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ABSTRACT OF THE DISSERTATION

Scalar and systems of coupled elliptic partial differential equations arise frequently in the mod-
eling of physical processes. This dissertation is concerned with iterative methods for the numerical
solution of linear scalar and coupled systems of elliptic equations.

For scalar equations | present a general form for the incomplete LU factorizations for matrices
with five and seven point stencils. In the form presented these factorizations hold for both point
and block matrices.

I give brief overviews of the Fourier analysis technique for elliptic equations and the theory of
¢-pseudo-eigenvalues. For the one-dimensional scalar case, I show a relationship between these two
approaches.

I present a “same sparsity” pattern incomplete LQ (ILQ) factorization. I compare this ILQ
preconditioner and the I1.Q preconditioner of Saad to the incomplete LU preconditioners. I demon-
strate that there is an optimal number of large magnitude elements to keep in the ILQ factorization
originated by Saad.

For coupled systems of equations, I specify three model coupled systems. For the two single
parameter models, I use exact eigendecomposition via the group iterative theory of Young and a
Fourier analysis technique to analyze a number of iterative methods and preconditioners. I present
results for point and block methods based on “by equation” and “by grid point” orderings.

Experimental results are first presented for the two single parameter models as the magnitude
of the coupling parameters are varied. I discuss the experimental results and their correlation to
the analytic predictions.

From the proceeding results for the two basic models, the most Tobust methods were chosen to
be used in solving a third model problem. This third model problem which has two parameters is
derived from linearized steady-state drift-diffusion equations of semiconductor modeling.

I demonstrate the following results for this third model problem. Among iterative methods,
ABYF is found to be the most robust. Among preconditioners, the block (M)ILU methods using
“by grid point” ordering are seen to be the most efficient and robust.

It is anticipated that these methods will be of use in solving more complicated and realistic

semiconductor modeling equations.
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Chapter 1

Introduction

1.1 Overview

Scalar elliptic and systems of coupled elliptic partial differential equations (PDEs) arise frequently
in the modeling of physical processes. Examples include the steady-state equation for heat con-
duction and the steady-state drift-diffusion equations that appear in semiconductor modeling.

Consider such a coupled system of equations on a region £ C R® written in the form
Li(vM, ..., 0™ = O,...,Lm(v(l),...,v(m)) =0

with specified conditions on the boundary of Q. The v{%) are the variables of interest and the L;
are known, possibly nonlinear, functions of the v(). Each constituent v() can be viewed as the
concentration of a given species in reaction with the other species according to the above system. In
semiconductor modeling, for example, v}, v(?), and ¥{3) would represent the electrostatic potential,
the electron density, and the hole density, respectively.

If the L; are nonlinear in the v{%), a typical method of solution is nonlinear Gauss-Seidel (also
known as Gummel’s iteration).

In other methods, such as the Gauss-Seidel Newton method, the equations are first linearized.
The resulting system of linear equations is then discretized on a partitioning of {2 to obtain a matrix
system

Ap=b (1.1)

where y = (v(1),...,2(™) and _q(ij = (fuij), 'ugj), ey v]({;)) is a column vector representing the values

of the function v{#) at the N grid points of Q. Hence, at a given grid point, there are m values to



be calculated, one for each species v(?), The matrix A is typically very large and sparse.

One of the goals of numerical linear algebra is to find efficient methods for solving this matrix
system. Certainly, we could use direct solvers. But for large sparse systems, especially for three-
dimensional problems, these methods may become prohibitive in both arithmetic complexity and
memory requirements and hence in cost and time.

Tterative methods, however, are well suited for the solution of large sparse linear systems.
Jacobi, Gauss-Seidel, SOR and other iterative methods and accelerators are well established {35,
46,63,65]. They can easily be implemented to take full advantage of sparsity patterns of the matrix
in order to conserve on hoth storage and computing time.

For scalar elliptic equations in two and three dimensions, considerable analysis has been done.
Various methods and preconditioners have been studied and implemented. (See the References for
an indication of the vast amount of work accomplished.} For coupled systems there is considerably
less published analytic work. Some recent work includes [1,14,38].

This thesis will discuss a variety of iterative methods and preconditioners for scalar and coupled
elliptic equations.

The remainder of this chapter will provide a brief overview of results needed in the study of
iterative methods and preconditioners.

The remainder of this document is divided into two parts. The first part (chapters 2, 3, and 4)
deals with methods for scalar elliptic equations. The second part (chapters 5, 6, and 7) concentrates
on methods for coupled systems.

In chapter 2, I present a general form for the incomplete LU factorization preconditioners for
matrices with general five and seven point stencils. This formulation incorporates the standard
incomplete preconditioners ILU, MILU(§), and RILU(w). It is also seen to include the variant
presented by Wittum [64]. From the generalized form the robustness of the Wittum LU variant as
a multigrid smoother is linked to the increase in diagonal dominance of the resulting preconditioner
when compared to the usual ILU or MILU methods. In the form presented these factorizations
hold for both point and block matrices. This general formulation is used in chapters 6 and 7 in
the analysis and implementation of the point and block incomplete LU factorizations for coupled
systems.

