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Abstract.

We present preconditioners for a symmetric, positive definite linear system arising from the finite
element discretization of a second order elliptic problem in three dimensions. The discretization nses
nodal basis functions and the preconditioner arises from a transformation to hierarchical basis fune-
tions. We show, for the case of uniform refinement of tetrahedral elements, that the condition number
of the linear hierarchical basis coefficient matrix A scaled by a coarse gnd operator is O(h™* log h™3),
where b is the mesh spacing. If additional diagonal scaling by levels is applied in the fine grid, a
condition number of O(h™") is obtained. The same result is obtained if A is scaled by its block diago-
nal. Moreover, we show that any other block diagonal scaling of A will yield a condition number that
grows at least as Q(h™"), These results compare favorably with the condition number of O(h™?) of
the nodal coeflicient matrix. We provide numerical results that confirm this theory. The sequential
implementation of this preconditioner in three dimensions nsing tetrahedral elements takes only 4N
operations per iteration, where NV is the number of unknowns. We extend the analysis of the linear
preconditioner {o the case of non-uniform refinement, These results are extensions of those obtained
by Yserentant [24] for two dimensional problems.

Key Words. elliptic problems, finite element method, hierarchical basis, multilevel precondi-
tioner, preconditioned conjugate gradient, symmetric positive definite system

AMS(MOS) subject classification. 65F10, 65N30

1. Introduction. In this paper, we present hierarchical basis preconditioners for
a symumetric positive definite linear system arising from the finite element discretiza-
tion of a second order elliptic problem in three dimensions. The discretization uses
nodal basis functions and the preconditioners are derived from a transformation to
hierarchical basis functions. The transformation of the nodal coefficient matrix 4 to
the hierarchical coefficient matrix A and the application of scaling by some matrices C
and ) yield a dramatic improvement in the condition number. Yserentant [3, 23, 24]
has shown that for the case where triangular elements are used, a condition number of
K(C~Y2ACY?) = log(h™1), where C' is some coarse grid operator, can be obtained
when the preconditioners are applied to two dimensional problems. In three dimen-
sions, we show that for the case where tetrahedral elements are used, condition num-
bers of k(C~Y2AC~Y?) = O(h~'logh!) and x(C-1/2D-2AD- 1/26’ 12y = O(h™1),
where C is a coarse grid operator and D is a fine grid diagonal matrix, can be obtained.
These compare favorably with £(A) = O(h~?) when nodal basis functions are used [10,
22]. This shows that the linear hierarchical basis preconditioners in three dimensions
are competitive with some preconditioners currently being used. In particular, they
give the same improvement in condition number as the modified incomplete Cholesky
factorization {2, 9, 12, 13] and SSOR preconditioners [2]. However, there are precondi-
tioners that compare favorably with hierarchical basis preconditioners. Among them
are the multilevel nodal basis preconditioner (BPX) in [4] which yields a condition
number of O(j%) = O((log h™")?) for problems with smooth coefficients in any space
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any space dimension'; the multilevel filtering preconditioner in [17] which is similar to
BPX; and some additive Schwarz preconditioners presented in [8] which can achieve
an optimal O(1) condition number.

Even though the reduction in the condition number in three dimensions is not as
spectacular as in two dimensions, the hierarchical basis preconditioners have several
attractive features. They are robust and can be used for a wide class of problems. They
do not require the full elliptic regularity that multigrid theory does [14] in obtaining
convergence results. They are simple to implement and an optimal sequential operation
count of O(NN) per iteration can be achieved when tetrahedral elements are used.

An interesting property of the hierarchical basis preconditioners is that the pre-
conditioning matrix § does not depend on the differential operator of the boundary
value problem. It depends entirely on the finite dimensional space containing the so-
lution, the nodal and hierarchical basis functions spanning this space, and the mesh
refinement.

In Section 2, we present the hierarchical basis preconditioning matrix §.

In Section 3, we obtain upper bounds on the condition number of A scaled by dif-
ferent symmetric positive definite matrices M for the case where tetrahedral elements
are used.

In Section 4, we prove bounds on the seminorm and H'-norm of the solution »* to
the discrete varlatlonal problem. These results are used in Section 3 in proving upper
bounds on the condition number of A scaled by different matrices M.

In Section 5, we prove optimality of the estimates given in Section 4 and the
condition number bounds given in Section 3. Moreover, we show that the condition
number of A scaled by any block diagonal matrix decoup].mg the different refinement
levels grows at least as O(27) = O(h™1).

In Section 6, we extend the analysis of the linear hierarchical basis preconditioner
to the case of non-uniform refinement. We obtain results analogous to those of Section
3 on uniform refinement if the amount of non-uniformity in the refinement is suitably
restricted.

In Section 7, we discuss the sequential implementation of hierarchical basis pre-
conditioners using tetrahedral elements. We provide a sequential implementation that
takes O(NV) operations. This implementation is based on a parent data structure and
is basically a forward-backward solve which can be done simultanecusly at each level of
refinement. We provxde numerical results that confirm the theory in Section 3 on the
condition number of A scaled by a coarse grid operator with or without fine grid diago-
nal scaling. These results are obtained by comparing the number of iterations required
for convergence in solving model problems using the conjugate gradient and precondi-
tioned conjugate gradient methods. Tetrahedral elements and uniform refinement are
used in the implementation. The specific uniform tetrahedral refinement strategy used
in the analysis in this paper is found in [20, 21]. Any reference to uniform refinement
strategy refers to the strategy in these two papers. With this uniform refinement strat-
egy, a tetrahedron T in triangulation Tj is refined into eight equi-volume tetrahedra in
7y +1 by connecting the six midpoints. Other uniform tetrahedral refinement strategies
can be found in [26].

A more detailed discussion of the results presented in this paper are found in [20].

! The hierarchical basis and the BPX preconditioners in two dimensions have been studied in a
common framework in [8, 25].



2. Hierarchical Basis Preconditioning Matrix §. Consider the boundary
value problem

(2.1) Iv = f in
v = 0 on 09,

where L is a second order linear elliptic, self-adjoint, positive definite differential op-
erator. A variational formulation of the boundary value problem (2.1) is given by

Findu € H{($2) such that
(2.2) a(u,v) = f(v) Ve HEHQ).

By self-adjointness and positive definiteness of the operator L, it follows that the
bilinear form a(u,v) is symmetric and satisfies

(2.3) & lull 20 < a(u,u) < &lufl o0
or
(24) 61“'!15”1 20 S < a(u ’U) < 62”'&”1,2,9

for some positive constants §; and 8,. Here, ||ul; 2,4 and |ul; 2.9 are the H*-norm and
seminorm, respectively, of u. A typical example is given by the Poisson equation

Lu=-Viu=7f
where the variational form is given by
alu,v) = (Vu, Vo) = (f,v)

for which (2.3) is satisfied with 51 =6, =1.
A Galerkin approximation u® in the finite dimensional subspa,ce VE C HE(Q) solves
the following discrete problem associated with (2.2):

Find u® € V*  such that
(2.5) a(ut,v") = f(o?) Vot e V.

We use the finite element method to construct a finite dimensional subspace V*,
We subdivide the domain (2 into a finite number of subdomains T, called elements, to
achieve a triangulation 7, and define a basis for the subspace V,. We use the basis
that consists of continuous piecewise linear functions. The linear element in three
dimensions is the tetrahedron.

Let the set of nodal basis functions {¢;, ¢, -+, ¢} span the subspace V. Then
the solution 4" can be expressed as

N
(2.6) 'U';h = Zq1¢.1‘

Substituting (2.6) and v* = ¢; into (2.5), we obtain the system

(2.7) Aq‘ = b
3



F1a. 1. Hierarchical basis funclions

where
(2.8) Ay = aléi ¢;)
bi = f (¢i)
g = nodal coefficient vector.

A is symmetric positive definite.

Let us now define a new set of basis functions {951, 9;52, . ,c;?)N} Consider an initial
or level 0 triangulation 7, of {2 into a set of tetrahedra having ny nodes. Define nodal
basis functions {¢1, -y ¢ﬂu} at these nodes. At the next level, level 1, refine each of
the tetrahedra in 7; into eight smaller tetrahedra by connecting the midpoints of the
edges of the tetrahedra, thereby creating triangulation 7; having a total of n, nodes.
Define nodal basis functions {¢no+1, ey d),,l} only at the nodes introduced at this level,
a total of n; — ng nodes. We proceed with the refinement until there are j levels of
refinement, n; = N nodes, and N basis functions {47’1, . ,qSN} The basis functions
b generated in this manner are called the hierarchical basis functions, This concept is
illustrated in Figure 1 for one dimension.

Using the hierarchical basis functions, the solution u* can be expressed as

N
(2.9) =3¢
i=1
Substituting this and »» = ¢, into equation (2.5) yields the system
(2.10) Ag=5b
where
(2.11) Ay = a($,9))
b = f (¢a‘)
g = hierarchical coefficient vector.

A is symmetric positive definite.

In this paper, we will focus on the use of iterative methods to solve (2.7) or (2.10).
For some iterative methods, the condition number determines the number of iterations
it takes to converge to the solution within error tolerance. Hence, a better conditioned
linear system is desirable. The use of hierarchical basis functions and some coarse grid
operator scaling results in a better conditioned system. This system is given by (2.10)
if the coarse grid operator is the identity matrix. This improvement can be viewed as
preconditioning the nodal system (2.7).



We derive the hierarchical basis preconditioning matrix 5 by finding the relation
between the linear systems (2.7) and (2.10). We begin by evaluating the two rep-
resentations (2.6) and (2.9) for u* at node i whose coordinates are (z;,%;,%). This
gives

N
(2.12) u (@, YirZi) = ¢ = Z:Qkﬁbk(mnynzs)-

If we define the (%, k) component of S 1o have the value

(2.13) Sik = Geliis 2,

then we have the following relation between the nodal coefficient vector ¢ and the
hierarchical coeflicient vector §:

(2.14) q= 54

Substituting the nodal and hierarchical basis representations for u* and v* into the
variational form (2.5) and using {2.14), we obtain the relations

(2.15) A=5TAS
b= 57b.

The matrix § whose components are given by (2.13) is the hierarchical basis precon-
ditioning matriz. § is a block unit lower triangular matrix if the nodes are numbered
in hierarchical order (the nodes in level 0 are numbered first, then the nodes in level 1
are numbered next, and so on). S depends entirely on the finite dimensional subspace
V* containing the solution u*, the nodal and hierarchical basis functions spanning
the space V", and the mesh refinement. The implementation of the hierarchical basis
preconditioners involving § and $7 is discussed in Section 7.

The system (2.7) is solved by the preconditioned conjugate gradient method with

the preconditioner M = §~T A§~! where A is some approximation to A. This precon-
ditioner M is obtained by first finding an appropriate scaling M to A. In the following
section, we obtain condition number bounds on A scaled by different matrices M.

