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Abstract

In this paper we apply the piecewise hyperbolic and parabolic essen-
tially non-oscillatory (ENO) capturing schemes (see [M91] and [SO89])
to approximate the solution to the boundary layer equations for two-
dimensional incompressible flow. We have tested several numerical
examples analyzing their resolutive power and efficiency with respect
to small values of the kinematic viscosity of the flow.

L. Prandt]l made a suitable simplification of the Navier-Stokes equations
in order to describe the flow near the wall of a flat plate by dropping the
equation of motion normal to the wall and reducing the unknowns by one,
(from three to two). Indeed, if the wall is located at ¥ = 0, u and v are the
tangential and the normal components of the velocity, respectively, and € is

the kinematic viscosity, then we have the two-dimensional Prandtl’s boundary
layer equations

u? 1
Uy 4+ 5 +’l"”yz";'1’w+€‘“yy (1.1)

Uy + v, =0, (1.2)
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where § < z,y < 1, together with the initial tangential velocity profile
u(z,y,0) = uy(z, y), (1.3)
and the boundary conditions
w(z,0,t) = v(2,0,t) =0 (1.4)
u(z,1,1) = Ufax,t) (1.5)

where the potential flow U(z, 1) is to be considered known; it determines the
pressure distribution with the aid of the equation

Ut+U-Umz—-’1;-px (1.6)

where p is the density, (see [SCH]). The boundary layer thickness § becomes
proportional to 1/€ and the viscosity affects the flow essentially only in a very
thin layer. The equation (1.1) is the equation of motion of the tangential
velocity and equation (1.2) is the continuity equation. The boundary condi-
tion (1.4) means that the wall is at rest and if these values are settled to be
a nonzero function then we would have a moving wall problem.

In this paper we have constructed two third order accurate capturing
schemes {o approximate the solution to the two-dimensional boundary layer
equations. Both schemes have the same structure and they only differ on
the reconstruction procedure used. We use either the piecewise hyperbolic
or parabolic ENO reconstruction of numerical fluxes from the point values
of the solution, in order to approximate the convective terms in (1.1). The
viscosity term is approximated by means of a second order central differ-
ence, extrapolated up to fourth order accuracy. The scheme is designed as
a method of lines and, therefore, the equation (1.1) can be integrated in
time by means of an ODE (ordinary differential equation) solver. In our
experiments we have used a total-variation diminishing, (TVD), third or-
der Runge-Kutta method introduced by Shu and Osher in [SO88]. With
this integration procedure our schemes become third order accurate in both
space and time. The integration of the continuity equation (1.2) to recover
v at every time level is performed at every time substep by means of an
Euler forward scheme where the approximation of u, is made through the
third order accurate reconstruction procedure used for the convective terms
of equation (1.1). Previously, TVD capturing schemes were used in [Y91]
to solve some boundary layer problems and high order ENO schemes were
applied to compressible free shear layers, (see [SEZWO91]).




iAET TTT

We shall describe the scheme in some detail. We have used uniform grids.
If Az and Ay are the spatial stepsizes then we define the computational grid
(zs,9;)fori=0,--Nand j = 0,--- M, where z; =i Az and y; = j Ay. We
denote by At the time step and we define ¢, = [ At, for [ > 0. We denote
by ul; and vﬁij the approximation to the solution components u(z;,y;,#)
and v(x;, y;, 1), respectively. The one-stepping procedure is as follows. If we
consider the following flux functions f(u):= “72 and g(u):= u, then,

By .. .
Viga = i = o (Barszg ~ Gimigag) (1.7)

At 2 2
wh' = ui; - An Fovjng = fiong) -

At . .
Ay i (Grjarse = Bug—rpe) + At (ri; + € 5;5) (1.8)

where 7; ; is the term corresponding to the pressure gradient which is com-
puted from the data and s;; is the extrapolated second order central differ-
ence of u's at (2;,y;). In order to be consistent with the boundary conditions
it is necessary to integrate first the continuity equation, as it is showed in
equation (1.7). Numerical fluxes are computed according to the direction of
the wind and using the reconstruction procedure as defined either in [M91]
in the hyperbolic case for nonlinear fluxes or in [SO89] in the parabalic one.
The direction of the wind for the flux ¢ in equation (1.8) is determined by
the sign of v} ; through the y-direction. If there is a sonic point then a flux
splitting is performed, (see [SO89] for details).

The one time-stepping procedure described before is assumed to be total
variation stable for u, under a suitable CFL restriction of the form

At. (11(1:;';;1 ; Tfy')z') <CFL 1.9)

of parabolic type where C'F L is called the Courant-Friedrichs-Lewy number,
This stability cannot be proved neither for the hyperbolic method nor for
the third order ENO, but there is some theoretical and numerical evidence
to indicate these methods are indeed stable, (see [HEOC87] and [M91]).

