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Abstract

The standard Monte Carlo approach to evaluating multi-dimensional
integrals using (pseudo)-random integration nodes is frequently used
when quadrature methods are too difficult or expensive to implement.
As an alternative to the random methods, it has been suggested that
lower error and improved convergence may be obtained by replac-
ing the pseudo-random sequences with more uniformly distributed se-
gquences known as quasi-random. In this paper quasi-random (Hal-
ton, Sobol’ and Faure) and pseudo-random sequences are compared
in computational experiments designed to determine the effects on
convergence of certain properties of the integrand, including variance,
variation, smoothness and dimension. The results show that variation,
which plays an important role in the theoretical upper bound given
by the Koksma-Hlawka inequality, does not affect convergence; while
variance, the determining factor in random Monte Carlo, is shown to
provide a rough upper bound, but does not accurately predict per-
formance. In general, Quasi-Monte Carle methods are superior to
random Monte Carlo, but the advantage may be slight, particularly
in high dimensions or for integrands that are not smooth. For discon-
tinuous integrands, we derive a bound which shows that the exponent
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for algebraic decay of the integration error from Quasi-Monte Carlo is
only slightly larger than 1/2 in high dimensions.

1 Introduction

1.1 Applications of Quasi-Random Sequences

Quasi-random sequences have been greatly touted for their theoretical prop-
erties, for example in recent articles in Scientific American, Science, and
SIAM News. They have seen little real application, however, because the
theoretical advantages are often difficult to attain. In fact, previous com-
putational studies [1, 6, 8, 17, 19] showed that quasirandom methods can
provide significant improvement, which, however, falls well short of their
theoretical potential.

Our paper is an attempt to fill in that gap by careful numerical experi-
ment to clarify the real advantages and weaknesses of quasi-Monte Carlo in
computations. The computations presented here clearly show the influence
of variation, variance, dimension and smoothness on the convergence rates of
Quasi-Monte Carlo integration. We expect that the conclusions of this study
will be useful for the application of Quasi-Monte Carlo methods to particu-
lar problems, as well as for the development of variance reduction and other
Monte Carlo techniques using quasi-random sequences.

In sections 2 and 3 the integrals of several test functions are approxi-
mated by using the Halton, Sobol’ and Faure sequences. For each example
the integration error is approximated by the form e¢N—*, in which N is the
number of quasi-random integration points. In general, the results show that
quasi-Monte Carlo integration is superior to standard Monte Carlo in expo-
nent o {which is 1/2 for standard Monte Carlo) or in the constant ¢, but that
the improvement degrades as the smoothness of the integrand decreases or
the dimension increases. These conclusions and their implications for further
use of quasi-random sequences will be discussed in section 4.



1.2 Low Discrepancy Sequences

Monte Carlo methods use independent, uniformly distributed random num-
bers on the s-dimensional unit cube I* as the source of integration nodes. In
the simplest case, if {z;} is such a sequence of random points in 72, then the
integral of the function f(z,,---,z,) over I* is approximated by the average
of f evaluated at the points z;. The error,
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satisfies the relationship involving the expectation E(-) of a random variable

a*(f)
N

where o2(f) is the variance of f defined by

E(e?) =

()= [ @) do— ([ @) do) .

This shows the familiar convergence rate of N=1/2 associated with random
methods. The key property of the random sequence is its uniformity, so
that any contiguous subsequence is well spread throughout the cube. This
idea has lead to the suggestion that using other sequences which are more
uniformly distributed than a random sequence may produce better results.
Such sequences are called quasi-random or low discrepancy sequences.

Initially it may appear that a grid would provide optimal uniformity.
However, grids suffer from several difficulties. First, in high dimension, the
number of points required to create even a course mesh is exponentially large
in dimension. Also, grids have rather high discrepancy, a quantity which
measures the uniformity of a set of points. This is defined and discussed
below. Finally, the only obvious method for increasing accuracy of a uniform
grid is to halve the mesh size, which requires adding 2¢ times the current
number of points; so that the accuracy of a uniform grid cannot be increased
incrementally.

A solution to this problem is to use infinite sequences of points such that
for every N, the first N terms of the sequence are uniformly distributed
throughout the cube. In order to quantify this, the discrepancy of a set of N
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points in defined as follows: Let Q be a rectangle contained in f* with sides
parallel to the coordinate axes, and let m(Q) be its volume. The discrepancy
Dy of the sequence {z;} of N points is

# of points in @
Dy = sup
Qels N

—m(@Q) .

By the law of iterated logarithms, the expectation of the discrepancy of
a random sequence is bounded by (loglog N)N~1/2, There are many quasi-
random sequences known for which the discrepancy is bounded by a constant
times (log N)s /N, which suggests greater uniformity than a random sequence.
Three such sequences, the Halton, Sobol’ and Faure sequences, were chosen
for comparison in this work, and are briefly described now. A more thorough
discussion of these sequences can be found in [9, 15, 16]

The Halton sequence [4] in one dimension is generated by choosing a
prime p and expanding the sequence of integers 0,1,2,..., N into base p
notation. The nt* term of the sequence is given by

T G
=yt

where the a.’s are integers taken from the base p expansion of n — 1
[n - l]p = Gy Gy g 7t G G180

with 0 < a; < p. For example, if p = 3, the first 12 terms of the sequence
(n=1...12) are

01214725811019

Oeeervoeeymam
Note that the numbers lie in cycles of p increasing terms, and that within
the cycle, the terms are separated by 1/p. The effect is that once a grid
of refinement 1/p™ is filled in by repeated sweeps of these cycles, the next
cycle starts filling in the grid at level 1/p™t!. The s-dimensional Halton
sequence is generated by pairing s one-dimensional sequences based on s
different primes; usually the first s primes are chosen. One difficulty with

this sequence is that in high dimensions, the base p must be large, so that
the cycle of increasing terms is rather long. When paired against another
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large prime based sequence, the result is that the points lie on parallel lines
which slowly sweep through the unit square. Thus the distribution of points
is not very uniform.