3. A Bound on kg (A), the Condition Number of A Scaled by Matrix M.
We show that the hierarchical coefficient matrix A in (2.10) scaled by some coarse grid
operator is better conditioned than the nodal coefficient matrix A in (2.7). A better
result can be obtained if a fine grid diagonal scaling, in addition to the coarse grid
scaling, is applied to A, We show that the condition number of A scaled by a coarse
grid operator is bounded above by O(52’) = O(h~'log h~*) when uniform refinement
is used, where j is the number of refinement levels, We also show that the condition
number of A scaled by a coarse grid operator and a level-dependent diagonal matrix
in the fine grid is bounded above by O(2/) = O(h~1). In addition, we show that
the condition number of A scaled by the block diagonal of A is bounded above by
O(2) = O(h™'). We analyze the case where the coarse grid operator is the Laplace
operator, the Helmholtz operator, or the actual problem operator on the coarse grid,
i.e., the coarse grid discretization of the operator. We provide an analysis using linear
tetrahedral elements and uniform tetrahedral refinement strategy.
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In Subsection 3.1, we define the notation used in the analysis of the hierarchical
basis preconditioners. In the succeeding subsections, we obtain bounds on the condition
numbers Ky (A) of A with respect to different symmetric positive definite matrices M.
Here, ky(A) = k(M2 AM /%), where &,(-) is the condition number in the discrete
2-norm. In Subsection 3.2, we analyze the case where A is scaled by M which is the
coarse grid Laplace or Helmholtz operator with or without fine grid diagonal scaling. In
Subsection 3.3, we analyze the case where A is scaled by M which is the actual problem
operator on the coarse grid, with or without fine grid diagonal scaling. In Subsection
3.4, we analyze the case where A is scaled by M which is the block diagonal of A.
The proof uses main results proved in Section 4 on the bounds on the seminorm and
H'-norm of the solution u* to the discrete variational problem. In Section 5, we show
that the results obtained in this section are optimal and that any other block diagonal
scaling will not improve the growth rate of the condition number of A.

3.1. Notation and Definitions. Let Q with coordinates (z,y, z) be the polyg-
onal domain of the problem we want to solve and let Q be discretized into tetrahedra
using j levels of refinement. The grid in the initial level or level 0 of refinement will be
referred to as the coarse grid. Unless specified otherwise, H shall denote the maximum
diameter of the tetrahedra in the initial triangulation (level 0) of §2 and @ shall denote
a lower bound for the interior angles of the tetrahedra in the final triangulation (level
j) of . We define the following sets, spaces and functions:

N, : the set of nodes at level & of refinement
ny ¢ the number of nodes in N,
7, : the set of tetrahedra at level k of refinement
V, : the space of piecewise linear functions in the set 7, which are zero in the set
Ni_1. Vy = &, defined below when § = 0.
S; : the space of piecewise linear functions in the tetrahedra at level j and continuous
in
I,u" : a piecewise linear polynomial interpolating u* at the nodes in level k
We number the nodes in Ny as 1,+++,n, and the nodes in N\N,_;,k = 1,---,4, as
gy + 1,0,y

The solution u” considered in this paper is in ;. A function w* € §; can be

expressed as

h

J
(316) ’Mh = I,uh = Iouh + Z(Ikuh - Ik__lﬂh).

k=1
Notice that Tu* — I,_,u* € V,.
We write down the norms we wi]l be using in the proof. The L:-norm, the H!-

seminorm, and the H'-norm of u* are denoted in the usual manner by “u llo,2.05
|uP|1 2.0, and [[uP]}; 5.0, respectively. The Euclidean norm and the matrix norm con-

sistent with this vector norm are denoted by || - ||. The maximum norms are given
by:
h -
(3.17) I lon = max [4*a,5,2)),
(3.18) luhll,m;ﬂ

(xgllf)’fm{lgl, l“@-l, IE;U-
6



We also define norms expressed as follows:

§

(3.19) LD DD DR A ek
k=1 (z,y,2)e N\ Ni—y
i —

(3.20) WhfE, = 327 3 |Lu® — I ut]?

k=1 {z,4,7YeNR\Np—1

These norms arise from bounding the seminorm and H'-norm of «* using the splitting
in (3.16). Each term in the innermost summation on the right hand side of (3.19) and
(3.20) can be expressed as

Ty
(3.21) Ly —I_ju* = Z G
. f=ng _1+1

where the hierarchical basis representation (2.9) for u* is used. We write the coefficient
vector ¢ as

g qd

3.22 g=1 .° g, = :
( ) q [Q_f ]s q; k
q;

where ¢, = ¢, € R"° are the coeflicients of the basis functions defined at the coarse
grid nodes, g, € R"/~"° are the coefficients of the basis functions at the fine grid nodes,
that is, at the nodes beyond level 0, and §, € R"*"*~* are the coefficients of the basis
functions at the set N,\N;_;. Using (3.22), the norms in (3.19) and (3.20) can be
written as

(3.23) ‘ lW*? = &7q,
(3.24) W2, = &7 D4,
where
2-1r,
2-2],
(3.25) Dy = ,

271,
and I is an (n; — ny_1) x (n — ne_,) identity matrix.

3.2. Coarse Grid Laplacian or Helmholtz Operator M. We obtain an upper
bound on the condition number of A with respect to C and C* where C is the Laplace
operator on the coarse grid and C* is the Helmholtz operator on the coarse grid.
The matrices C' and C* come from the bounds on the seminorm and H'-norm of u*,
respectively. We also obtain an upper bound on the condition number of A with respect
to DY2CD'/? and D'/*C* D'/? where D is a level-dependent diagonal scaling given in
the following discussion.

Since §; ¢ H' () and u* € &;, it follows from (2.3) or (2.4), respectively, that
there are positive constants 6, and 4, such that a(u®, u*) satisfies

(3.26) 6]t 20 < a(wh ) < 83|utf} 2
7



or
(3.27) 61“'”’3”3,2;0 < a(“hsuh) < 621'““’[%,2;9

for all w* € §; C HY{(Q).
We nge the bounds on the seminorm and Hloanorm of o® given in Theorems 4.1

and 4.2. Using the hierarchical basis representation for u® in (2.9), the terms in the
curly brackets in the estimates in Theorems 4.1 and 4.2 can be written as

(3.28) Houhlion + [P = e(vh,u)=§"Cq

(3.29) Houlon+ w2, = eu, (v, u?) = g7 DV2CDY 2
(3.30) [ow* |l 20 + 6P = (P u?) = §"C*g

(3.31) MHow' i za +u"a, = e,(u*,u")=4§"DV?C" D24
where

i

(3_32) Cij { fn &s’,s&’j,w + &i,y&j,y + &i,z&j,zdﬂ i,j = 1,2,--+,my

bi; otherwise,

(3.33) ¢ = { o bt + biadi o + BiyPiy + Dis$sdQ 4,5 = 132, <ty
s B otherwise

and

_ IO _ 2-1.{1
(3.34) D= { D, 1 =

The symbol §;; is the Kronecker delta and the notation 95-',40 = %%i is used. D, is given
by (3.25), I, is an ng X my identity matrix, and I is an (n; — Rp_y) X (Mg — Mg_y)
identity matrix. Note that C is the identity matrix except for a block corresponding
to the Laplacian operator —V? in the coarse grid and C* is the identity matrix except
for a block corresponding to the Helmholtz operator —V? 4 1 in the coarse grid.

We obtain upper bounds on the condition numbers kc(A) and kpisagpiss(A) for
the case where the bilinear form a(u”,u*) satisfies (3.26). Using the bounds on the
seminorm of u* given in Theorem 4.1, the identities given in (3.28) and (3.29), and the
matrix C given in (3.32), we obtain

(3'35) Wc(uh7“h) < a(ubiuh)562K2c(uhauh)
6, K.
(3.36) 12:' 2eu, (v ut) < a(ut,ut) < 6 Kqe,, (vh,uh)

or, in hierarchical basis representation,

6Ky .y, T g AT s
(3.37) —(-ﬁ-l;?q%q < §TA§ < 6,K,4"Cq
6, K. \
(3.38) -123—.3@1"131/201)1/2@ < §TA§ < 6,K,§7DY*CDV?§



where j is the number of refinement levels. We obtain from (3.35) through (3.38) the
following upper bounds on the condition number of a(u*, u*) with respect to e(u®, u®)
and c,,(u",u):

8, XK,
5 K.

P S §

(3.39) k(@) = re(d) =wy(C~V2AC V) < (G +1)2

(3.40) k., (@) = Kpuacpia(A) = ry(C™VEDW2AD™Y2CH%) < gigmizf ,
183
where ky(-) is the discrete 2-norm condition number.

Similar results can be obtained for the case where the bilinear form a(u",u")
satisfies (8.27). For this case, the bounds on the H'-norm of u* given in Theorem 4.2,
the identities given in (3.30) and (3.31), and the matrix C* given in (3.33) are used.
By the same procedure used to obtain (3.35) through (3.38), we obtain the following
estimates:

6, K3
(7 +1)2

61K; * A _h h .k PR h A

—"é“_;*-cw,(u yu') £ a(u”,u") < 6, Kicl, (u”,u")

and the following bounds for the condition number:

e*(u*, u?) < a(uh,v?) < 8, K3 (uP, ut)

5, K2

8 K3
(3.42) ks (@) = Kpiragepia{A) = ,5-,2(C*-1/2D—1/2}1D-1/20u1/2) < 3_2.%23'.
2 143

(3.41) kola) = ke (A) = ky(C*VPAC YY) < (G + 1)

3.3. Actual Coarse Grid Operator M., We obtain an upper bound on the
condition number of A with respect to A, where A4, is the actual coarse grid opera-
tor. We also obtain an upper bound on the condition number of A with respect to
D2 A DY? where D is given by (3.34).

The coarse grid interpolating polynomial I,u” is in the space S, ¢ H 1(Q), so
a(lyu”, Iyu") satisfies the condition given in (3.26) or (3.27) and we have

(3.43) 81 Lou” [ 20 < a(low”, Twt) < 65| Tuf 40
or
(3.44) 6l LI} 20 < a(fou®, Iu?) < &l Lo} 20,

respectively. If we define
(3.45) ao(u®, ut) = a(Lou®, Iu™) + [u*]? = § A4
(3.46) o, (u",u?) = a(Tpw®, Lu?) + Ju*2, = §7 DV24,DV%g,

it follows from (3.26), Theorem 4.1, and (3.43) (if a(u”,u") satisfies (3.26)) or from
(3.27), Theorem 4.2, and (8.44) (if a(u®, u*) satisfies (3.27)) that

[44
(3.47) mao(“h, uh) < a(v?, '“h) < Oﬂzao(uh,”h)
(3.48) 0,0, (v, %) < a4, 4?) < @00, (0, )

9



or, in hierarchical basis representation,

(3.49) §" A §TAg < 0,57 Avg

IA

Qg
(7+1)2
«

74" DVPA,D*G < §TA§ < aug" DV A,D'.

(3.50) 5

The positive constants «,, o;, a3 and a, depend on the constants §, and §,, and on H
and 6. From (3.47) through (3.50), we obtain

(3.51) Kaol@) = £ag(A) = ry(A7 4451 < 22(j +1)2
1

(0‘.) = K'Dll"-'ADDU’(A) = Kz(A;1/2D—112AD_1/24’40—1/2) S 912".

(3.52) & o

G0, wyg

Ay is the identity matrix except for a coarse grid block corresponding to the actual
coarse grid operator. The coarse grid block is the matrix arising from the nodal basis
discretization of the boundary value problem in the coarse grid.

3.4. Standard Bilinear Operator M. The standard bilinear form b(uh, v?) is
defined by

J
(3.53) b(u", v*) = a(Tou", Iw") + Y a(Lpu® — L_yu, Lo* - I _yo")
k=1

for all u”,o* € §; ¢ HY(Q). It follows from (3.53) that the spaces V, and V,, k # I,

are pairwise orthogonal with respect to the bilinear form b; that is, for v, € V, and
v € Vi, k # 1, we have

(3.54) b(vg, vr) = 0.

Substituting the hierarchical basis representation for u* in (2.9) into b(u*,u*), we
obtain

~ J‘ -~
(3.55) b(u", u") = a(Iout, Lu*) + E a(lyu® — I_yuh, Lu? — I,_;u*) = ¢ Bg.
k=1

The matriz B is the block diagonal of A.

