipe- @(Xpe)o(La(Xh,), LalX8)),
hC’A(LA(XéA) LA(X(%A)) (—ﬁAE-ff(XAE)IA;a—ﬁEc'a(XBc)ch)

’ . cA
G(LA(XE ), La (X))

We obtain our second order accurate, semi-discrete approximation {2.4) in
the variable coefficient flux case.

It




Remark : There are three things we have to mention here.

The first is that in both cases the approximation (2.4) is weakly second
order accurate in the sense that each of three flux terms is within O({2) of
the line integrals, f; F.adl /1, along the corresponding interfaces.

The second is that in the spatially independent fux case, by the diver-
gence theorem, the following formula :

hap(c,e)lsg + hpele,c)lpe + hoale,e)les = 0, ¢ = constant, (2.5)

holds. Also in the variable coefficient case, the way we shall approximate the
line integrals, the formula (2.5) will also hold. Actually we made the velocity
field numerically divergence free according to the nature of the divergence
free velocity field. The formula (2.5) is critical to prove that our scheme
satisfies the maximum principle in §3.

The last is that the approximation (2.4) has the conservation form that
the hp(La(X}y), La(X5g)) is equal to the —h, p(La(XYg), La(XY5)) in
the spatially independent flux case, and the hyp(La(XY,), La(X9,)) is
equal to the —h 5 (La(X95),La(XY ;) within O(13) or the total numerical
flux through the boundaries is equal to the total flux through the boundaries
within Q(I1) in the variable coefficient flux case.

Now the right hand side of (2.4) can be evaluated and Vg (t) can be
integrated in time. The time integration is accomplished via a second order

TVD Runge-Kutta procedure { see [2] } :

Vise = Vaso +AtL(Vypo)
Vigw = Vape +5(Vige + AtL(Vi0)),

where VABG = VABO (tn): VABC(tn+1) = VEE%

3 The Construction of Our Scheme

3.1 Triangulation

When we do a triangulation, we have to keep in mind the possibility of
strange boundary shapes, e.g. wedges. We also prefer regular triangulations
because regular ones can avoid overshoot or undershoot that is not caused by



the approximated solution itself. The triangulations we are going to intro-
duce are rather regular, but they also can deal with wedge shaped boundaries
{ see Fig 2).

The triangulation should satisfy the following restrictions :

(1) The midpoints X4 and Xpg¢ ate in the triangular region of

AXABXBGEXCAF ?

(1) The midpoints Xpo and X5 are in the triangular region of

AXCAXBCEXAED ;

(iii) The midpoints X 45 and X4 are in the triangular region of

AXBC-XABDXCAF -

These three restrictions have to be satisfied at the same time.

3.2 Linear Interpolation
3.2.1 Notation

Definition (3.1)

Call X; a nearby point of X, 5, if it belongs to a triangle element that
has at least a common point with the triangle element A 45,. We denote the
set of all the nearby points of X 450 by N{(X4pc).

Definition (3.2)

Local Upper Bound of the element A 45t

UBABC = ma:c(V}:)
Xy € N(X4uBo)

Local Lower Bound of the element A ,5-:

LBABC = mm(Vk)
X € N(Xy5¢)
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3.2.2 Construction of the Linear Interpolation L,

There are three candidates for L, noted as L1, L4, and L3. L} is the
linear interpolatant of the three pairs of point and corresponding value

(Xamo, Varc): (Xbor, Veor), (Xoar, Voar),

L:‘I is the linear interpolatant of the three pairs of point and corresponding
value

(XaBc» Vage),(Xcar Voar), (Xasp: Vasp),

and L3 is the linear interpolatant of the three pairs of point and correspond-
ing value
(Xape, Vase), (Xuasp, Vasn), (Xsog, Vece)

(see Fig 3). Here and below we assume that the three triangle centroids i.e.
X aBo) Xpor and Xgap are not collinear. At this point, three LY, (¢ =1,2, 3)
are possible, and a limited version of I, can be selected from them.

Before we describe to the selection of a proper Li, we introduce the
concepts of real overshoot and undershoot.

Definition (3.3)

I for any L%, (7= 1,2,3 ), one of the following two inequalities is violated

UBupc 2 WQE(LL(XAB%L};(XBG): L;:\(XCA)) (3_1)
LBype < main(li(Xap), I (Xpc), L (Xca)),

we say that real overshoot (if the first one is violated) or real undershoot
(if the second one is violated) occurs at element A 4p..