In the definition of Dy, the restriction to rectangles with sides parallel to
the coordinate axes is due to this construction of an s-dimensional sequences
as a product of 1-dimensional sequences.

As an alternative, the theary of (t,5)-nets has been developed by Sobol’
[20], Faure [3] and Niederreiter [15]. The Sobol’ sequence solves the problem
of large primes by only using p = 2. The sequence is generated such that the
first 2m terms of each dimension for m = 0,1,2,... are a permutation of the
corresponding terms of the Halton sequence with prime base 2 (also known as
the van der Corput sequence). If the proper choice of permutations is used,
the resulting s-dimensional sequence can be shown to have good uniformity
properties. However, as dimension increases, more permutations must be
used, and the possibility increases that a bad pairing may exist between two
dimensions leading to a highly non-uniform distribution in that plane.

The Faure sequence is similar to the Sobol’ sequence in that each dimen-
sion is a permutation of a Halton sequence; however, the prime used for the
base is chosen as the smallest prime greater than or equal to the dimension.
If this prime is labeled p(s), then each dimension of the Faure sequence is
generated such that the first p(s)™ terms for m = 0,1,2,... are a permu-
tation of the corresponding terms of the Halton sequence base p(s). The
advantage of this is that as long as s < p(s), an optimal set of permutations
can be prescribed. However, as dimension increases, the problems of large
primes arise, though not as quickly as with the Halton sequence.

In his review papers [13] and [14], Niederreiter summarizes the proper-
ties and theory of these sequences. The key point is that their discrepancy
satisfies the relationship

DNSC

(s o ().

where c,, different for each sequence, is constant in N, but depends on s.
This is an optimal upper bound in the sense that for any infinite sequence,
there exist an infinite number of N such that
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for some constant c¢. These bounds suggest that, at least for large N, the
quasi-random sequences described above will be considerably more uniform
than a random sequence. The relationship between discrepancy and integra-
tion error is described next.

1.3 Error Bounds

As stated above the expectation of error for random Monte Carlo integration
is o(f)N-1/2. Because probability theory can no longer be used, a different
approach is necessary to bound the integration error when quasi-random
sequences are used, It turns out that it is the variation of the integrand which
appears, and not the variance. If f(z,,...,z,) is sufficiently differentiable,
then for all positive k < s and all sets of k integers 1 <1y <25 < ... <1 < s,
define the quantity

I
B, - 01

7

di, ---dt;, , (1)

1 ik

V(k)(f; 7:1: e }ik) = j;k

tj=lsj?l-'il etk

which represents the variation of the projection of k variables. The variation
in the sense of Hardy and Krause is then defined as

V(=Y O VO(fi..i). @)

k=1 1< <4p Conn XS

The restriction of differentiability is stronger than necessary and may be
relaxed to the standard notion of bounded variation. The main results on
integration error is known as the Koksma-Hlawka inequality, which states
that if f is a function of bounded variation in the sense of Hardy and Krause,
and {z;} is a sequence of N points in I* with discrepancy Dy, then

1 N
[ @) do =13 1(@)| < V() D )

i=1

As with the expectation of error in the random case, the effects of the in-
tegrand are separated from those of the sequence. The bound on the discrep-
ancy of a random sequence indicates N-1/2 type convergence, and suggests
that a sequence with smaller discrepancy than a random sequence will give
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smaller errors. The requirement that the integrand be of bounded variation
is considerably more restrictive than the condition for the random case of
finite variance, and it excludes many integrands of interest. For example the
characteristic function of any non-rectangular set has infinite variation. The
relationship of such functions to particle simulation is described in section 3
as motivation for the convergence results presented there.

Another approach to describing integration error comes from considering
the average case error for the class of continuous functions equipped with a
Wiener sheet measure. In [21] WoZniakowski gives a result which relates this
average integration error for such functions to an L, version of discrepancy.
Further discussion and an alternative derivation of this can be found in [9].
This result suggests that low discrepancy sequences should out perform ran-
dom sequences, at least for large enough N, even for functions that are only
Holder continuous with exponent 1/2.

2 Variation,Variance, Sequences and Dimension

From the Koksma-Hlawka inequality 3, one might hope that variation
would play the same role for quasi-random integration as variance does for
standard Monte Carlo. However, certain observations suggest that variation
is a suspect quantity for measuring integration error. For example, from the
definition it can be seen that total variation involves a sum of variations over
only those lower dimensional boundaries where all the restricted variables
are equal to 1 (not 0). This can lead to considerable differences between the
discrepancy of two basically identical functions. It might be expected that
the functions f and g,

f(xlv---axs) = I:.E(l_‘rz)
gz, .,z = ﬁx,-

i=1

would be integrated virtually identically by a quasi-random sequence. How-
ever, V(f) = 1 and V(g) = 2* — 1. While this may be an extreme case,



it does introduce some doubt as to the usefulness of variation in predicting
integration errors.

2.1 Setup of Numerical Experiments

In order to investigate the actual roll that variation plays in determining the
integration error, a variety of test functions with a wide range of variations
were integrated over the unit cube. Effects of variance, dimension and choice
of sequence were also observed. The functions were chosen so that they could
be integrated analytically, and so that the variance and variation could be
at least estimated, if not explicitly calculated. The test functions used were
all normalized so that they integrated to 1.

For each experiment, the results of error versus N are plotted on a log log
scale (base 2), and an empirical convergence rate cN~ are determined, in
which N is the number of quasi-random points used and o is somewhere
between 0 and 1 (o = 0.5 is the expected behavior of a random sequence).
The values of o and ¢ are found by a least square linear fit of ¢cN—% to
the data on a log log scale in a certain range of N. Although this formula
cannot be expected to be an asymptotic formula for the integration error,
there is too much scatter in the numerical results to determine a more precise
convergence rate, Moreover, for the range of computationally practical N,
this is an adequate indicator of performance.