We obtain an upper bound on the condition number of A with respect to B which
comes from the bilinear form 5(u", u*). We make use of part b) of Lemma 4.1.4 and
the result in (4.92). Since Liu® ~ I, _yu" is in V,, C HY(Q), then a(Lyu® ~ I,_ v, Lub —
I _;uh) satisfies

&lLu? — L w20 < a(lyw® = Liyul, Lu? — Iy uP) < 6Lt — Lo gu o
(3.56)

or

51“%“" - Ik-ﬂh“f,z;n < ﬂ(Ik“h “‘Ik—luhaIkuh = Ik-luh) < 52||Ikﬂh - qu'uh“iz;n
(3.57)
10



depending on whether a(u®, u*) satisfies (3.26) or (3.27), respectively. For the case
where a(u”, u*) satisfies (3.26), we obtain from Theorem 4.1, (3.43), Lemma 4.1.4, and
(3.56) the following result:

¥ 13 Cualy 2=

(SlKS {ia_(Iouh’Iouh) +
Lz k=1

§
1
Za(Iku" - L u*, L — Ik-l'u'h)l < a(u®, u")
J

1 1
< §,K, {E“(quhafo“h) + Ok, ga(Iku" — L _ut Lut - Ik_lu")} .

(3.58)

Using the definition of the standard bilinear form b(u*, ) in (3.53), we have from
(3.58)

(3.59) %B(u",u") < alut, ut) < ab(ul, ut)
or, in hierarchical basis representation,

Q1.1 £ a AT 7= ATy~
(3.60) 574 B <a"A§ < 0§" B

The constants «; and a; depend on the constants 6, and §,, and on H and 8. From
(3.59) through (3.60) we have

(3.61) ki(a) = kp(A) = ko(B~Y2AB1/?) < -lef.
1
Similar results can be obtained for the case where a(u”,u*) satisfies (3.27). For
this case, Theorem 4.2, (3.44), (4.92), and (3.57) are used.

3.5. Condition Number Summary and Remarks. In all of the above cases,
we have obtained upper bounds on the condition number of A with respect to differ-
ent symmetric positive definite matrices M. In all cases considered, either x,,(a) =
ryr(A) = Ko(MY2AM %) < ¢ §2 or kp(a) = sg(A) = Ko M-Y2AM-Y2) < ¢ 2
for some positive constant c, which says that the condition number grows no faster
than O(527) or O(27), respectively. In Section 5, we will show optimality of the upper
bounds by showing that the condition number grows no slower than 0(;j2%) or 0(2%),
respectively.

In general, the condition numbers are bounded above by O(h~!log(h~1)) or O(h~1),
respectively, where A is the smallest diameter of the tetrahedra in the refinement. If
uniform refinement is used, h~! = O(2’); hence, we have the results in the previous
subsections. Note also that N = O((27)®) = O((1/h)®) with uniform refinement, where
N is the number of unknowns and h is the mesh spacing.

If the coarse grid operator is the identity matrix, then (3.39), (3.41), or (3.51)
shows that r,(A) is bounded above by O(N/2log(N'/?)) = O(h~'log(h~1)) = 0(527)
and (3.40), (3.42), or (3.52) shows x,(D~/2AD~1/?) is bounded above by O(N/3) =
O(h™') = O(2/). This is an improvement over the system obtained using nodal ba-
sis functions where the condition number k,(A) of the nodal coefficient matrix A is
O(N*®) = O(h~%). If the initial refinement is simple and has few elements, we con-
jecture that the bounds obtained in the previous subsections provide good estimates
of ky(A) and k,( D124 D=1/2), 1espectively, especially as we increase the number 3 of
levels of refinement.
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Remarks. The upper bound on the condition number &,,{a) of the symmetric positive
definite bilinear form a(u*,u*) with respect to a symmetric positive definite bilinear
form m(u”,w") is independent of the basis functions chosen to represent the function
u" € §;. Choosing the hierarchical basis functions to represent 4 in the bilinear form
m(u*,u") in the above cases results in a matrix M which has a nice structure. Note
the nice structures of the matrices C,C*, Ay, and & in the previous subsections.

It should be noted that the hierarchical basis coefficient matrix A is a dense matrix
and does not have the nice structure that M has. However, when implementing the
hierarchical basis preconchtloner as discussed in Section 7, A is not formed explicitly.
Instead, its factored form, A = 57 AS given in (2.15),is retained. The nodal coefficient
matrix 4 often has nice sparsity structure. S, in hierarchical ordering, is a block unit
lower triangular matrix and its operation on a vector can be efficiently implemented.

4. Bounds on the Seminorm and H!-norm of «*. In this section, we prove
bounds on the seminorm and H'-norm of u* ¢ S;. The proof follows closely the
procedure used by Yserentant in {24]. These results are used in proving bounds on
the condition number of A scaled by a matrix M discussed in the prewous section.
The main results on the bounds on the seminorm and H!-norm of u* are stated in the
following theorems:

THEOREM 4.1. Let j be the number of levels of refinement, u* € S;, and Iyu?
interpolate u® at the initial refinement nodes. Then with uniform reﬁnement there are
positive constants K, Ky, K3 and K, such that

K
a) m{l%uhﬁ,z;n + |’Mh|2} < |uh '“1’,2-,9 < Kz{”nuh %,2-,:1 + luh|2}

K
b) "2",?"{[10”’]!%.210 + luh 3::} < l”h[%ﬂ;ﬂ < I(4{|I0uh]'§"2;n + I“hlfun}

where K;, K,, K5 and K, depend on H and 8.
THEOREM 4.2. Under the same assumptions in Theorem 4.1, there are positive
constants K7, K3, K3 and K3 such that

"

K ‘
a) W{Hfaﬂhﬂiz;n + e} < Wiz < K3 {Iou|2 00 + [uP]P)

K3 .
b) *‘Q*f“{ﬂfouhﬂf.zzﬂ +utfi} < WPlian < KI{lowt | sn + [utl2,}

where K3, K3, K3 and K§ depend on H and 8.

The above theorems are proved in a series of lemmas, Lemmas 4.1.1 to 4.1.9. The
key to the proof of the theorems above is to make use of the splitting of 4* into its
components in the spaces Vk, k=01, 3 This is given by (3.16). Note that
Lyu® € V, and Lu? — I, _uP Evk,fork_l “j.

4.1. Proof: Lemmas 4.1.1 to 4.1.9. In the following lemma, we bound the
maximum value of «* in terms of the H'-norm of »*. This makes use of a spherical
inequality given in Lemma A.1 in the appendix.

LEMMA 4.1.1. Let T be a given tetrahedron of diameter H which is arbitraridy
subdivided into smaller tetrahedra of diameter greater than or equal to h. Let u® be a
Junction continuous in T and linear in the small tetrahedra in T. Then

Cr H 1/2 H 1/2
4" locor < 237 (“}'{) 4" lls2 = € (f) 14" l1,2,7
12



Fia. 2. Reference tetrahedron T,

where C; depends only on the diameter H of T and a lower bound for the interior
angles of the small teirahedra in T.
Proof. Consider the reference tetrahedron T

T:{(z,4,2)|e+y+2< 1 z,y,2> 0}

with diameter H = +/2 as shown in Fig. 2. The function ©* is assumed to be a piecewise
linear function in 7.

To be able to use the spherical inequality in Lemma A.1, we need to extend u”
in T to a function which is in H}(C) for some domain C. This can be achieved by
repeated reflection of u” in 7' to obtain a function v in C. A weight function w can be
defined so that wwv is zero on the boundary of €.

To avoid the complicated geometry resulting from repeated reflection of u”* in T,
we first extend «” in T to a function w in a prism P where

P={(z,y,2)]z+y<1;2,4>0,0<2<1}

as shown in Fig. 3, We then extend w to a function v in C by repeated reflection of w
in P. We choose C to be the parallelepiped

C={(z,9,2): |zl +y] <2, -1 <2< 2}

as shown in Fig. 4. We define a weight function w so that Ew = wv vanishes on
the boundary of C and is in H}(C'). We can now apply Lemma A.1 to the extended
function Ew. The last step is to relate all functions back to u* in 7.

We proceed to extend the function " in T to a function w in P. Define a mapping
of (z,9,2) € T to (&, §,2) € T which we denote by

&=Axr+b.
Likewise, define a mapping of (z,y,2) € T to (£,§,%) € T which we denote by

=Bz +b
13



©01) 3

{0.1,1)
T 24,56
2 T:1,236
F:1,246
4 6
(6,1,

F1G. 3. Prism P with tetrahedra T, T, and T

These mappings can be easily obtained and are illustrated in Fig. 3 where the reference
tetrahedron T consists of vertices 2, 4, 5,6, T consists of vertices 1,2,3,6,and T consists
of vertices 1,2,4,6. The tetrahedra T, T, and T make up the prism P.

Define the piecewise linear functions ¢ and @ in T and T, respectively, by

(4.62) W) = v*(z) = " (A~ (& - b))
(4.63) &) = uh(2) = «"(B~Y(& - b)).

We now have a function w defined in the prism P which is piecewise linear in each
of the three tetrahedra and piecewise linear and continuous in P. Moreover, we have

Hwllo,c0:p = [ Ho,comr-

The next step is to reflect the function w in the prism P to a function » in the
parallelepiped C shown in Figs. 4 and 5. The shaded regions show where reflections of
w have been effected,

We define an extension operator E by

Ew=wv

where we choose the weight function w to be linear in the tetrahedra in C and have
value 1 at the six vertices of P and zero at all other vertices of €. Ew is zero on the
boundary of C' and beyond; hence, Ew € H}(C).

Assuming that xélgggfuh(zﬂ is attained at the origin, we draw a sphere §(0, R)
centered at the origin and with radius R = 2H. The sphere § (0, R) contains the

parallelepiped C since the maximum distance from the origin (0,0,0) to any point in
C is 2H. H the maximum is attained at some other point =, € T, we draw a sphere of

radius R = 2{ 13 H centered at that point. This sphere centered at any point @, € T
will enclose C. The result in the Lemma still holds,

14



(-Z,b,Z)

(0,-22)
£ c0,2.2)
Y
(ol-’l-‘7
co,2,-i)
(£,0,°1)

F1G. 4. Reflected function v in Parallelepiped C.

tc,2,0)

F1a, 5. Middle cross section of C conlaining T and P.
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Since Ew is zero on the boundary of S(0, R), Ew € H}(S) and we can apply the
results of Lemma A.1 (given in the appendix) to Ew. We havefor 0 < ¢ < R

3 1 (61\"2/R 5\¥?
WL(M)IE"“M“’@@ < ﬁ(““) (;_g) lE’wh,z;S(o,R)

/a1\1/2 /D s 1/2

e ()" (2 3) e

The factor £ gives the growth in the condition number of A scaled by some matrix M
discussed in the previous section. By virtue of reflection, we can find a constant a,
such that?