3.2.3 The Selection of L,

Following and modifying the selection procedure in [1], we select the
Li for which | \7Li | is maximized, and no real overshoot and undershoot
occurs.

The procedure is as follows :

(1) We first compute the magnitude of the gradient of each Ly

. . . 1 .
VI =GP+ FIPE P13
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(ii) From the Li{ for which | 74 | is the maximum, through the Li,
for which | 73 | is the second largest, to the L for which | \7Li, | is the
minimum, we check if

Vip  ifi=1
Li (X;) is between Vypo and  Vpop  ifi=2
| Vear  if1=3
is satisfied, where X; = X, 5, X; = Xpg¢ and Xy = Xg,. If Li is the
first one satisfying this requirement, then L7 is chosen to be the appropriate
Ly (and from the triangulation we have (3.1) holds). If no L, satisfies this
requirement, which means overshoot or undershoot, we go to (iii).

(iii) We compute the Local Upper Bound UB4ps and the Local Lower
Bound LB,gq.

(iv) From the Li for which | 7L | is the maximum, through the Li
for which | s7Li, | is the second largest, to the Li, for which | 7Li | is the
minimum, we check if (3.1) .i.e

UBypo 2 m?'m(LjA(XAB):L;_\(XBG)aLL(XGA))

LBspc < min(Li (X p), L (Xpg), L4 (Xoa))
is satisfied. If Li is the first one satisfying both inequalities , then L is
chosen to be appropriate L. If no Li satisfies both inequalities, then we

choose
LA = VABC’ .

In the last case the accuracy reduces from second order to first order. How-
ever, (3.1) holds in all cases.

3.3 Maximum Principle

Theorem For the hyperbolic conservation law (2.1), our scheme { with the
triangulation, the linear interpolation, and the 2nd order TVD Runge-Kutta
time discretization ) satisfies the mmaximum principle under the CFL condition

Ato(sup | £ [) < 1,

where ¢ = sup(La, . / | Ape |), which is evaluated over all the triangles

in the grid. La,,, and | A po | denote the perimeter and area of A g,
respectively.

14



Proof:
For any AABC

L(Vape) = 5 Vase(t) = gl hAB(LA(Xﬁg):LA(XﬁB))IAB
+hpo(La(Xpe) La(X30))se
+hoa(La(XE ), La(Xg, Nical-

Denote .
UBppo = maz(Vi),
X; € N(X;)
X; € N(X4¢)
and V, 5, = min(La(Xi5), La(X5,), La(XE,)). Due to the triangulation

and linear interpolate, (3.1) holds. we have

UBABC > maa:(LA(XfiB), LA(X%CL LA(X&A))'

From the monotonic property of the flux, we obtain

L(VABC‘) m [ hAB( ABGC? UBABC)IAB+
hBC(VABC: UBABC’)IBC'i’ (3'2)
hoa(Viper UBagc)loal

From the formula (2.5),

0= hAB(VABc:VABC)lAB -+ hBC( ABo:V;iBC)ZBG (3‘3)
+ hea(Vypes Vape)loa

holds. Add (3.2) and (3.3), we get

L(Vape) < moegil han(Vipe UBapo)las — hAB(V,;Bca Visc)as+
hBC( ABG':UBABG)IBC_ hBC'( ABG’ ABG)ZBG'*‘
hGA(V ABCH UBABG)ICA hC’A(VABUa VAB(;)ICAB

- Tﬁﬁ;ﬂ[ (hAB(VABO>§1)) (UBABG - V,;Bc)lAB‘i‘
(hBC( 430152)) (UBABC Vl;;Bg)lBG’%‘
(heal Aggafa)) (UBABG VAB())ICA];

Hence,

L(Vapo) < taitomplsup | 4 | (UB4Bo — Vige)(las + lpo + loa)l.
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Thus,

L 7 '
L(Vage) < 5228 sup | 4 | (UBage ~ Vype)s

Where LAAEC = IAB -+ lB‘C + IC‘A'
By the same analysis we obtain

L . "
L(Vipe) 2 p22%sup | & | (LBapc — Vyge),
where V5 = maz(La(X'5), La(XE), La(X},,)) and

IBABC' = mZ?’L(K).
X; € N(X;)
X; € N(Xpc)

Now we perform the time discretization. First we try the Euler forward
time discretization and obtain

Viee = Vape + AtL(Vape),

or

L — ,
Viee & Vuse +At—A‘E£,£AEC|3uP | €1 (UB4pc — Vype)

< Vape +Atosup | 95 | (UBape — Vyge)-
From the CFL condition,

VjBC’ < VABG + %(ﬁBABC — V;iBC’)‘
From a lemma which will be proven below,

2(UBugc ~ Vapo) < UBunc — Vasc
holds. Hence,

Vipe S Vape + (UBapc — Vage)
== UBABC'

By the same analysis, we get
IBABC < V‘iBC < ﬁBABG!