Within a given range of N, we choose m values of N, denoted &V;, 1 <
i < m, that are equally spaced on the logarithmic scale. For example for the
range N = 1000 to N = 100,000 and m = 100, we have that N, = 1000,
N; = 1047, ..., Ngg = 95,499, N,qo = 100,000. While this tends to make the
low end of the range of N have a few more points, it is much better than
evenly spacing the N;. On the log scale that causes almost all of the points
to be clustered together at the high end.

The experiments were run by generating the first N terms of the sequence
in question. Because the Halton sequence starts with a point very close to
zero in high dimensions (the first points is (1,3,..., q(l—s)), where g(s) is the
st prime), and some of the integrands used are highly sensitive to this point,
the first 200 terms of the sequence are discarded. This number is arbitrary,
and discarding the first 10 terms would probably suffice. The Faure sequence
has a similar problem, so following Bratley and Fox [1], it is also started in
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the middle at the (p(s)* — 1)* term, where p(s) is the first prime greater
than or equal to s.
Once these N, terms have been generated, the integral is approximated

with them, and the square error ( J7 fdz — ']\171 Ei‘i_ll f(:c,))z is recorded. Then
the next N, terms of the sequence are generated, and the process is repeated.
This leads to values of the square error at N = Nj,..., N,, and requires 3 N;
points in the quasi-random sequence.

Unfortunately, just as in the random case, there is a great deal of scatter in
the value of the error. A consistent and reliable value of the error is obtained
by performing the numerical computation a number of times (or runs) and
using the root mean square error for each value of N. The second run begins
by calculating the next N, terms of the sequence, which are different from
any of the terms used in the first run.

It is important to note that the error calculated for each value of N is
“independent” of the error calculated for other values of N, since points in the
quasi-random sequence are not reused. The advantage of doing this is that
the errors associated with N, and N, will not be correlated, as they would
be if the other method were used. This helps make convergence more easily
identifiable. On the other hand, the method of adding N, — N; points to the
original N, to get the error using N, points is exactly the approach used to
actually evaluate an integral, when the answer is unknown and determination
of convergence rate is not the goal.

2.2 Simple Multi-Dimensional Integrals

The first set of trial functions consisted of relatively simple multi-dimensional
functions formed from products of one dimensional functions, such as those
used in [1] and [8]. The advantage of this was that the values of the integral,
the variance and the variation could be easily obtained. These functions
could also be chosen to have specific properties such as high variation and low
variance. Thus they were important for determining the effect of the various
factors in question, even if the integrals themselves are of little practical
interest. The functions, their variances and their variations are given in
Table 1. For the first function both variance and variation grow exponentially
with dimension. For the second function the variance decays to zero while



Function

Variance

Variation

(

(1+

3

i
5% 4+2s

i)"_l
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1

1

5

68_23

(1+1) (20— 1)

s —{s—1)*

(s—.5) +1i=1 (S - (E,‘) (1 + 12(31-.5)2) ~1 (s—.5)*

Table 1: Test Functions for Determining Effect of Variation

the variation grows exponentially. The variance decays in the third example,
while the variation remains nearly constant,

Figures 1 and 2 show plots of log(error) versus log N for the range
N, = 1000 to N, = 30000 for the last two functions from Table 1. The
error here is the root mean square error described above, obtained from av-
eraging over 50 runs. Results are given for dimensions s = 5,10,20,30 for
the Sobol’ sequence. For reference, the expected value of the rms error for
a random sequence is also plotted for each dimension. The calculated errors
are represented by points which are connected by lines to help clarify the
trend. Because these are log log plots, the linear behavior corresponds to an
error of size ¢cN—9.

These plots illustrate certain points which hold true in general for quasi-
Monte Carlo integration. Of particular importance here is that for the first
function, the variation grows exponentially with dimension, while in the sec-
ond plot, the variation is virtually constant with dimension. Such trends in
the error cannot be detected. However, both functions have similar variances,
and also similar behavior with regard to error. From these experiments, as
well as those described below, it can be seen that the use of quasi-random
sequences generally results in lower error than with random sequences. As
the random error is determined by the variance of the integrand, the vari-
ance may then be interpreted as part of an approximate upper bound on the
integration error.

The results of this study verify what was suggested above, that varia-
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Figure 1: Integration Error for F = [T3_, (1 + 1/s)al/?
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Figure 2: Integration Error for F = [[i_, (s — ;)/(s — .5)
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tion is not an important quantity in determining integration error. These
examples were of limited generality, however, since the integrands were all
product functions, In the next three subsections, more realistic examples are
presented, which contain many of the features of true scientific or engineering
problems, but in a simplified or restricted setting where the exact solution
is known. The roles of dimension and choice of sequence will be considered
more carefully in the next section.

2.3 Absorption

Monte Carlo methods are frequently used to solve integral equations associ-
ated with transport problems. The behavior of quasi-random sequences in
this setting was studied by Sarkar and Prasad in [19], where a fairly simple
one dimensional absorption problem was investigated. We consider an even
simpler problem, the integral equation

y(z) = [: vy(z') de' + =z,

which describes particles traveling through a one dimensional slab of length
one. In each step the particle travels a distance which is uniformly distributed
on [0,1]. This may cause it to exit the slab; otherwise, it may be absorbed
with probability 1 — v before the next step. In the equation, # describes
the current position of the particle, and y(z) gives the probability that the
particle will eventually leave the slab given that it has already made it to
z. The quantity of interest to calculate is then y(0), the probability that a
particle entering the slab will leave the slab.
The solution of this test problem is

y(z) = i—(z (1= ) exply(l ~ 7)) -

The solution may also be represented by an infinite dimensional integral
over the unit cube

y(x) = jIm if‘n(m, R)dR,
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where

F”xqrnf[lﬂ(l~mwiRj)9(§Rj—(l—$)).