(4.65) [Ewh 2,0 < eqlfufly 2

By the inverse inequality in Theorem 3.2.6 in Ciarlet [6], the function u* which is
linear in each tetrahedron T; € T satisfies

Cq
(4'66) ”uh]lﬂ,m;’ﬂ' < hs,/ 1uhidTi
t JT

where h; is the diameter of T; and ¢; depends on the smallest interior angle of T}. Let
the maximum of v in T} be attained at the point @; = (s, ¥i, z;). Note that x; is one
of the vertices of 7T} since u* is linear in T}. Let S(x;, h;) be a ball centered at @; with
radius h;. Then,

(4.67) / |u*|dT; = [u*|dS < f lu*|dS
T S(m,-,h,-)nﬂ"i S(:B.-,h,-)nT

since T; is contained in S(x;, h;) and in T
Let ||u"||o,0;r be attained at the point z,, assumed to be at the origin. Assume
@, is contained in T, € T', where T;, has diameter hy. Using (4.66) and (4.67), we have

(4.64)

”uh“fi,oo;?‘ = g}g”“h”ﬂ.mﬂ‘s = “”hHO.DO;To
Co B
< = ds
= R Js@o o)t Il
Cy h
4.68 = == / u"|dS.
(4.68) 3 Js(o,noynt 7]
By the definition of the function Ew,
(4.69) ] lub|dS < / | EwldS.
§(0,ho)NT 5(0,he)

Substituting B = 2H and o = h, into (4.64), we obtain from (4.68), (4.69), (4.64),
and (4.65) the following result:

2‘\/—(6)1/2( )lfz(h 12)1[2”uh“1,2;'r

2./‘6

A

”“hHO.oc;T S Colp

< cop (¢ )1/2(}1)1’2( 7 12)1/2||“h||1,2;2'
= Hl/z( h )1!2“”‘}'“1 2,7
= 01(— - “)1’2|i”h||1 2T

% A proof of this is given in [20].
16



where ¢ depends on the smallest interior angle of the tetrahedra in T, & is the lower
bound for the diameters of the tetrahedra in T', and C; depends on the smallest interior
angle of the tetrahedra in T and on the diameter of T. O

The next lemma bounds the seminorm of the interpolating polynomial Tu®.

LEMMA 4.1.2. LetT be a tetrahedron of diameter H which is arbitrarily subdivided
into smaller tetrahedra of diameter greater than or equal to h. Let u* be a function
continuous in T and linear in the small letrahedra in T and let Iu® be the linear
function interpolating u* at the vertices of T. Then

H
II’Uhh,z;T < 02(71")1,2|”h|1,2;’1‘

where Cy depends only on a lower bound for the interior angles of the small tetrahedra
inT.

Proof. Referring back to the reference tetrahedron in Fig. 2, the linear function which
interpolates u” at the four vertices of T which has diameter H = +/2 is given by

Iyt = Qmu"(—%,ﬁ,{)) + %yu"(ﬂ,%,ﬂ)-ﬁ— —@zu"({},{),—?_-»)
+(1—‘/- —f \/—z) *(0,0,0).

Evaluating the seminorm and using the Cauchy-Schwarz inequality, we have

1far <l Ben [ ar

- \/_H”uhu(),m;T
noting that the volume of T is
H?
4.70 f dedydz =
(4.70) | dedydz = o7

where H is the diameter of T. Using the result in Lemma 4.1.1, we have
b 5 (V)2 H 121
[u*|; 07 < C1(V2) (‘h") Hu'|]1,2:7-

To relate ||u®||; ;7 to the seminorm |u}; 5., we invoke Poincare’s inequality [18] and
obtain

H
[Tut)y 0 < Cz(“g)llzl”hh,z;?‘

which is the proposition. 0

Though we have used the reference tetrahedron T in Fig. 2 to derive the results in
Lemmas 4.1.1 and 4.1.2, similar estimates hold for any tetrahedron which has diameter
H not necessarily equal to /2 as is the case for the reference tetrahedron.

If T with diameter A is in triangulation 7; and there are j levels of uniform
refinement yielding triangulation 7}, then (see [20, 21])

(4.71) % =i~k

17



Substituting (4.71) into Lemma 4.1.2 and noting that the interpolating polynomial is
denoted by I,u"* when T is in 7}, we get

(4-72) Ukuhh,a;T < 02(21'*’:)1/21“”1,2;1‘-
Summing over all T' € 7;, we obtain
(4.73) hu”|y 20 < 02(2,{*1:)1/2!“&]1,2}“

where C; now depends on a lower bound for the interior angles of the tetrahedra in
2. Similar results as in (4.72) and (4.73) hold if we have arbitrary non-degenerate
tetrahedra instead of the standard tetrahedron in 7; provided uniform refinement is
used.
The next lemma bounds the L*-norm of the interpolating polynomial Tu".
LEMMA 4.1.3. Under the same assumptions of Lemma {.1.2, we have

H
17w flozr < Co( )2 (M B 2 + HPuP 00

where C3 is a constant depending only on a lower bound for the interior angles of the
small tetrahedre in T'.

Proof, We make use of the reference tetrahedron 7" with diameter H and the scaled
tetrahedron T’

[ = {(5:,3},2) = (%’%v%) l(miy?z)e T}

which has diameter 1. We define the function 4 in T to be
£, 9,2) = v(e,y,2) = wP(HE, By, H3).

Taking the L*-norm of Ju* and noting that the interpolating polynomial ITu? is
linear in 7', we have

)1/2

“I’”«h“o,z;'r < ||’¢‘5j"||u,ooﬂ"(12\/-)1/2 = {laffo ocT(12\/-

using the volume of T in (4.70). Applying Lemma 4.1.1 and noting that 7" has diameter
Hz—-* 1and b = H,weha,ve

. = H .
”u“(),oo;’f‘ < Cl(_];)l/znu”lﬂ;f"

Since

I

“'”'“1 By ”'&“ 2t + l”|1 2T

1
= ﬁ“uhlla,z;&" + ﬁluhlf,zﬂ"’
then

H?
HIuh”fm;T < 12\/')1/2 )1/2( )1’2(||“h”021‘+52|“ 12:'")1/2

il

Cs(+ )1’2(““"1!0 2 + H?|uh|? 2T)1/2
18



which is the proposition. O
Assuming T is in triangulation 7; and there are j levels of uniform refinement
yielding 7;, we substitute (4.71) into the result of Lemma 4.1.3 and obtain

(4.74) W ewtllo e < Ca(@*Y2([Jut | 2 + B2l f 0) "/

where the interpolating polynomial is denoted by I u* when T is in 7. Summing over
all T € 7, we obtain

(4.75) Heu*lozn < Ca(@ V2 (u 1B 20 + H2 [P} 0.0) 2

where C3 now depends on a lower bound for the interior angles of the tetrahedra
in triangulation 7; of Q and H is now the maximum diameter of the tetrahedra in
triangulation 7 of . For k = 0, H is the maximum diameter of the tetrahedra in the
initial triangulation T of 2.

The use of scaling to prove Lemma 4.1.3 enables us to isolate from the constant
C3 the dependence on the diameter H of T'.

The results of the next lemma allow us to complete the proof of the left hand side
inequalities in Theorems 4.1 and 4.2.

LeMMA 4.1.4. Let j be the number of refinement levels and let u* € S;. Let I u®
interpolate u® at Ny, the set of vertices in level k of refinement. Then with uniform
refinement,

J
a) Cylu*PP < Z2kifk“h — I 1"} 00 < Cylul}?

k=1
i
b) Cylu*l, < Z Lut — L yutff 00 < Cplutl?,
k=1

where Cyy and Cyy are positive constanis which depend H and 6.
Proof.

Let T € Ti_, be refined into eight tetrahedra as shown in Fig. 6. Number the
vertices of T from 1 to 4 and the six vertices introduced by the refinement 5 to 10.
Define nodal basis functions <f>,v at the six vertices 5 to 10,

A function v, € V, is linear in each of the eight tetrahedra 7. € T and vanishes at
the vertices of 7". It can be represented by:

10
(4.76) v =Y Gidi(, 9, %)
i=h
where §; is the value of v, at vertex i. Since I u? — I,_,u" € V,, we can substitute

(4.77) U = Ik‘?.l'.h - Ik_1ﬂh.

Since vy is linear in T,, then by the inverse inequality [6] we have
¢
(4.78) [vels,m, < h—e””k“o,zm
2

where ¢, depends on the smallest interior angle of T, and h, is the diameter of T.,.
Summing over all tetrahedra T, € T, using (4.76), the Cauchy-Schwarz inequality and
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Fi1G. 6. Vertices of T refined into eight tetrahedra.

the fact that each function ¢; in T is bounded by 1, we get

A

( ) “"’k!lo 3T

25

) ('Z; 12 f
where ¢; depends on the smallest interior angle of the tetrahedrain T, h; is the smallest
diameter of the tetrahedra in T, hy_; is the diameter of T, and the volume in (4.70)
for the reference tetrahedron is used. A different tetrahedron of diameter h,_; has
volume equal to aphi_, for some constant a, and hence would alter (4.80) only by a
constant, By the uniform refinement strategy, we have ";;:‘ = 2 and h—f":—; = q,2F!
for some constants o, and o,, where H is the maximum diameter of the tetrahedra in
the initial triangulation of the domain Q. Hence, we have

(4.79) vy l:f,z;T

(4.80)

IA

H .
(4.81) 03 200 < Ck2k(zf1;2)

=5

where C} depends on the smallest interior angle of the tetrahedra in triangulation 7;
and in 7. It should be noted that

(4.82) D= > lo(z, y, 2)1%

i=5 (z,3,2)ETAN\Nyo1

Summing (4.81) over T € 7;_, (noting that a vertex in N.\N;_, belongs to at
most six tetrahedra of 7,._, as shown in Fig. 7), we get

H
(4.83) Iﬂkl%,z;n < GCk‘z“;; 2 v (2,9, 2)|?
(£,4,2)EN\ Ny
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8
l Tetrahedra containing p
bave vertices:
1,2,3,6 2,3,6,8
1,2,4,6 2,3,7,8
p 2,4,56 2,568

Fia, 7. A vertex p in N\ Ni-; i2 contained in at most 6 tetrahedra in Tp_;.

where €, now depends on the smallest interior angle of the tetrahedra in triangulation
Ty, of 2. Summing (4.83) from k = 1 to j, we get the right hand side inequality in part
b). '

Multiplying (4.83) by 2* and sumaming from & = 1 to 7, we get the right hand side
inequality in part a}. The norms in (3.19) and (3.20) are used.

We proceed to prove the left hand side inequalities in the Lemma. Let 2, =
(Zms ¥m» Zm) be the coordinate of vertex m in T, € T. Since v, is linear in each of the
eight tetrahedra T, € T, we have

(484) ivk(x$ Y, 2,‘)-- vk(mm:ym?zm)l S \/glvkll,oo;T,

|2 — @.|| V2,2, €T..

We consider a tetrahedron 7, that contains a vertex of 7. We choose the vertex
m to be a vertex of T so that v;(2,) = 0 and choose the point = = (z, y, ) to be the

particular one of the six vertices i = 5 through 10 which are in 7,. We then have from
(4.84)

Iési = I’Dk(a“iv Yy Z,-)l S ‘/glvkll,oo;T,,“ml' - a5’*:’1”
<

(4.85) V3h.| vkl oz,

where h, is the diameter of T,. By the inverse inequality [6]
ce
(4.86) [vlioom, S a7 lvel 10,

where ¢, depends on the smallest interior angle of T, and A, is the diameter of T..
Combining (4.85) and (4.86), we obtain

. c
@l < \/g"h-)j—z V8] 1,22,
&

N

ce
(4.87) \/E_i"]’i'”kh,z;q’-
e
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Squaring (4.87) and summing from i = 5 to 10, we get

10 2
) ¢
(4.88) d o< 6(3h—i)l’”kﬁ,m‘
=5

where ¢; depends on the smallest

the smallest diameter of the eight tetrahedrain T. By the uniform refinement strategy,
we obtain from (4.88)

ﬂter;nv anola af tha aigh{- totranhadnen in T and

'
- L .
LANSL TR E AT WAE VR L ¥V UL GALLAEL G R L QLU TOp LD

2k
(4.89) > [v(z,y,2))° < Ck"f{"lvkﬁ.ZiT

(xly}z )ETnNk \Nk-—l

where M is the maximum diameter of the tetrahedra in the initial triangulation of §.
Summing (4.89) over all T" € 7;_,, we get

(4.90) Z loe(m, 9, 2)|° < E Z |ve (2,9, 2)* < ‘Ci?k'”kﬁ,z;n
H

(I,y,Z)GNk\Nk_x TeTgen (z‘.y,z)ETﬁNk\Nk..l

where (', now depends on the smallest interior angle of the tetrahedra in triangulation
T of Q.