14



or
min(V;) <Vig, < maz(Vi)
X eNX)" T X enx;)
X; € N(Xy5¢) X; € N(Xp0)-
Hence V},, is bounded by the values V' at nearby points of nearby point
of X4pc, or we can say for the Euler forward time discretization that the
scheme satisfies the maximum principle.

Now we consider the 2nd order TVD Runge-Kutta time discretization :

VjBC = VABG + AtL(VABC)
Vigw = tVape + 5(Vige + AtL(V1g,))

(see paper [2]).

Since the 2nd order TVD Runge-Kutta is substantially a combination of
two one-step Euler forward, the maximum principle is also satisfied by the
former one.

The proof will follow if we prove the following lemma.

Lemma

If . . .

Vige = min{La(Xig), La(Xie), La(XE ,))
Vise = maz(La(Xig), La(Xgs), La(X,))
Vape = 5(La(Xip) + La(Xhe) + La(XE,)),s

Then _ —
s(UBape —V,po) € UBapc — Vasc
5(LBapc — Vo) = LBagc — Vapo-
Proof:
UBypo — Vige
= UBupo — 5(La(Xig) + La(Xgo) + La(XE,))
i%(LA(Xj;B) " V;;Bc + LA(XE ) - Vf;BG + LA(X&‘A) o VJ:IBO
= UBypo — Vanc . _
T3 (LalXip) = Vapo + La(Xo) — Vige + LalXE,) — Vige)
< UBupo— Vasc + 5(UB4sc — Vipe)
Hence,

%(UBABG ~Vige) < UBapc — Vase-

By the same analysis,

$(LBapc — YV ge) = LBasc — Vase

17



also holds.

At the end of this section, we contrast our scheme with the scheme intro-
duced by Cockburn, Hou, and Shu in [3]. Their scheme is formally uniformly
2-nd order accurate if one is able to choose a proper parameter M, and ours is
2-nd order accurate in the sense of flux approximation always. Their scheme
satisfies the maximum principle within O(%) globally, which means the vio-
lation is negligible, and ours strictly satisfies the maximum principle. Their
scheme is less restrictive on triangulation than ours, but their CFL condition
(CFL = w where b is the upper bound of boundary function and

initial function ) is more restrictive than ours ( CFL = } ). Their scheme
satisfies the maximum principle more locally ( the approximating solution is
bounded by previous values at four nearby points ) than ours ( ours involves
more nearby points ). However, ours is parameter free.

4 The Numerical Experiments

In this section we present some numerical experiments for conservation
law. In all of our experiments, the solution region is a rectangle domain
discretized via an equilateral triangulation with 990 elements, as shown in Hig
4 ( a integer number in a triangle is the indicator of the triangle and V,, is the
value of the numerical solution at the centroid of the n-th triangle ). Periodic
boundary conditions are imposed in both the z— and the y— directions; the
initial condition is similarly z— and y— periodic, unless otherwise noted. The
numerical results are ploted by contour plots.

First, we give an experiment which shows the original scheme violates the
maximuin principle.

For conservation law wu, — Jzﬁux + 2u, = 0 or u, 4V + (du) = 0, where the

velocity field @ = (—@, 1)T, the original scheme with a upwind flux is

3
£
8
—~
=T

- ap, 0) La(Xp)lap+
g, 0)La(X ) lant
“fipe 0) La(XEo)lpet
fige, 0 La(Xg o pet
iiga, ) La(XE ot

figa, 0)La(Xg 4 Heoal

8 _ -1
EVABC " Aasc] [

-,
a5
Rin R

33333
85
o

&
3
o

&l



Fig 4




For an equilateral triangulation { the simplest triangulation, see Fig 5 ), at
the element A g, we have - 5 =0, @ - igy = —325, d Tigy = %3_- Thus,

%VABC IAABCE[ ﬁLA(X%C‘) + ?LA(XEA)]I?

where | = I3 = lgg = lgs. For special data V : Vyg; = %, Vygp =
Vapr = Vppr = 0, the others are 1, by the original scheme, L,(Xg,) =1
and La(XE ,) = 3. Hence,

3 iAABcI > 0.