Here 6(z) is the Heaviside function:

1,z>0
9(2)2{0,z<0

This corresponds to a Monte Carlo particle simulation where the particle
does a simple forward random walk with jump size uniformly distributed on
[0,1]. U it leaves on its (r + 1)* jump, it contributes 4" to the sum which
approximates y(z). Because the high dimensions represent the contributions
of particles which undergo many collisions before leaving the slab, and the
likelihood that a particle can go more than a few collisions before either leav-
ing or being absorbed is quite small, y(z) can be quite accurately represented
by truncating the integral at a finite n. For the purposes of computational
experiments, the cut-off n = 20 was chosen, although the same results would
have been obtained with n = 6.

When z = 0 and the integrand is normalized so that the above integral
is 1, the variance of the function can be calculated as

y

—_— 1.
1—{(1— e

o*(Fyormalized) =
The variation of F' is infinite, because it is composed of characteristic func-
tions of non-rectangular sets {cf. section 3). Figure 3 shows the results of
running this simulation for a survival probability of v = 0.5. The data were
taken at 50 points evenly distributed on a log scale between N = 1000 and
N = 30000. The data were averaged over 100 runs. The results are discussed
below, where they are compared with results from a modified version of this
simulation which has finite variation. This second simulation is described
next.

Following the work of Sarkar and Prasad, the “analog” simulation de-
scribed above can be adapted to produce a smooth integrand. The idea is
that each jump that the particle makes should contribute something to the
evaluation of the integral, so that there is not an all-or-nothing (discontinu-
ous) contribution if the particle leaves the slab or is absorbed. In fact in the
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Figure 3: Error for Analog Absorption Particle Simulation
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new simulation, the particle never leaves the slab at all and is never absorbed.
In this frame work, the solution y(z) can be written as

y@=a+ [ S Fo(e, R)dR,

nal

where

n—1 n

Fno= (1 — z)» (H R:.‘“"") (1 -~(1-=)]] Rj) .

i=1 Je=1
For reasons given above, it is only necessary to go out to a finite n (number
of jumps that the particle makes), here chosen to be 20. The corresponding
simulation follows a particle through 20 jumps. If after n jumps the particle
is at position z’, the length of the next jump is sampled uniformly from the
interval [0,1 — 2] and the quantity y*(1 — 2')" is added fo the sum which
approximates y(z).

The most important difference between the second simulation approach
and the first is that the integrand of the second is now smooth and has much
lower variance. The variance of F' starting from initial particle position 2 = 0
can be given explicitly by a rather lengthy formula. Once the integrand has
been normalized, the value of this variance is 0.0742, whereas the variance
for the first method (non-smooth) is 1.8467, assuming a survival probability
of v = 0.5 is used. As stated above, the variation of the first method is
infinite; because the integrand for the second method is smooth, it has finite
variation.

Figure 4 shows the computational results of using quasi-random sequences
to perform the second simulation, and is to be compared with Figure 3 for
the non-smooth simulation. Again a 7 of 0.5 was used. Since the effective
dimension of this problem was only 6, it is not surprising that the smooth
case results look quite similar to the results of the other low dimensional
test problems, with the Halton sequence giving the best performance. The
Faure sequence has somewhat higher error than the others, but this can be
attributed to the fact that the prime used to generate the sequence was 23,
the first prime larger than the dimension 20. The rate of convergence for all
the sequences is around N—95 for the smooth case.

On the other hand, for the analog particle simulation of Figure 3, Halton
has the lowest error and a convergence rate of N—7. Faure has larger error,
but a slightly better convergence rate of N~-85, The slow convergence of
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the Sobol’ sequence is unusual and puzzling; it illustrates the difficulty of
predicting convergence for quasi-random sequences. In the next section more
examples of characteristic functions are studied.

2.4 Boltzmann Collision Integral

The second example comes from the Boltzmann equation, which describes
the evolution of a distribution function f(€) for the density of a rarefied gas
in velocity space. Suppose f(€) can be written as

F(&) = fi(&) + fa(§)

where the f; are Maxwellians, i.e. they have the form

fi(§) = Pa(ﬁ'i/‘”)af2 exp{-B;(¢ — w;)*} .

Here p,u and 3 are the fluid dynamic density, velocity and inverse temper-
ature. In [2] Deshpande and Narasimha give an exact formula for this case
for the gain in f(£) due to binary collisions. This gain can be described by
an integral over all possible collision which result in a particle with velocity
£

If the hard sphere collision model is used with molecular diameter o = 2,
and the Maxwellians are chosen so that p; = p, = 1, 8y = B, = 1 and
uy = (u,0,0) and uy = (0,u,0), then the exact value of the gain integral for
f(0) is given by the series

4: oo
—exp{—2u?} ) _ ¢ u?*
s k=0
where
Jk+1 ]
Cr

T 1-3.5-(2%k+1)
The gain term to which this corresponds is an integral over the velocity
variable w = (w;,w,, ws) and two angle parameters x and € which determine

the type of collision. If w? = w? +w? +w?, w = Vw? and wy 3 = \/wi + w3,

then the integral can be written as
1 2r pw 2
— / f f wsin y efuWxee=W* dydedw
™ JR3Jo Jo
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where

By w0,%,6) = =2u? + u(wy + w, + (1w, — wy) cos X) +
Wy COS € + Wy Wy Sin €

usin x |wyzsine +
Wa,3
This is the first example given here which is not explicitly an integral over
the unit cube. But the standard Monte Carlo methods for sampling variables
which are not uniformly distributed on the interval [0,1] may also be used
here to create quasi-random sequences with the required distribution. In this
case these sampling methods are equivalent to the change of variables

w; = erf(2z;—1) :1=1,2,3
X = mTy
€ = 2wy

Here erf! is the inverse of the error function

erf{w) Vet dt.