Summing (4.90) from k¥ = 1 to j, we obtain the left hand side inequality in part
a).

Multiplying (4.90) by 1/2* and summing from k = 1 to j, we obtain the left hand
side inequality in part b). O

Note that the following relations also hold:

-

(4.91) C43f"ﬂ'vh|2 < 2k“Ikuh - Ik-1uh”?,2;n < C44|u"j2

L2
il
-

[~

(4.92) C43|“hm, < ”Ik“h - Ih-1uh Hg,z;n < C44|“h ‘zu,

[
"

1

where Cy3 and Cy, are positive constants which depend on H and 6. The right hand
side can be proved by observing that

Noelld 2 + lveli o

c
“’f’k“g,z;i‘ + (ﬁ)zllvkilﬁ,m

Nkl 2er

IA

where (4.79) is used in the last inequality. Using (4.87), we also have
e, ¢,
|Q-'[ < \/ggﬁglvkh,zw < \/3—};{75””1:”1,2;1’

which leads to the left hand side inequality.
Using (4.73) and the results in Lemma 4.1.4, we prove the lower bounds in Theorem
4.1 in the following lemma.
LEMMA 4.1.5. Under the same assumptions in Lemma 4.1.4, we have
a) [Lutflan+ v < Cau(i+ D2 |t} 50

b) [lou*lan+|u"ls, < Cs2flubl,g
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where Cyy and Cyy depend on H and 8.
Proof.

Part a) follows from part a) of Lemma 4.1.4 and (4.73). It leads to the left hand
side inequality in part a) of Theorem 4.1.

Part b) follows from part b) of Lemma 4.1.4 and (4.73). It leads to the left hand
side inequality in pari b) of Theorem 4.1. O

In the next lemma, we prove the lower bounds in Theorem 4.2. We make use of
(4.73), (4.75) and the results in Lemma. 4.1.4,

LEMMA 4.1.6. Under the same assumptions in Lemma 4.1.4, we have

“Inuh”f,z;ﬂ < Cezj(”“h”g,z;n + Hzl’”hlf.z;n)

where H is the mazimum diameter of the tetrahedra in the initial triangulation of
and Cg depends only on 8. Moreover, we have

a) [Hou"lf 50 + [u"}?
b) o i za + [u”l2,

< Cali+ 1)25'”,“};“%)2;0
< 0522j||ub!|i2;n
where Cq; and Cgy depend on H and 6.
Proaf.

The first proposition follows from (4.73) and (4.75).

Part a) follows from part a) of Lemma 4.1.4, (4.73) and (4.75). It leads to the left
hand side inequality in part a) of Theorem 4.2.

Part b) follows from part b) of Lemma 4.1.4, (4.73) and (4.75). It leads to the left
hand side inequality in part b) of Theorem 4.2. O

In the next lemma, we analyze the orthogonality property of the spaces V,. The
orthogonality property is with respect to a bilinear form D(v,,v;) that we define for
v € Vi and v; € V. The orthogonality property is D(vy,v) — 0 as [k — I | = oo. The
bilinear form D(v;, v;) that we define for v, € V,, v, € V; is related in a straightforward
manner to |[u*}} ; ; as demonstrated in the proof of Lemma 4.1.8.

LEMMA 4.1.7.

Let u € V; and v € V,. Define the bilinear form D(u,v) by

3
D(u,v) = f ED,-H Divdedydz = f Vu.Vvdz dydz.
Ly a
Then with uniform refinement
D(u,) £ Col—)'Hluls salvls 2
- \/i [ 1<

where C; depends on a lower bound for the interior angles of the tetrahedra in trian-
gulation T, of Q where n is the bigger of k and 1.
Proof.

Let T € 7; and let | > k. At each level beyond k, let each tetrahedron in 7" be
refined uniformly into eight tetrahedra.

Decompose v € V, into v = vy + v,, where v = v, at the nodes (z,¥,2) € N, on the
boundary of T and v = v; at the nodes (%, y,z) € N, in the interior of 7. By linearity,
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vy = 0 everywhere on the boundary 0T of T. Using Green’s theorem and recalling
that u € V, is linear on T, we have

./TVu' Vundzdydz =0.
So
(4.93) fTVu -Vovde dydz = fT Vu: Vo drdydz.
Define I' to be the union of the tetrahedra in 7; which meet the boundary 8T of T.

These are the tetrahedra that have at least one vertex on 87", Since v, is nonzero only
on I', we have

(4.94) f Vu-Vyydzdydz = f Vu- Vg dedydz.
T r
Using the Cauchy-Schwarz inequality, we obtain
(4.95) fVu Vg dzdydz < |uly or|vels 2.
r

Define meas(T'} and meas(T) to be the volume of T' and 7', respectively. Then by the
linearity of w in T,

meas(I)

2 — 2
(4.96) Jufiar = %meas(T) |ulf, 27

For different levels m = [ — k of refinement using the uniform refinement strategy, we
have®

meas(I') | 1 m=0,1,2
meas(T) 12(2%);?3(2"')"'64 m > 3.
Hence,
(4.97) meas(l') 12

meas(T) = 2™
for all m. From (4.96) and (4.97), we then have

12
(4.98) |ull,2;I‘ < (F)Ugl“ll,z;ﬂ*-

We proceed to analyze |vg]; o.r. With T acting as the domain, we use the results
in Lemma 4.1.4 and apply (4.83) to v, € V; and (4.90) to v € V;. (We denote by D,
the constant Cy in (4.90) to distinguish it from C; in (4.83).) With H as the diameter
of T and the constants C;_; and D,_; depending on the smallest interior angle of the
tetrahedra that are in T and are in triangulation 7;, we obtain

H
[volf o = |wolf 2 < 60:-k2—,_-,; Z lvg(z, ¥, 2)J?
(z,y.z)ETnN.\N;-l

3 This can be computed by uniformly refining the reference tetrahedron given in Lemma 4.1.1,
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H

= 601_1,-?}; Z |v(z, y, 2)}?
(ﬂ,y,z)EaTan\Ni_]_
H
< 6Ciagy > |v(2, v, 2)|*
(z,y,z)ETnN:\N;_g
H 2l-*
< 6clnk§T:}'Dr—k_I"i“‘!vﬁ,2;T
(499) = GC;mkD;_kl'Uliz;T.

Combining equations (4.93) through (4.99), we obtain
1
/ Vu-Voudedydz < (6C_Di_) v 12(%)“”“[1,2;’1"”!1,2;5"
T

1.
(4.100) = C'-:(%)I “Juls 2irlvh 2

where C; depends on a lower bound for the interior angles of the tetrahedra which are
in triangulation 7; and are in T. Summing over all T € 7, and using Cauchy-Schwarz
inequality, we obtain

1
Vu- Vodedydz < Co(—=Y-* : .
fn u- Vodadydz < 7(ﬁ) luls 20lv1,2:0

where C; now depends on a Jower bound for the interior angles of the tetrahedra in
triangulation 7; of . Considering also the case k > I leads to the desired result. O
The next lemma completes the proof of Theorem 4.1.
LEMMA 4.1.8. Let j be the number of refinement levels and let u? € S;. Let Liu*

interpolate u* at Ny, the set of vertices in level k of refinement. Then with uniform
refinement

) [*lan < Colllorff o0 + u"]?)

b lutian < Cs(ow*f o0 + [utl3,)

where Cy depends on H and 6.
. Proof.
Let vy = Ipu?, vy = Tyu* — I,_juP. Then using the splitting for u* in (3.16), we
have

b
(4.101) uh = Lut =3 "n

for u* € S;. Evaluating the seminorm and using Lemma 4.1.7, we obtain

J
P
k=0

)

= Z D(vkvvl)

k=0

2

’uhﬁﬂ;ﬂ =

1,20

J

1
(4.102) < Co( =) Hvels 20l 2.0
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Let @ € RU+DXG+) be the symmetric matrix and 5 € R+ be the vector whose
elements are given by

Qun = ( )"—H

2 1
e T}

-

[

[

kii, 20

Then (4.102) can be written as

W0 < Cm™Qn
<

(4.103) Crdmacn'

where C; now depends on a lower bound for the interior angles of the tetrahedra in £
and Ap,, 18 the maximum eigenvalue of Q. By the Gerschgorin circle theorem, A,
is bounded above by the largest row sum of ¢ which is given by

1423372 7=)’° when j is even
1+ 230" )'c + ( 1 )(""1)/2 when 7 is odd,

where j is the number of refinement levels, In either case, the maximum eigenvalue is
bounded by

(4.104) C mesiead =Yt

Substituting (4.104) into {4.103), and using part a) of Lemma 4.1.4, we obtain

«/_+1
20 < Elvkllzﬂ

+1
(4.105) = C7$ 1(”0“ |1,2,n+ZFIkU - Ii_yu iz,z,n.)
k:l
+1
< C?é (1" [129—}—22’“”,‘1; — w3 20)
k=1
o V241
< f (fIn’Ur 120+ Colr*?)
(4.106) < Ce(lIpw? |1,2;n+ " [?)

which is the right hand side inequality in part a) of Theorem 4.1.
Using part b) of Lemma 4.1.4, we obtain from (4.105)

+1
C’vy l(lfo'u I 2.0 + Caolu[2,)

(4.107) < Colllovfza + v*3.,)

which is the right hand side inequality in part b) of Theorem 4.2.
Without invoking the result of Lemma 4.1.7 on the orthogonality property of the

spaces Vy, part a) can also be proved in a straightforward manner using the result in
(4.83). O

I

lu’h ﬁ,z;ﬂ
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The next lemma completes the proof of Theorem 4.2.
LEMMA 4.1.9. Under the same assumptions in Lemma {.1.8, we have

a.l) lutfden € Co(lHew?|lf 20 + H|u 1)
a.2) W in < Cos(||[Ior®|f}2a + [u*D)

1) Jlu*lfizn < Con(lllow |32 + HPuE,)
5.2) flu*lllzn £ Cos(llow® |l zn + [w*12,)

where Cy; and Cy, are constants independent of j, H and the interior angles of the
tetrahedra in . Cyy = %35 and Coy = % if the tetrahedron in the initial refinement is
a reference tetrahedron of diameter H described in Lemma 4.1.1. Coy and Cyy depend
on H and 8.
Proof.

As in the proof of Lemma 4.1.8, we express v* € §; as in (4.101). Taking the
L*norm of u” and using the triangle inequality and Cauchy-Schwarz inequality, we

obtain

[e*leen =

k=0 0,2;6

(4.108) 2(uvon3,2;n+(kz’_: e lo20°).