The integration in time is made by means of the above mentioned Shu-
Osher TVD third order Runge-Kutta method that is a convex combination
of one time-stepping procedures described before.
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We have tested several numerical exampies in order o study ihe accuracy
and stability of the scheme. Here, we will show what we consider as rep-
resentatives. We denote by PHM the scheme designed from the hyperbolic
reconstruction, (see [M91]) and by ENO3 the scheme designed by means of
the parabolic ENO reconstruction, (see [S089]).

The following features were found through our experiments:

1) We observed second order accuracy of the schemes at the bound-
ary layer region for moving wall problems and the third order accuracy is
recovered for problems where the wall is at rest. This accuracy is achieved
when we have enough grid points to resolve the boundary layer and the
number of grid points we need depends on the thickness of the layer.

2) When shocks appear PHM and ENO3 schemes behave in different
ways. In order to be stable ENO3 scheme need a lower CFL number than
the one necessary for the PHM. The PHM scheme is not sensitive to the CFL
number, due to the fact that the hyperbolic reconstruction is more local than
the parabolic one.

3) We remark that thanks to the fact that the convective terms are ap-
proximated in an upwind way, this allows us to use high C'FL numbers, and
according to our experiments the smaller kinematic viscosity we have, the
larger CF L numbers can be chosen, Thus, the schemes become competitive
concerning computational cost and CPU time.

Example 1 We consider the 2D boundary layer problem (1.1) and (1.2),
with the initial tangential velocity profile

u(z,y,0)= a+f-(1-y)-sim(27e — 7y) (1.10)

u periodic in @ with period 1 for every y, and the boundary conditions (1.4),
and prescribing a potential flow U(z,t) = a for the outflow boundary y = 1.
In order to study the accuracy of our schemes we have solved this problem
fora=1,8=25,7=3,¢=0.03at t = 0.05 with CFL = 16, using both
PHM and ENO3 schemes. The resolution for both schemes are similar and,
then, we only show the 3D-plot and the level-plot for the PHM scheme and
for a grid of 80 x 80 points, in figures 1 and 2, respectively. Let us observe a
region of very large gradients interacting with the boundary layer region. In
table 1 the L*°- and L'-errozs are shown and they were computed at a slip
of 2 x 20 computational grid, (where the boundary layer region is located),
relative to the solution for a grid of 80 x 80. Richardson extrapolation shows



numerical evidence that the third order accuracy is recovered through this
region.

Example 2 We consider the following example that is a simulation of
a 2D boundary layer with moving wall, due to D. Gottlieb, (see [S089],
example 4),

u2
Uy + (§)w + 1y = €y, (1.11)
where 0 < @,y < 1, toghether with the initial tangential velocity profile
u(@,y,0)=a+ - -sin(27 2) (1.12)
and the boundary conditions
w(z,0,t)=a+ 3 sin(27wez) (1.13)

u periodic in z with period 1. Since in this case we are supposed to know
the normal velocity that is constant and equal to 1, it is not necessary to
impose boundary conditions (i.e. a potential flow), at the outflow boundary.
We have solved this problem for @ = 0.5, 8 = 5 and ¢ = 0.01 at ¢ = 0.5 with
CFIL = 16 for the same computational grids as for the example 1. In this
case a shock has been developed and it is interacting with the boundary layer
region generated at the moving wall ¥ = 0. In table 2 the L™- and L'-errors
are shown and they were computed at a slip of 2 x 20 computational grid,
(where the boundary layer region is located), relative to the solution for a
grid of 80 x 80. We observe second order accuracy through this region.

According to the parameters used in both examples we have used the
following formula to compute the time step satisfying (1.9):

At = — L (1.14)

(_ﬁmfc) + @y )
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L>-error Lierror
NxM PHM ENO3 PHM ENO3
20 x 20 2.64 2.83 2501072 | 2.50-1072
40 x 40 | 4.62-10~1 | 4.60-10"* | 4.08-1073 | 3.90-10°°

Table 1: Wall at rest: L°°- and L'-errors for 20 x 20 and 40 x 40 grid
resolutions computed at the boundary layer region of 2 x 20 grid points

L>=-error Li-error
NxM PHM ENO3 PHM ENO3
20 x 20 2.18 2.38 4.90.10-? | 5.10-1072
40 x40 | 6.34-10" } 6.73-10" | 1.73- 108 [ 1.79-107%

Table 2: Moving Wall: L®- and L'-errors for 20 x 20 and 40 x 40 grid
resolutions computed at the boundary layer region of 2 x 20 grid points
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Figure 1: PHM, 80x80 grid points, CFL=16, t=0.05
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Figure 2: PHM, 80x80 grid points, CFL=16, t=0.05
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