_ 2
T m o

Under this change of variables the integral becomes

2/ f  wsiny eh(Wxe) g |
I

It should be noted here that many sampling techniques, when viewed
as a change of variables, produce non-smooth integrands or may map the
characteristic function of rectangular set to an irregular set. As discussed
in the next section, this may cause a decay in the performance of the quasi-
random sequences which is not observed in the random case. Thus care must
be taken when using low discrepancy sequences with the standard methods
of Monte Carlo, including sampling and variance reduction.

The results of the convergence experiment for this 5 dimensional integral
are given in Figure 5. Here u was taken to be 0.25, and the results shown
are relative error (the integral is normalized to one). All three quasi-random
sequences show similar behavior which is significantly better than the pseudo-
random behavior. The least squares fit convergence rates range from N5
to N-61 for these sequences, while pseudo-random shows a convergence rate

of N.51,
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Figure 5: Boltzmann Collision Integral for Two Maxwellians
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2.5 Feynman-Kac Path Integrals

A third situation where Monte Carlo methods are frequently used is the
evaluation of Feynman-Kac path integrals. Although diffusion Monte Carlo,
Green’s function Monte Carlo or the Metropolis algorithm are more com-
monly used to evaluate such path integrals, this direct evaluation provides a
challenging, but easily stated test problem for quasi-random integration.

If V(z) is a potential function, then the quantity u(z,t) given by

u(z,t) = E, [exp{— /ﬂt V(b(‘?’))d?‘}] (4)

may be considered. Here E, is the expectation over all Brownian motion
paths b(r) that start at z. In [5] Kac shows that u(z,t) satisfies

Uy = Uy, — V(ziu . (5)

We obtain a high dimensional test problem from Equation 4 by discretiz-
ing in time and considering a random walk with Gaussian steps of variance
At as an approximation to Brownian motion. Equation 4 is then expressed
as

u{z) = [Rn ﬁ(l —AtV(z+ \/fig,)) u(z)dG, -+ dG, .
k=1 =1
Here

.
dGi = —e=9i/2 dg'l .
2r
Now un(z) satisfies the time discretized version of Equation 5
urti(z) = (1 — AtV(z))ur(z) + Atu () .

If V() is taken to be e and the initial data is 27 periodic, then the
Fourier transform of the discrete equation shows that

At (k) = (1 + Atk2)an(k) — Atir(k +1) . (6)

If the initial data are chosen to be constant, u®(x) = 1/2x, then all the non-
zero modes are initially zero, while 4°(0) = 1. It follows from Equation 6
that all positive modes of u» remain zero, while the negative modes change
and the zeroth mode remains constant. This means that

n

/:ﬂ ur(z)dz = f u®(z)dz

0
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47 Runs, Dimension 40

log2 of emor

0 10.5 i1 115 12 125 13 13.5 14 14.5 15
log2 of N

Figure 6: Feynman-Kac Path Integral

for all n. By setting s = n and At = 1/s, the (s + 1) dimensional integral
representing the total mass of u, the solution of Equation 5, at time 7' =1 is

1 ogeop 8 1 1 &

ﬂfo j . ];:[:-—_‘[1(1 - ;exp{i(m + \/ggg‘-)})u"(:c) dG, -+ - dGydz .
This is just the integral of u*(x) which is equal to the integral of the initial
data and thus equal to one.

Again this is not an integral over the unit cube, but the same methods
used for the Boltzmann collision integral may be used here. The inverse error
function is used to generate Gaussian distributed points, and z is sampled
uniformly on [0, 27] by multiplying uniform numbers on [0, 1] by 27. The re-
sults of the experiment using pseudo- and guasi-random sequences to evaluate
this integral in 40 dimensions (s = 39 time steps plus one spatial integration)
are shown in Figure 6. Even though the dimension is rather high, the Halton
sequence still gives the lowest errors, although the Sobol’ sequence is very
close. On the other hand, the Faure sequence is noticeably worse. For small
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N it leads to errors roughly the size of those given by the pseudo-random se-
quence. All three quasi-random sequences show convergence between N—6°
and N-—%1, while the least squares fit for pseudo-random indicates conver-
gence like N—49, Although in this computation each dimension is of equal
significance, it may be possible to formulate an improved method in which
the higher dimensions are of decreasing significance.

3 Characteristic Functions, Continuity and Di-
mension

The performance of quasi-random sequences in evaluating integrals of char-
acteristic functions is of considerable interest because this indicates their
potential for success in Monte Carlo particle simulations. As illustrated in
the last section, a particle simulation may frequently be described by a multi-
dimensional integral. Characteristic functions arise whenever a yes/no deci-
sion must be made, such as if the particle is absorbed. The characteristic
function to be integrated corresponds to the subset of the parameter space
where the parameter values indicate a positive decision. When the domain
of the parameter space is mapped onto the unit cube, the volume of the ‘yes’
set (i.e., the value of the integral of its characteristic function) is just the
probability that the decision is accepted.

In this section another side of the variation issue is also raised. In general
characteristic functions have infinite variation, the exception being rectan-
gles with sides parallel to the coordinate axes. The question of whether the
infinite variation causes performance degradation is addressed by also con-
sidering integration of a continuous and a smooth function with support on
a sphere inside the unit cube.

3.1 Characteristic Functions of Cubes and Cones

In order to determine the effects of jumps in the integrand, integration ex-
periments were run using characteristic functions of a cube and a cone. The
cube was used because it is the basis of the definition of discrepancy, and has
finite variation equal to 2:. This is related the fact that there is a jump of
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size one in the direction of the coordinate axes at each corner. The cone was
chosen because it has infinite variation and is pointed. The experiments were
run to compare sequences and to determine convergence rates as a function
of dimension.

In order to compare results across dimensions, the integrands were nor-
malized so that the integral of each function for all shapes and dimensions
was one. In a given shape class, the largest radius possible was used in di-
mension 6. The radii used for dimensions 2 through 5 were then computed
such that these functions would have the same variance. This has the ad-
vantage that if random numbers were used for the calculation, the size of the
error would be the same in all dimensions.