IA

The square of each term in the summation on the right hand side of (4.108) can be
expressed as

(4.109) lollfzn= D Il

TeTy-1

We use the representation given in (4.76) for v, € Vi. Using the Cauchy-Schwarz
inequality and the fact that each function ¢; in T is bounded by 1, we obtain the
following bound on the L?*norm of v, in T' € T;,_;:

10
(4.110) Ioslar < 6 d) [ ar.
=5

By the uniform refinement procedure {20, 21], a tetrahedron in 7., is refined into
eight equi-volume tetrahedra in 7;. If V denotes the volume of the tetrahedron T}
in the initial refinement (level 0), then a tetrahedron T € T;_, contained in 7T, has
volume (3)¥~'V. Using the formula (4.70) for the volume of the reference tetrahedron
described in Lemma 4.1.1, we have

(4.111) LdT: (‘;‘)k 112H\/_ = (2.&-—1)312\/—

where H is the diameter of the tetrahedron in the initial refinement. Substituting
{4.111) and (4.82) into (4.110), we obtain

(4.112) Nlvelld 2r < 2\/—53(2;; i > lor(z, 9, 2)[%

(wlylz}ETnNk \Nk—l.
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Summing (4.112) over T € T;_; and recalling that at most six tetrahedra in 7;_,
contain the node (z,y, z) € N,\N;.1, we have
2 24 3 1 2
(4.113) loello e < "\/—‘Q‘H (yc‘) > loe(2, 9, 2)]
(9,2 )E Nk \Ngey

where I is now the maximum diameter of the tetrahedra in the initial triangulation
of 2. Let

a = ()

b S lnlzy )

(zsynz)ENk\Nk—l

I

Taking the square root of (4.113), summing from k = 1 to j and using the Cauchy-
Schwarz inequality, we get

J 24 J J
Dolvlloze < (FEAOQ @) O] b)VA
k=1 \/i ka1l k=1

Hence, we have

@1 Clulos® < DY T meuak

k=1 (2y,2)e Nx\Nx_3

If, however, we let
1
u = (5)

1
b, = ok Z |”k(m}y’z)lza
(t,y,z)ENg \Nk—l

a derivation similar to that of (4.114) yields

419 Cluloan? € AP T Ity )P

k=1 (I,y,Z)ENk\N)‘_x

Substitution of (4.114) into (4.108) yields the proposition in part a.1). Substitution of
(4.115) into (4.108) yields the proposition in part b.1).

Combining part a.1) of this lemma and part a) of Lemma 4.1.8, we obtain the
proposition in part a.2), which is also the right hand side inequality in part a) of
Theorem 4.2. Combining part b.1} of this lemma and part b) of Lemma 4.1.8, we
obtain the proposition in part b.2), which is also the right hand side inequality in part
b) of Theorem 4.2. O

In the next section, we show that the estimates given in the two theorems in this
section are sharp and that the upper bounds on the condition numbers of A with
respect to the different matrices M given in Section 3 are optimal, We also show
that any block diagonal scaling of A will not improve the growth rate of the condition
number of A.
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(1,0,1)

A\
\
b

Y NC00)
e ‘\ (1.1,0)
L/ (1.0.0) w

X
F1a. 8, Domain of sample problem.

N

5. Optimality of the Estimates. In this section, we show that the estimates
in Theorems 4.1 and 4.2 in the previous section are sharp. We also show that the
estimates in Sectlon 3 are sharp and that the upper bounds on the condition numbers

Km(a) = &M(A) for the types of M considered in Section 3 are optimal. Finally,
we show that the condition number of the bilinear form a(u*,u?) with respect to
any symmetric positive definite bilinear form b(u®, ") that decouples the different
refinement levels grows at least as O(27).

We consider the following example. Let the domain  be the tetrahedron T con-
sisting of vertices (0 0,0),(1,0,0),(1,0,1) and (1,1,0) as shown in Fig. 8. Let «* € &;
in T be the piecewise linear function defined by

26713 -2kz) 27F <20 p=1 ...
A __ = -t ] H ]
(5.116) ut = { of 0<z<2s.

The interpolating polynomials are given by

(6.117) Lu® = (1-20z+2 0<z<1

(ZE)e+2 0<z< 2t
(5.118) Ik‘uh = 2’";;2"‘ )m 4+9.9m _gm-1 9-m <z < 2—(m—1),
m = 1, " w .’ k

for k =1,--, . Using (5.116) through (5.118), we evaluate the following norms:

(5.119) [W* o0 = %(2" -1

47 101 __.

B2 = =t _ Yo

(5.120) “u ”0,2;0 ) 240 2

1 .
(5.121) ffauhﬁ,z;n = '6(1"2:)2

1 .
(5.122) !]Ioﬂh”g,z;n = @(22:')‘[" (2J)+““
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i
[ P > DIt — Ly wh)(2 7k, 0,0))
k=1

(5.123) = -i.(jzzf) + .:.‘)’2_(25) _ %(223') - _2_

! F = 5
W', 2 2 27 (L" - L") (275,0,0)
k=1

= Legwyy Tigiy_ Brigiy 9
(5.124) = (2 +5@) - 3(2) - 5
Zj S .
h_ B2 — Z(92 Loy _ afaaiy _
(5.125) 2 IIk’U. Ik_1U [1,2;9 3(2 )+ 3(2 ) 2(]2 ) 3
4 1 g 11 . 143 . 33
h_ 2 = 2y _ iy - 2

k=1

With this example, we can prove that the estimates in Sections 3 and 4 are sharp and
the bounds on the condition numbers of A with respect to M given in Section 3 are
optimal. We demonstrate the optimality proofs for the estimates for E(u", u*) and the
upper bound on ng(/i). The optimality of the estimates and bounds for the rest of
the cases can be proved in the same manner.

_ 5.1. Sharpness of Upper Bound on nﬁ(fi). We show that the estimates for
b(u",u*) are sharp and that the upper bound on s;(a) = k3(A) in Section 4 is optimal.
Let o,(j) be the largest real number such that

a1 (H{Ku*, v} = o1(5){allou*, Lu*)

J .
(5.127) + Za([ku" —- L, L — I u")} < a(u®, uh)

k=1

for all u* € S;, where a(u*,u”) satisfies (3.26) or (3.27) (and likewise a(Iyu*, Iju")
satisfies (3.43) or (3.44), respectively, and a(lu® — I,_,u*, Lu® — I,_,u") satisfies
(3.56) or (3.57), respectively). From the result in (3.59), we have

(5.128) | (i) > o

which led to the result in (3.61) showing that &;(a) = x3(A) grows no faster than
0(2%).

We consider the case where a(u”,u") satisfies (3.26). If we use the right hand
side inequality in (3.26) and the left hand side inequalities in (3.43) and (3.56), and
substitute (5.119), (5.121) and (5.125) into (5.127), then for the given example we
would require that

(5.129) () < o
for some positive constant ;.
For the case where a(u”, u") satisfies (3.27), if we use the right hand side inequality
in (3.27) and the left hand side inequalities in (3.44) and (3.57), and substitute (5.119)
through (5.122), (5.125) and (5.126) into (5.127), then for the given example we would
require (5.129). Hence in either case (a{u",u*) satisfying (3.26) or (3.27)) we have
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(5.129) for the given example which leads to the result that x;(a) = x3(A) grows no
slower than O(27). Having found one example such that (5.129) holds proves that the
estimates for b(u”,u") are sharp and the bound on kz(A) is optimal.

5.2. Optimality with Respect to Any Block Diagonal Scaling The next
theorem states that the condition number of the bilinear form a(u”, u*) with respect
to any symmetric positive definite bilinear form b(u*, u*) which decouples the different
refinement levels grows at least as O(27); that is,

(5.130) (@) = k5(A) > O(2).

THEOREM 5.1. Let a(u”, u") be the symmetric positive definite bilinear form of
the second order elliptic boundary value problem in the domain Q. Let a{u®, u") satisfy
(3.26) or (3.27) (depending on the problem) for all v’ € &;. Let b(u*,u*) be any
symmetric positive definite bilinear form on u* € 8; which decouples the different
refinement levels; that is,

I;(v;,,'v,) =0

forallv, € Vy and v, € V), k # 1Lk, 1=0,1,--+,7, where j is the number of refinement
levels. Let &,(j) be the largest and &4(7) be the smallest real numbers such that

&1 (N)Hu",u") < a(u®,u?) < Bo(i)B(, u*)
Jor allu® € 8;. Then the condition number k;(a) of a{u”, u*) with respect to b(u*, uh),
defined by
Kijld) = ———=
b( ) 0'1(.'1')’

grows at least as O(2%).

Proof The proof follows closely that of Yserentant’s in his proof of Theorem 5.2 in
24). Theorem 5.1 is proved by comparing a(u®, u*) with the standard bilinear form

b(u*,u") defined in (3.53). Let o,(j) be the largest and 0,(5) be the smallest real

numbers such that

o ()B(u", uh) < a(ut, u") < oy(5)b(u?, uh)

for all u* € ;. From (3.59), a,(j) and o,(7) satisfy

where o, and o, are positive constants independent of j. This led to the result in
(3.61) which shows that

2(.7) i
Ki(a) = ( N = < 0(2),

that is, x;3(a) grows no faster than O(2’). In the previous subsection, however, we
showed that there exists a positive constant ¢, independent of 7 such that

UI(J) - 2J
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This result and Lemma 5.2 in [24] complete the proof of Theorem 5.1. O

If we use the hierarchical basis representation for u*, Theorem 5.1 says that any
block diagonal scaling of the hierarchical basis coefficient matrix A yields a condition
number which grows at least as O(27); that is,

( A)
\<=J

IV

00929
2

Kg 7

where B is any block diagonal matriz,

6. Non-uniform Refinement. In this section, we extend the analysis of the
hierarchical basis preconditioner to non-uniform refinement.

With non-uniform refinement, a tetrahedron T' € T, is refined arbitrarily into
tetrahedra in 7}, at each level of refinement. We still require that the triangulation
is non-degenerate and yields tetrahedra that are nested. Let T ¢ T, with diameter H
be refined into tetrahedra in 7;, 7 > k, with diameters h; where ki, < by < Aoz We
assume that

H

hma:v

H
h’miﬂ

(6.131) ik < <

E‘I iy

< Bpk

where 7y and 3 are positive constants, 7 > 1 and j is the number of refinement levels.
The case r < 1 is not possible since this implies diameters expand as we refine, that
is, Nyar > H which is impossible. To obtain reasonable bounds on the seminorm and
H'-norm of u*, we will require

(6.132) r>1.

This has the following implications:

1. No tetrahedron remains unrefined nor gets refined only a constant number of
times (the case r = 1) throughout the entire triangulation of the domain 2.

2. The condition r > 1 allows us to obtain the left hand side inequalities in part
b.1) of Theorem 6.1 and part b.1) of Theorem 6.2. This gives a result with
identical scaling on the left and right hand side inequalities in part b.1) of
both theorems (as opposed to different scalings in part b.2)).

3. For 1" € 7, and T as the set of tetrahedrain 7;,! > k which meet the boundary
of T, the condition r > 1 yields

meas([‘)

(6133) W < O!q , g<1

which leads to orthogonality of the spaces V;, a result similar to Lemma 4.1.7
for the case with uniform refinement.

4. The condition r > 1 allows us to obtain upper bounds on the seminorm and
H'-norm of u* where the constants are independent of 7, results which are
similar to Lemmas 4.1.8 and 4.1.9, respectively, for the case with uniform
refinement.

From (6.131) and (6.132), we have

{(6.134) p2r>1.

Except for (3.20), (3.24) and (3.25) which are specific to uniform refinement,
the notation in Section 3.1 holds. We define the following notation corresponding
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10 (3.20),(3.24) and (3.25), respectively:

J
(6.135) e, = Y r7* 3 |Iu? — I u)?

k=1 (z,y,2)EN\ Ny 1
(6.136) W, = D4,
where

T—II]_
1"—21-3
(6.137) Dy, = . ,
Tl

J

and Iy is an (n, — ng_y) X (n — n,_,) identity matrix. Using the above notation,
|u*]y, = Jut|y, for r = 2 and D; in (3.24) and (3.25) equals Dy, Note that N =
O((2/)*) = O((})?), where N is the number of unknowns and 4 is the mesh spacing,
may no longer hold.