2 _
3iVAB = IAABci [

Note that V5o = 1.0 is the maximum. Hence, the original scheme violates
the maximum principle.

For any linear conservation law u, + 7 - (d(z)u) = 0, by a upwind flux,
we have

h(wy,wp) = maz((d(z) - ), 0)w, + min((@(z) - i), 0)w,.

For a linear conservation law u,+(—1)-u,+(0)-u, = 0 with special initial
data ( Vip = 0.5, V56 = Vs1r = Vs = 0.0 and the others are 1.0 ) which
are substantially the same data in the previous experiment, the numerical
results show that the original scheme viclates the maximum principle ( at
t = 0.24, max(V,) = 1.063 > 1.0 and min(V},) = 0.2578, and also see Fig
6 ) and the modified scheme does not ( at ¢ = 0.24, max(V,) = 1.0 and
min(V,) = 0.3333 > 0.0, and also see Fig 7 ).

We next consider the same linear conservation law with initial data u, (z,y)
= stn{27x)sin( 4’“”) (see Fig 8). The numerical result show that the modified
scheme satisfies the maximum principle ( at ¢ = 0.72, max(V,) = 0.9126 <
1.0 and min(V,) == —0.8519 > —1.0 , and also see Fig 9 ).

For Burgers’ equation v, + 57 - (Mu @) = 0, by the EO flux, we obtain

h(wy, wy) = wymaz (M2 )wy, 0) + wemin((252)w,, 0),

where n; and n, represent the components of 7. With initial data u,(z,y)
= sin(?vra:)sin(%) (see Fig 8), the numerical results show again that the
original scheme violates the maximum principle ( at ¢ = 0.24, max(V,) =
1.12 > 1.0 and min(V, ) = —1.15 < —1.0, and also see Fig 10 ) and the mod-
ified scheme does not ( at ¢ = 0.24, max(V,) = 0.9113 < 1.0 and min(V}) =

=
A



ey =

=(



—0.9025 > —1.0, and also see Fig 11, and at ¢ = 1.0, max(V,) = 0.6000 < 1.0
and min(V,) = —0.5891 > —1.0, and also see Fig 12 ).

In the next experiment we consider the solution of the rotating cone prob-
lem, a variable coefficient linear advection problem. The initial condition,
shown in Fig 13, is a cone of maximum height 1 and radius 0.15, centered
at z = 0.75,y = 0.5. We set a, = 0.5 —y,a, = z — 0.5. The exact solution
1s counterclockwise rotation of the initial data about = = 0.5,y = 0.5. The
numerical solution at ¢ = 1.0 obtained by the modified scheme is shown in
Fig 14. The max(V,) = 0.66 < 1.0 and min(V}) = 0.0 at t = 1.0.

The last experiment is the Buckley-Leverett equation describing two phase
flow through porous media(e.g, water displacing oil):

we+ 7 i@ f)] =0,
where u refers to the saturation of one of the fluids(water), @(z) represent

the two dimensional velocity field (i.e. @ = (22, %E)T and the potential ¢ =

165 1og(+/2? + 7} ) in this experiment, f(u) is typically a nonconvex function
derived from laboratory measurements. Here we take
2
f = tavturize-

We solve Buckley-Leverett equation with initial data v, = 0. Water
is continuously injected in the lower left hand corner (u, = 1); symmetry
boundary conditions are imposed on left and lower boundaries. The solution
contour at ¢ = 15 is shown in Fig 15. The numerical solution satisfies the
maximum principle ( at ¢ = 15, max(V,) = 1.0 and min(V,,) = 0.0 ).

Acknowledgement [ am grateful to my advisor Professor Stanley
Osher for his careful reading of my manuscripts, his helpful advice, support,
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X INTERVAL= @.97588e~01 Y INTERVAL= 0.83716e-21
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THE SOLUTION OF Burger's equation

CONTOUR FACH -E_99888 70 1.Qa20 CONTOUR INTERVAL OF B.120822
X INTERVAL= ©.9750@e-81 Y INTERVAL= &.83716e-81
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THE SOLUTION OF Burger's equation
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the initial data of conservation law
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X INTERVAL= 0,97500e-21 Y INTERVAL= 2.83716e-81




Fig 1

THE SOLUTION OF linear conservation law
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CONTOUR FROM a. T0 9.480808 COMTOUR INTERYAL OF 0.40882«-21
% INTERVAL= @.97522e-21 Y INTERVAL* B.63716e-01
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THE SOLUTION OF Buckley-Levetett equation
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