For the cube, the center was chosen to be (1/2,1/2,...,1/2), and side
length was the ‘radius’ parameter. In 6 dimensions, the side length was
chosen to be 7/8, which gives a normalized variance of 1.228. The cone was
described by the set

(o) s Ao, = 3= S = 57 20}

This actually describes two cones with a common tip at (1/2,1/2,...,1/2)
and circular bases of radius R lying in the z, = 0 and z, = 1 planes. In 6
dimensions R was set to 1/2, and the corresponding normalized variance was
360/72 — 1 which is about 35.48. Table 2 shows the radii (or side lengths)
used for each shape and each dimension.

Table 3 shows the results of using a pseudo-random sequence (R} and
the three quasi-random sequences (I, S, F) to integrate the characteristic
functions of the sets described above. The experiment consisted of 50 runs
using 50 logarithmically evenly spaced values of N in dimensions 2 through
6. For both the shapes, the size of the error increases with dimension. Con-
vergence behavior is generally best in 2 dimensions, and tends to decay as the
dimension increases. For the most part, the Halton sequence gives slightly
lower errors, especially in two dimensions. For the cube, convergence in two
dimensions is around N—9 for all sequences, while for dimensions 3 to 6,
the least squares fit convergence rates ranged from about N—7! to N—89,
The Faure sequence appears to start out with slightly higher error, but it
converges a little faster, so that all the sequences end up with similar error
size at N = 30, 000.
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Shape §=2 8= 5=4 s=5 s==6

e @@ @@ i
0.670 $.766 0.818 0.852 0.875

come & &) i@ O 3
0.027 0.162 0.297 0.408 0.5

Table 2: Radii of Sets Used for Characteristic Function Integration

For the cone, the error is considerably closer to the expected random
error in size and in convergence rate than for the cube. For dimensions
4 to 6, all the sequences and dimensions look about the same, except for
the 4 dimensional Sobol’ sequence, which performs rather erratically. The
convergence rates range from N—% to N—62, Again, the Halton sequence
is marginally better than the others, with the greatest difference being in
dimension 2. Otherwise, Halton and Faure look very much alike, while Sobol’
gives errors in about the same range, but is less predictable.

A similar set of experiments were done for the characteristic function of
a sphere in dimensions 2 through 6. These showed error behavior similar to
that of the cone. For the sphere, the two dimensional convergence rate for all
sequences was about N—78, while the higher dimensions had a rate around
N-86, Again, Halton performed slightly better in two dimensions; however,
the Sobol’ sequence did not lock particularly odd or unpredictable compare
with the others.

The fact that quasi-random sequences performed better on the cube was
to be expected. The sequences are constructed to minimize discrepancy,
which is based on rectangles. Also, each multi-dimensional sequence is made
from a combination of one dimensional sequences. This corresponds to a cube
being the product of one dimensional characteristic functions. However, it
should be noted that the 1/N type convergence suggested by the discrepancy
bound (ignoring the log factors) is only approached in two dimensions, at
least for the range on N considered here. For non-rectangular characteristic
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Shape Dimension Sequence Convergence Rate Error at N = 32768

Cube 2-6 R -0.50 .00609
2 H -0.96 .00019
S -0.97 00031
F -0.92 00035
4 H -0.79 00065
S -0.81 00061
F -0.89 00086
6 a -0.76 00092
S -0.71 00094
F -0.82 00115
Cone 2-86 R -0.50 .033
2 H -0.79 0045
S -.79 0068
F -0.66 L0081
4 H -0.62 012
S -0.59 023
F -0.61 013
6 H -0.59 015
S -0.54 015
F -0.54 D17

Table 3: Integration Error for Characteristic Functions of Cube and Cone
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functions, it appears that a convergence rate only moderately better than
that of a random sequence can bhe expected from quasi-random sequences.
This is of particular importance for particle simulations where a decision
process may be equivalent to such a function.

On the other hand, note that in all of these experiments the error for
quasi-Monte Carlo is significantly lower than the error for standard Monte
Carlo at the largest value of N. This indicates that quasi-Monte Carlo can
decrease the constant c in the integration error size cN—%, even if it does not
significantly improve the decay rate a.

On the other hand, note that in all of these experiments the error for
quasi-Monte Carlo is significantly lower than the error for standard Monte
Carlo at the largest value of N. This indicates that quasi-Monte Carlo can
decrease the constant c in the integration error size ¢N~2, even if it does not
significantly improve the decay rate «. While this is reminiscent of variance
reduction techniques, it is important to note that quasi-Monte Carlo con-
cerns manipulating the source “random” points, whereas variance reduction
involves changing the integrand and integration domain. Thus these are two
different techniques which may be used simultaneously.

3.2 Continuous and Smooth Functions on a Sphere

The question arises now as to whether the poor performance of quasi-random
sequences on characteristic functions relative to the smooth functions exam-
ined earlier is connected to the fact that these functions have infinite varia-
tion. To investigate this, two more sets of experiments were conducted. Both
involved functions which have support on spheres contained within the unit
cube, The first was the continuous but not differentiable function

R(s) —r, r < R(s)
F(ml,.--;ms)z{ (0, r>R(3)(

Here )
— }. 2 + + ( _ }_)2 :
r= (‘7"1 2) L 9 3

and R(s) is the radius given in Table 4. Because this function is not dif-
ferentiable on I, it has infinite variation. The second example was the C'>
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Tunction

] exp[—(202(1 — 2))-?], 2 <1
F(mla'“’ms)—{ P 0,2)1

Here z = r/R(s). The variation of the function can be estimated if it is
assumed that in each quadrant, the s** derivative will be of one sign. Because
the function is zero at the boundary of the cube, the variation will be the
sum of the function integrated over the boundary of each quadrant of the
sphere. Because there are 2¢ quadrants, it follows that the variation will grow
exponentially with dimension.