In the following theorems, we state the main resu_lts on the bounds on the seminorm
and H!-norm of u* for the case of non-uniform refinement.

THEOREM 6.1. Let j be the number of levels of refinement, v* € §;, and Iyu?
interpolate u® at the initial refinement nodes. Then for arbitrary refinement satisfying
(6.181), there are positive constants K, K,, Ky, K,, Ky and K, such that

) I(l
G+p l)pf

b.1) “‘“~_{|Io“h[%,2;n +[uh2,} < Wt oa < K {[Tou? 2 0 + b2 )

(w20 + [v**} < [t 20 < K {|Tou 2 o + Ju*]?)

K,

b.2) {Ifo"» f o+ |0 2} < [u? faa < R"d{lfo“hliz;n + |*2,}

where KI,IQ,K;,,!Q,I?S and K, depend on H, 8, B and p. In addition, K, depends
onr, Ky, Ky and K, depend on v, r, e, and q. The factors o and g come from (6.133).

THEOREM 6.2. Under the same assumptions in Theorem 6.1, there are positive
constants Ki, K3, K3, K%, K3 and K} such that

K .
a) G+ 0p g e [ aa+ 1P} < W)l 2n < K3 {|Zow? )2 20 + |}
K2 .
b.1) 2 {IIIeu"Ih 20+ f“ lwr} < ”“h”iz;n < K-i{“Io“h“iz;n + ]“hli,}
b.2) Maa+vtE} < futlan < R;{”Io“h”f.z;n + )

where Kl,Kg,Ka,K4,K3 and K depend on H, 8, 8 and p. In addition, K} depends
on r and K3,K? and K} depend on v,tya and q. The factors @ and ¢ come from
(6.133).

_Using Theorems 6.1 and 6.2, we obtain upper bounds on the condition number
of A scaled by some matrix M. For the case where a(uh, u*} satisfies (3. 26), we use
Theorem 6.1 to obtain the following bounds on the condition number of A, scaled by
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some matrix M, corresponding to the results in (3.39) and (3.40), respectively, for
uniform refinement;

" 6K, . i

(6.138) Ke(a) = ke(d) < ZH2 (i + 1)
11

A 6K,
(6.139) Feu, (a) = Rpiaopyn(d) < Rt
where c(u",4") is defined in (3.28), C is defined in (3.32),
(6,140) cwr(uhs uk) = IIeuhI§,2;ﬂ+ Iﬂ‘h 3&-
and

Iy

_ ID _ T_lfl
(6.141) D, = [ 0, ] =
ri I

£

where D, is given by (6.137), I, is an ny x ng identity matrix, and I, is an (n; —
Ng-1) X{ng = N1) identity matrix. For the case where a(u”, u") satisfies (3.27), we use

Theorem 6.2 to obtain the following bounds on the condition number of A, with respect
to some matrix M, corresponding to the results in (3.41) and (3.42),respectively, for
uniform refinement:

8, K3

(6.142) ko) = koe(A) < 222G+ 1)p
6, K]
A 5K
(6.143) Key, (@) = Kpisgaprn(A) < 7, KE 7
where ¢*(u", ") is defined in (3.30), C* is defined in (3.33),
(6.144) ¢, (0", u") = 1w || 50 + |2,

and D, is defined in (6.141).

As seen from (6.138), (6.139), (6.142) and (6.143), we do not want p to be too large.
The case p = 2 gives the same order bound on the condition number as we have for
uniform refinement, However, this puts tight restrictions on r as we demonstrate in the
proof of Lemma 6.4 in the following discussion. The restriction says that we basically
require a uniform refinement. In general, the results for non-uniform refinement show
lack of arbitrariness in the refinement. A large p allows arbitrary refinement but
gives a large condition number; a small p gives a small condition number but restricts
refinement to a fairly uniform type.

We proceed to prove Theorems 6.1 and 6.2. We highlight the similarities to and
differences from the proofs of Theorems 4.1 and 4.2 for the case with uniform refine-
ment.

First, we note that Lemmas 4.1.1 through 4.1.3 hold for non-uniform refinement
since they hold for a tetrahedron T' refined in an arbitrary manner. Using (6.131), we
have the following results in place of (4.73) and (4.75), respectively:

(6.145) ) Ifk‘uhh,z;n < Cz(ﬂ_k)llzluhllﬂ;ﬂ
(6.146) ”Ik’il:h“o,z;n < Ca(?’_k)”z(”uhugﬂ;ﬂ + Hzl“hﬁ,?;ﬂ)l/z
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where C, and (; depend on a lower bound for the interior angles of the tetrahedra in
! and on 8. H is the maximum diameter of the tetrahedra in triangulation T; of .
For k£ = 0, H is the maximum diameter of the tetrahedra in the initial triangulation
T of .

We have the following results in place of Lemmas 4.1.4 through 4 1.9.

LEMMA o i. Lei j be ihe number of refinement ieveis and lei ut € o Lei lku
interpolate u* at Ny, the set of vertices in level k of refinement, Then for arbitrary
refinement satisfying (6.131),

a.l) C4lluh|2 < 'L:a PkIIk’”'h - Ik-i“hif,z;n
a.2) Thaa Lt = Lt < Cplulf
k
b.1) C41|“h|wr et Bl pu” — Ik—lubﬁ,z;n

<
b.2) 0411“ . ., S E‘Lm IIk“h - Ikuxuhliz;n < Cnluhltzn,
where Cyy and Cy, are positive constants which depend on H and 8. In addition, C,,
depends on B and C,, depends on 3,v,p and 7.
Proof.

Using (6.131) and v, = Liu* — I, 4", we have the following results in place of
(4.83) and (4.90), respectively:

H
(6.147) iz < Ck‘;_‘;;,‘ > [oe(e, y, 2)f*
(z.9,2)ENK\Nk—1
Z ka(m:ysz)lz S E E llvk(m,y)z)lz
(z,4,2)E Np\ Nk T€Ti-1 (z,9,2)ETAN\ Ny
D
(6.148) < fpkl’vkﬁ,z;n

where H is the maximum diameter of the tetrahedra in the initial triangulation of €,
Cy and Dj depend on the smallest interior angle of the tetrahedra in triangulation 7;
of . In addition, Dy depends on 8 and C} depends on 3, v, p and r.

Summing (6.147) from k = 1 to 7, we obtain the right hand side inequality in part
b.2). Multiplying (6.147) by r* and summing from k = 1 to j, we obtain part a.2).

Summing (6.148) from k = 1 to j, we obtain part a.1). Multiplying (6. 148) by p~*
and summing from k = 1 to j, we obtain the left hand side inequality in part b.2).
Multiplying (6.148) by »~* and summing from k = 1 to j, we obtain part b. 1.0

LEMMA 6.2. Under the same assumptions in Lemma 6.1, we have

a) Iu" o+ v < Cu(i+ P lutig
b.1) IIouhlfzn.‘F |’Uhlﬁn, < Cser"I”hlgzn
b.2) Hyu}} 120+ l“ < Csz,pfflu 3, 2,0

where 051,052 r and Cs, , depend on H, 8, 8 and p. In ada’:twn, Csa, depends on 7.
Proof.

The results are proven using Lemma 6.1 and (6.145). [
LEMMA 6.3. Under the same assumptions in Lemma 6.1, we have

o [} 20 < Cer' (613,20 + H2[u"|2 50)
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where H is the mazimum diameter of the tetrahedra in the initial triangulation of Q
and Cg depends on 8 and 3. Moreover, we have

a) ou*[fzn+ ' < Ca(G+ D f[v* 2
b.1) HouMlfon+ 1w, < CeprPllv*|}za
6.2) {lLu*l{zn+ ¢ e, £ Cop?v"|ie

where Ce1,Csy . and Cqyp depend on H, 8, 8 and p. In addition, Cg,, depends on r.
Proof.

The bound on the H'-norm of Iou* is proven using (6.145) and (6.146). Lemma
6.1, (6.145) and (6.146) are used to prove parts a}, b.1) and b.2). The condition r > 1
is also used in obtaining part b.1). O

LEMMA 6.4.

Let v € Vi and v € V,. Define the bilinear form D{u,v) by

3
D(u,v) = f S D;uDjvdedydz = / Vu- Vodedydz.
n"_l )

Then with arbitrary refinement satisfying (6.131), we have

[e—kf
P
D(“,'U) < Cy (\/;—;) |U[1,2;n[’v|1,2;n

where Cy depends on a lower bound for the interior angles of the tetrahedra in trian-
gulation T, of Q, where n is the bigger of k and I, and on B,7,p,r and o. The factors
a and g come from (6.133).
Proof.

The condition r > 1 in (6.131) leads to the following result similar to (4.97) in the
proof of Lemma 4.1.7:

meas(T)
meas(T) — 4

m

(6.149)

where « is a positive constant, 0 < ¢ < 1 and m = — k assuming ! > k. This can be
seen by expressing % as follows:

meas(I') VI hmae

(6.150) meas(T) = f(m) Vr

where V7 is the volume of T € 7, with diameter A, Vi, 5, is the volume of T; which
is in triangulation 7; and in 7 and has the maximum diameter A,,,,, and f(m) is an
increasing function of m if r > 1. Using (6.131), we have

(6.151) " < hhT

where m = [ — k. The volumes are given by

(6.152) Vi = ¢, A
h

(6'153) VTi,hmcx: = czh?NBS S 32(,_),"55' 8
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for some constants ¢; and ¢, where the relation in (6.151) is used in (6.153). Substi-
tuting (6.152) and (6.153) into (6.150), we obtain,

meas(I) ¢ f(m)
< ag™.
(6.154) meas(T) = e, om =

For the reference tetrahedron used in Lemma 4.1.1 in Section 4 with uniform
refinement, we have

f(m) = 12(2")—48(2™)+64, m >3
hr \/E "
hmam - 32
Vp = ——h
T = 12\/5 T
1
Vr, = "—_'h?naz'
Tihmasx 18‘\/‘3‘

where hy = H/2* and h,,,, = \/«§H/2’ (see [20, 21]). Hence

meas(I’) .
meas(T) = 12(5) '

Using (6.149), we have the following result in place of (4.98):
(6.155) ulyzir < (g™ )2l .

Using (6.147) on v; and (6.148) on v, we obtain the following result in place of (4.99):

-k
(6.156) lvoli o < Ci-kDI-—kfz__II”l%,mT'

Using (6.155) and (6.156), we obtain the following result in place of (4.100):

jVu-Vvdxdydz S |u|1,2.}p]%|1’2;r
T
D
(C*C'a-fcDr—k)i'm(\/9‘7‘,:)I kl“h,z;’r!”ll,z;ﬁ"
Crly/ a2 uly zirlo]
7 Q‘r 'Ur|1,2-,T'01,2;T

where C depends on a lower bound for the interior angles of the tetrahedra in trian-
gulation 7; and in 7, and on §,7,p,r and @. Summing (6.157) over al T € T;, we
obtain the proposition. O

The result in Lemma 6.4 shows orthogonality when

IA

(6.157)

(6.158) ‘Lrp <1
From (6.158) and the fact that 1 < r < p given in (6.134), we have

(6.159) 1<r<p< g—
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If ¢ =}, then we have 1 < r < p < r’. If we want p = 2, then v/2 < r < 2; that is,
we require 7 & /2 at the smallest, This Jmphes that the refinement needs to be fairly
uniform if we want the condition number of A, scaled by the matrix M considered in
Section 3, to be O(jp') = 0(j2%) or O(p/) = 0(2-’)

LeMMaA 6 5. Let j be the number of refinement levels and let u* € S;. Let Liu?
interpolaie u® at Ny, the sei of veriices in level k of refinement, Then with arbitrary
refinement satisfying (6.131), we have

a) [u*flan < Co(JIu® |} 50 + [u?)
b [utian < Ge(lLw’[iga+ [u"f2.)

where Cg depends on H, 0, 8,v,p,r, o and q. The factors o and g come from (6.133).
Proof.