A new set of radii had to be calculated for each function because the val-
ues of the integral and the variance are different than for the characteristic
function of the sphere. Again the radii were chosen to maintain constant
variance across dimension, For the continuous function, the normalized vari-
ance was 672/m3 — 1, or about 20.7. For the C'* function some additional
notation is necessary to precisely give the radii and variance. Let

f(z) = exp[-(202(1 - 2))~?]

for 0 < z < 1. For dimension s = 2 to 6, define

f(} 2571 f3(z) dz
(fz1f(z)dz)”

Then the normalized variance of the smooth function is 64 H(6)/73—1, which
is around 15.63. The appropriate radius necessary to maintain variance for
each dimension and each of the functions is listed in Table 4.

Table 5 shows the results of integrating the continuous function and the
C* function, respectively. For the continuous function, all the sequences in
dimensions 2 and 3 are converging at a rate close to 1/N, with the Halton
sequence having the lowest error again. The higher dimensions look about
the same across the sequences, and have a convergence rate of around N—7,
For the smooth function, Halton is again the best in two dimensions, and
shows a steady decay in convergence rate with dimension, going from N—9
for s = 2 to N=62 for s = 6. The Sobol’ sequence shows the same kind of
erratic behavior it did for the cone, with the fourth dimension again being
particularly bad. The errors are about the same size as with Halton (except

H(s) =
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Function § =2 $=3 s=4 s=25 s=06
T T T
Continuous 7‘%&; (;ﬁ) s (i"%“ﬁéﬁ) * (3}15—3'”6) %
(.148 .260 0.353 0.432 (.5
1 1 1 1
a2 H(2)\ % 2 H(3)\F = H()\T x H{5)\ 5
Smooth (7)) (Femg) (mmg) (&Ee) 3
0.146 0.256 0.350 0.430 0.5

Table 4: Radii for Functions with Spherical Support

for two dimensions). The convergence rates for Sobol’ range from N—9%4 in
two dimensions to N—%2 in 4 dimensions, although these rates do not appear
too reliable. The Faure sequence lies somewhere between Halton and Sobol’,
with error size and convergence rates of the same magnitude.

What is interesting about these results is that despite having infinite
variation and higher variance, the continuous function has smaller error and
better convergence than the smooth function. The convergence rates for the
continuous function are about the same as for the cube, and better than
for the other characteristic functions. This suggests that continuity of the
integrand is important for improved quasi-random convergence, but that dif-
ferentiability does not necessarily help. These examples show that neither
variation nor variance nor smoothness consistently predict quasi-random in-
tegration error behavior.

3.3 Theoretical Bounds for Integration of Characteristic
Functions

To try and approach the convergence of quasi-random sequences on character-
istic functions of non-rectangular sets analytically, Kuipers and Niederreiter
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Function Dimension Sequence Convergence Rate Error at N = 32768
Continuous ~ 2- 6 R -0.50 025
2 H -0.99 .0006
S -1.00 0014
F -0.97 .0015
4 H -0.95 .0020
S -0.70 0037
F -0.75 0033
6 H -0.65 0048
S -0.73 .0039
F -0.72 .0047
Smooth 2-6 R -0.50 022
2 H -0.90 0011
S -0.94 0023
F -0.94 .0023
4 H -0.74 .0039
S -0.62 .0096
F -0.68 .0049
6 H -0.62 0070
5 -0.69 0050
F -0.65 0071

Table 5: Integration Error for Functions with Support on Sphere
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[7] define the isotropic discrepancy Jy of a sequence (xy,...,zy) in I%as

A .
Jy = sup AGN) m(C)

Cec

3

where C is the class of all convex subsets of I, A(C; N) is the number of z;
which are inside C, and m(C) is the measure of C. In Theorems 1.5 and 1.6
(pp. 94-97), they prove the bound

Dy < Jy < C, Dy,

where C, is a constant depending only on dimension. Because Jy is a bound
on the integration error associated with characteristic functions of convex
sets, this bound suggests that the convergence rate for such functions may
only be N-Y/¢, The computed examples of such functions,show decreased
convergence rates with increasing s, but nothing this extreme.

Press and Teukolsky [18] suggest another argument to explain the ob-
served decline in convergence rates of quasi-random sequences when applied
to characteristic functions. They reason that near the boundary of the set de-
scribed by the characteristic function, whether a point of the sequence lands
inside the set (and thus contributes a value of one to the average) or outside
the set (where the function is zero) is essentially random for non-rectangular
sets. Combining the random error near the boundary, which has N--5 type
behavior, with the superior quasi-random behavior over the rest of the set,
described by the discrepancy Dy, leads to a new convergence estimate. As
dimension increases, the boundary of any set plays an increasingly domi-
nant role. This helps explain the decline in convergence rate with increasing
dimension.

This argument can be made more rigorous by reworking the theorems
mentioned above under the assumption of randomness near the boundary.
The following lemma summarizes this result.

Lemma 1 Let (zy,...,zy) be a sequence of N points in Iswith discrepancy
Dy and isotropic discrepancy Jy, such that Dy < N—5. Assume that near
the boundary of C, an arbitrary convex set, the error associated with the
percentage of points of the sequence that actually fall inside the set compared
with the size of the boundary is bounded by a constant times the expectation
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for a random sequence. Then

.
Iy < C, [N=6-DDy] ™7

Proof: Theorems 1.5 and 1.6 show that it can be assumed that C is a closed
convex polytope, which means that it is possible to construct sets P, which
are unions of a finite number of disjoint rectangles such that P, C € and
m(C) — m(P,)} is arbitrarily small. Consider such a set P.. Then

A(C; ) A(P;N)

2EH o] = PG - ey + 2 e
A(P,; N)
—T-f-m(Pr)
< fl(—ljv\‘;‘{vl—m(})r)_’_
A(C=P;N)
———ﬁuww—m(c—~PT)
< |2 ey gk (_—__—m(ch‘;‘ e f))f

This last inequality follows from the assumption of random-like behavior near
the boundary of (. Here k is a constant. For any positive integer r, Kuipers
and Niederreiter show how to construct a set P, such that

A(P; N
l—"'('*'j\?*—)' - m(PT) < po-l Dy
and .
m(C — P) < VS
r
Thus 1t follows that
1
A(C; N) 254/5\ 2
PR S S < ps—1 ]
’ I m{C)[<r DN+k(rN)

Because r can be any positive integer, it may be chosen to optimize the
bound. Let r be the first integer smaller than (ND%)-1/(2s-1. Then it
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follows that 1/r < 2(N.D% }1/(2s-1), and the bound can be written
A(Cy N)

N —m(C)l < (ND3) Dy 4k, (ND3) N~}

o 1) 1
— NESpy 4 p, NEEE-DpE

_gml e o=l e
= N 25—1DN +kSN 25—1DN
1
= C, [N-6-DDy| ™7 .

Because the left hand side of the inequality is independent of the convex set
chosen, the right hand side may be replaced by the sup over all convex sets.
This gives the result stated in the lemma.

Even if the optimistic approximation for Dy of N-! is used, the resulting
bound on the integration error for characteristic functions of convex sets is

lerror} < CSN"T;:T .

This result suggests that for an integration problems with discontinuous in-
tegrand in a high dimension, convergence much better than that of a random
sequence cannot be expected. This is a result of the fact that sets in high
dimensions are almost entirely boundary, where the integration error of a
quasi-random sequence behaves like the error for a random sequence.

A comparison of this theoretical bound with the above experimental re-
sults for characteristic functions shows again that the bound is somewhat
pessimistic. For example, for the characteristic function of the cone, the Hal-
ton sequence in two dimensions has a calculated convergence rate of about
N—38; whereas the bound from the Lemma has the convergence rate of N—67.
In six dimensions the Halton convergence rate is N—€; while the bound pre-
dicts a convergence rate of N—55 The actual integration error shows some
similarities to the bound behavior, but the rates of convergence are better
than predicted. Moreover the constant ¢ in the integration error rate (¢N—%)
is often seen to be improved through quasi-Monte Carlo.

4 Conclusions

The computational experiments described above show that Quasi-Monte
Carlo methods, using quasi-random (i.e. low discrepancy) sequences, pro-

33



vide an effective integration technique for many multi-dimensional integrals.
Moreover, the error in the Quasi-Monte Carlo integration method is found
to be significantly less than the corresponding error for a standard Monte
Carlo (i.e. random or pseudo-random) method. Of the quasi-random se-
quences tested, for low dimensional problems up to around s = 6, the Halton
sequence generally gives the best results. In higher dimensions, for most
problems the Sobol’ sequence was superior. The Faure sequence, which has
the best theoretical bound [9], was generally better than random, but was
for the most part outperformed by Halton or Sobol’.

It is important to note, however, that the error reduction for Quasi-
Monte Carlo methods is limited by several factors. For integration of smooth
functions in 1 dimension, the error is of size ¢, N-1, compared to error size
c; N=1/2 for random simulation (which has this error size for all dimensions).
If the dimension is increased or the integrand function is less smooth, the
observed error may be of size ¢; N=* in which 1/2 < A <1. Still the error for
Quasi-Monte Carlo integration is almost always significantly better than that
for standard Monte Carlo, using a random or pseudo-random sequence, due
to either a larger algebraic decay rate A or a smaller constant ¢. Thus for a
fixed error tolerance level, the quasi-random simulation requires significantly
smaller number N of simulation points. In many problems with complicated
integrands, use of the simulation points entails a lot of computation, so that
the resulting reduction in computational effort will more than compensate
for the increased work required to generate the quasi-random sequence.

In the companion paper [10] we have used a Quasi-Monte Carlo method
for simulating solutions of the heat equation. The computational results
in [10] indicate a dependence on dimension that is quite similar to that for
Quasi-Monte Carlo integration seen above. They also show that use of quasi-
random sequences is delicate, since the elements of the sequence are corre-
lated. For example, efficient simulation of the heat equation is only possible
if the particle labels are reordered. Also use of a quasi-random sequence
in the Box-Muller method for sampling a Gaussian distribution results in
significant loss of efficiency.

These results lead to several conclusions concerning application of quasi-
random sequences to Monte Carlo methods. First, there are many prob-
lems for which direct application of quasi-Monte Carlo may be superior to
standard quadrature or Monte Carlo. Examples include smooth integration
problems in intermediate dimension, such as absorption or scattering from
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rough surfaces, and discontinuous integration problems in low dimension.
For such problems, use of quasi-Monte Carlo is superior to standard Monte
Carlo (even with variance reduction), since it provides a better convergence
rate (not just a better constant).

For more difficult problems, however, the advantages of quasi-Monte
Carlo over standard variance reduction are not as clear, and effective use
of quasirandom sequences requires more effort. We expect that our results
will guide the development of modified variance reduction and other Monte
Carlo techniques employing quasi-random sequences. This may require refor-
mulation of the technique to insure that the resulting integrands are smooth
and low dimensional, One such example is the modified absorption method
in section 2. OQur computational results show that this made the quasi-Monte
Carlo method much more accurate.

In a related work, several modified Monte Carlo methods have been de-
veloped for effective application of quasirandom sequences. These include a
smoothed acceptance-rejection method and a lower dimensional Feynman-
Kac integration method in [12] and the Diffusion Monte Carlo method {11].
We have not yet succeeded in application of quasirandom sequences to other
Monte Carlo methods, such as the Metropolis algorithm and stratification.

We expect that future progress with quasirandom methods will depend
on further modifications of standard Monte Carlo methods for simulation
and variance reduction.
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