Using Lemma 6.4 and assuming ¢2 < 1 (with ¢ < 1 and r > 1), we obtain the
following result in place of (4.105):

1+ /¢Z
(6.160} tu 129_07 g E—— (1 2Q+ZlIhu = Ly} o)

-Vt o

Parts a) and b) of the proposition can then be obtained using (6.160) and parts a.2)
and b.2), respectively, of Lemma 6.1.

Part a) can also be obtained in a straightforward manner using (6.147). The
constant Cg in this derivation will be independent of a and ¢. O
LEMMA 6.6. Under the same assumptions in Lemma 6.5, we have

a.1) |lu*llE 20
@.2) |lu*|lz0
b1) [lw*litzn
5.2) lu*lli 20

Cor(Mou™ |3 210 + H3lutf?)
Cos(1 w3 20 + 1u*]?)
Coa(lIou|[3 20 + H3JW"|2,)
Coa{llTou |1} 20 + [w*12,)

IA A IA A

where Cyy and Cy, are constants depending only on v and », Cog and Cyy depend on
H,8 8,7,praadqg.
Proof.

Using (6.131) and the assumption that » > 1, parts a.1) and b.1) can be obtained
in the same straightforward manner used to prove parts a.1) and b.1) in Lemma 4.1.9.
These results and Lemma 6.5 can then be used to obtain Parts a.2) and b.2). O

7. Implementation and Numerical Results. Since A= 8TAS scaled by dif-
ferent matrices M has better condition number (O(h~!logh- 1) or O(h™1)) than A,
which has condition number O(h~?) [10, 22], we may choose to solve a preconchtloned
system [1, 7, 15] in place of the system Ag = b given in (2.7).

If the coarse grid operator is the identity matrix, then we have the following
preconditioned systems:

(7.161) STASG = b
where § = S§71g
b = 57b
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and

(7.162) D-Y25TASD-Yy = b
where § = DY2§57g

b = D257y,

The preconditioners resulting from (7.161) and (7.162) are

(7.163) M= (§5T)
and
(7.164) M = (5§D7157)1,

respectively. (7.161) and (7.162) are the systems solved to obtain numerical results
given in Subsection 7.2. The matrix M in (7.163)is the hierarchical basis preconditioner
and the matrix M in (7.164) is the hierarchical basis preconditioner with fine grid
diagonal scaling.

The implementation of the hierarchical basis preconditioner typically involves the
multiplication of the preconditioning matrix § and its transpose, ST, by a vector.
For instance, when solving the system (2.7) by the preconditioned conjugate gradient
method with the preconditioner M given by (7.163) or (7.164), we need to solve the
system .

(7.165) Mz=(88)"z=r
or
(7.166) Mz=(8D'8"y 1z = p,

respectively, for z at each iteration. From (7.165) or (7.166), the solution z can be
obtained explicitly by multiplying the vector » by §ST or D157, respectively. D-!
can be easily obtained from D given in (3.34). However, as in two dimensions, the
unit lower triangular matrix § is not formed explicitly. Instead, (7.165) or (7.166) are
solved for z via forward and backward substitutions with $~! and §-7, respectively.
This can be accomplished efficiently using the parent data structure in the tetrahedral
refinement.

In Subsection 7.1, we describe the parent data structure using tetrahedral elements
and provide sequential algorithms for forming Sy and STy for any vector ¢, Vector
and parallel implementations are discussed in {20, 19]. In Subsection 7.2, we provide
numerical results which make use of the sequential algorithm for Sy and Ty using
tetrahedral elements. These results confirm the theory on the condition number of A,
with or without fine grid scaling, derived in Section 3.

7.1. Sequential Implementation of Sy and STy - Tetrahedral Elements.
We define the parent data structure by referring to a cube with its prism and tetrahe-
dral structure shown in Fig. 9. Assume that the cube with nodes numbered 1 to 8 is
the initial or level 0 refinement. Suppose that at level 1 we refine the six tetrahedra in
the cube uniformly. This introduces midpoints which we number 9 to 27 as shown in
Fig. 9.
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F1a. 9. Midpoints of the prism.

fork=1uptoyj
forie Mk
y(3) = y(4) + 3 (y(ip(1, 7)) + y(ip(2,)))
end for
end for

F1a. 10. Sy Using Parent Data Structure - Tetrghedral Elements.

We define the parent nodes of a node ¢ in level 1 to be the two nearest neighboring
nodes lying on opposite sides of and on the same edge as node i. For instance, from
Fig. 9, node 15 has parent nodes 1 and 6. This parent definition is applied to each
newly introduced node at each level of the refinement, hence specifying the parent
nodes for all nodes from levels 1 to j.

Given this data structure, the matrix-vector products Sy and STy for uniform
tetrahedral refinement can be formed using the same algorithms for two dimensions
given in [24] which we repeat in Figs. 10 and 11. In fact, as in two dimensions, row
i of §71 contains at most two off-diagonal entries, each equal to —1 /2, corresponding
to the parent nodes of node i. This is a consequence of taking the midpoints when
refining the tetrahedron using the uniform tetrahedral refinement. These algorithms
show the mathematical efficiency in implementing the preconditioner since each matrix
product involves only 2(N — n,) multiplications and additions, where N is the number
of unknowns and n, is the number of unknowns in the coarse grid.

In the algorithm for Sy in Fig. 10, we march up the levels from 1 to j, access the
nodes in the current level (set M,), and update each node by its two parents. In the
algorithm for STy in Fig. 11, we march down the levels from j to 1, access the nodes
in the current level and update the two parents of the node. For these implementations
of Sy and STy, we specify the two parents of every node other than the level 0 nodes.
Note that the nodes in level 0 do not have parents.

Note that the algorithms for Sy and §7y are dependent on the type of elements
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for k = j down to 1
fori e M,
y(ip(1,4)) = y(ip(1,4)) + 9(i)
y(ip(2,9)) = y(ip(2,9) + 33(i)
end for
end for

F1a. 11. STy Using Parent Data Structure - Tetrahedral Elements.

and refinement strategy used. The tetrahedral refinement strategy described in [20, 21]
allows us to use the same efficient algorithms given in [24] for two dimensions.

7.2. Numerical Results, We solve Helmholtz equation with homogeneous Dirich-
let boundary conditions in the unit cube (2:

(7.167) ~Au +u
U

0 in Q
0 on 02

We start with the unit cube as the coarse grid and discretize each problem by the finite
element method using tetrahedral elements and the uniform refinement strategy de-
scribed in {20, 21]. Using the typical nodal basis functions, we obtain for each problem
the system (2.7) where the coefficient matrix A is symmetric, positive definite. We
solve each discrete problem by the conjugate gradient (CG) method and by the pre-
conditioned conjugate gradient (PCG) method, with M = (§57)~! as preconditioner
(HB) or with M = (§D~'57)! as preconditioner {HBFS), for different refinement
levels j. Since we start with the cube as the coarse grid and since % = 0 on the bound-
ary 31, the coarse grid operator, represented by C, C*, and A, in Subsections 3.2 and
3.3, is the identity matrix. This allows us to solve the preconditioned system in (7.161)
and (7.162). We make use of the efficient implementation of Sy and STy using the
parent data structure described Subsection 7.1.

In Table 1, we compare the number of iterations for the CG method and PCG
method, with HB and HBFS preconditioners, to converge to the solution within some
error tolerance. The stopping criterion is that the 2-norm absolute error ||,y — 2| of
successive iterates is within a tolerance of 107°, An initial guess of @, = 1.0is provided.
The problem is solved in 16-digit arithmetic (double precision)} on a VAXstation 3100.

It is known that the number of iterations it takes to reduce the A-norm of the error
when solving (2.7) by the conjugate gradient method is proportional to the square root
of the condition number of the coefficient matrix A [16]. (More recent discussions of
the conjugate gradient method can be found in {1, 5, 7, 11, 15}.) Hence, without
preconditioning (denoted by CG), we expect the number of iterations to behave like
O(v/k(A)) = O(27) = O(N*?) = O(h~?); with preconditioning by the hierarchical
basis preconditioner (S57)~! (denoted by HB), we expect the number of iterations
to behave like O(y/k(4)) = O(/77) = O(,/NV3log(N1/3)) = O(/h-Tlog(R~T));
with preconditioning by (§D~157)~! (denoted by HBFS), we expect the number of
iterations to behave like O(\/&(D‘UZAD‘U?)) = O(V2) = O(NY®) = O(h~%/%). As
the stepsize h is halved, we expect the number of iterations to increase by a factor of

2 when using the CG method, by a factor of (15'{{%’54,';—21)1/ 22 = (47)/?v/2 (which is
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CG HB HBFS

No. of | Growth || No. of | Growth || No. of | Growth
3 h N Iter. Factor Iter, Factor Iter. Factor
20 1/4 125 9 11 11
311/8 729 23 2.56 31 2.82 30 2.73
411/16 | 4913 47 2.04 61 1.97 53 1.77
51 1/32 | 35937 93 1.98 107 1.75 87 1.64

TABLE 1

Number of Iterations and Growth Factor: Helmholtz equation.

asymptotic to v/2 as 7 gets large) when using the PCG method with HB preconditioner,
by a factor of /2 when using the PCG method with HBFS preconditioner. Even though
the A-norm of the error is not used in the convergence criterion, the numerical results
in Table 1 still match these expectations, thus confirming the theory that the condition
number of A, where the coarse grid scaling matrix is the identity matrix, is O(§27) and
the condition number of D~/2AD~1/2 where the coarse grid scaling is the identity
matrix, is O(27).

In Fig. 12, we plot the base 10 logarithm of the number of iterations against the
number j of levels for the CG method and the PCG method with HB and HBFS
preconditioners. We expect the curve for the CG method to be linear in j with a slope
of log,,2, and the curve for the PCG method with HBFS preconditioner to be linear
in j with a slope 1/2 that of the CG method. The curve for the PCG method with HB
preconditioner is a combination of two functions, one linear in j and one logarithmic
in j, since for this method,

1
log,,(number of iterations) = 5( Jlog,,2 +log 7) + logy(ey)

where ¢; is a constant in the expression for the condition number of A, As j gets large,
the slope of the curve for the PCG method with HB preconditioner approaches that of
the PCG method with the HBFS preconditioner. Fig. 12 confirms these expectations.

A. Appendix. We state the spherical inequality which is used in Lemma 4.1.1
of Section 4. The proof is provided in [20].

LEMMA A.1. Let w: §(0, R) — R be a continuously differentiable function defined
on the sphere S(0, R) centered at zero with radius R and let w vanish on the boundary
85 of the sphere. Then for 0 < o < R we have

3 1 61.., R 5.,
4mro? [g{o,a) lw(z, y, 2)|dzdydz < 27 ‘5'17) (‘; - g) ,wll,z;s(o,n)-

Proof. See [20].

We can apply the result of Lemma A.1 to a function v € H}(S§(0, R)) since v
can be approximated arbitrarily closely by a continuously differentiable function w
which vanishes on the boundary 85 of $(0, R). By this argument, we make use of the
spherical inequality result in Lemma A.1 to prove Lemma 4.1.1 in Section 4.
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