In chapter 3, I give a brief overview of the Fourier analysis technique for iterative methods for

elliptic equations and then an overview of the theory of e-pseudo-eigenvalues of Trefethen. For



the one-dimensional case, I demonstrate a relationship between the theory of ¢-pseudo-eigenvalues
and the Fourier analysis technique. The Fourier analysis technique has been shown to be a useful
method in heuristically studying the effectiveness of iterative methods and preconditioners [20,19,
24,22). As yet a rigorous explanation of why this technique can work so well has been evasive. In
the symmetric case, the technique yields the true eigenvalue expression, but it is does not always
yield a good approximation for non-symmetric matrices. For non-normal matrices, due to the
sensitivity of their eigenvalues to perturbation, Trefethen and others have begun a theory on the
use of e-pseudo-eigenvalues in the study of matrix equations. Herein, it is shown that the theory of
¢-psendo-eigenvalues includes the Fourier analysis technique as a limiting case. Hence, the Fourier
eigenvalues serve as an approximation to eh ¢-pseudo-eigenvalues. The Fourier analysis technigue
in two-dimensions is employed in the analysis of iterative methods and preconditioners in chapter 6.

In chapter 4, I study the effectiveness of incomplete LQ (ILQ) preconditioners with GMRES and
CGNE methods. I introduce an ILQ preconditioner based on the sparsity pattern of the original
matrix. Experimental runs are also made with the {M)ILU factorization and the ILQ factorization
of Saad [50]. I demonstrate that there is an optimal number of large magnitude elements to keep
in the ILQ) factorization of Saad.

We now reach chapters 5, 6, and 7 which form the second half of this thesis. These chapters
are concerned with iterative methods and preconditioners for coupled systems of equations.

The model systems considered are motivated by the linearized steady-state semiconductor mod-
eling equations in two dimensions with two variables. These systems are generally non-symmetric
and need not be positive definite. For these large, sparse, coupled systems of equations, the choice
of an iterative method also depends on the coupling between the unknown variables v() [14]. This
coupling suggests the use of different reorderings of the dependent variables which in turn may
lead to different preconditioners than result from the original ordering.

For example, in the system (1.1) Az = b, the ordering could be done “by equation” where the
grid N values for the constituent »(1) occur first, followed by those for v(?), and so on for each of

the m variables v{7). So the vector v has the form

(1) 1) (1) ,(2) (2)

m m)
v={0]",05 ..., Ut ,...,vN,...,v$ ),...,'U](v ).

An alternative ordering is “by grid point” where first we order all the values of the constituents

at grid point 1, then those values at grid point 2, and so forth for each of the N grid points. This



permuted vector # of » would look like

= (v§1),v§2),. . .,’uim),vél), . .,'vgm), . .,v}&), .. .,vj(\}n)).

I investigate certain point and block methods, especially those based on the orderings “by
equation” and “by grid point.” The hybrid {composite) method Alternate-Block-Factorization
(ABF) [14] is also studied. For block methods, when ordering is done “by equation,” an inner
iterative technique may be necessary for the sub-solves. Herein, the Krylov space method GMRES
is employed as the ‘inner’ solver. When ordering is done “by grid point,” the ‘inner’ solves are
done exactly.

In chapter 5, I provide an introduction and motivation for the study of coupled systems. I
present the three model coupled systems (A, A/, and B) to be the focus of the second part of this
dissertation. Some notation and general theoretical results necessary for the analysis undertaken
in chapter 6 are summarized in this chapter.

In chapter 6, I detail the analysis for the two single parameter model systems (A and A’).
Expressions for the exact and Fourier eigenvalues for several iterative methods, including ABF, and
preconditioners are derived. These expressions are used in analyzing and comparing the different
methods.

In chapter 7, I provide extensive experimental results for the three model problems. For Models
A and A’, the experimental results are compared to the analytic results of chapter 6. It is clear that
the analysis is quite useful in predicting the usefulness of the iterative methods and preconditioners.
For Model B, no analysis is presented within this dissertation. However, from the results for Models
A and A’, robust methods are chosen and used in the solution of Model B for a wide range of the
two parameters,

In summary, I demonstrate the following results for Model B. Among the iterative methods,
ABF is found to be the most robust. Among the preconditioners, the block ILU and MILU methods
using the “by grid point” ordering are the most efficient and robust.

In chapter 8, I summarize results presented in this dissertation.

1.2 Background

Let the matrix system resulting from the discretization of a scalar PDE for u be given by

Au=b (1.2)



where 4 is an N x N sparse matrix, and u and b are length N column vectors. An N X N matrix
is sparse if the number of non-zero elements in a row or column is O(N) rather than O(N?2). The
sparsity of A is not an unusual requirement since the system is derived from the discretization of
a second order elliptic PDE.

Direct methods, such as LU and QR factorizations, for solving (1.2) have been studied exten-
sively [26,16,32]. But for large sparse systems, especially for three-dimensional problems, these
methods may become prohibitive in both arithmetic complexity and memory requirements.

On the other hand “good” iterative methods that utilize the sparsity structure of the matrix A
will frequently yield good numerical approximations in few iterations. Such methods may yield
more efficient implementations in terms of execution time and memory requirements than standard
direct methods.

The issue then becomes how to determine and design “good” iterative methods. This has
been studied extensively through convergence properties of iterative methods. I refer the reader
to [65,63,35].

For the remainder of this section I give a brief overview of notation and theoretical results
needed for later discussions.

Consider the prototypical linear stationary iterative method of first degree
w1 = Guld) 4 ¢ (1.3)

where G is an N X N matrix called the iteration matriz. Let & denote the true solution of (1.2)
from which (1.3) was derived. Such an iterative method is convergent (||u(*) — ills — 0 as k — 00)

iff p(G) < 1. The spectral radius of the matrix G, p(¢), is defined by

p(G) = |Gz

In [63,47] it is shown that a convergent scheme will result by using an iteration matrix G from
a regular splitting of the original matrix A. A splitting, A = M — N, of a matrix A is a regular
splitting for A if (1) M is nonsingular, (2) M ! is elementwise > 0, and (3) N is elementwise > 0.
Let A= M — N be a regular splitting of A. Then we may write (1.2) as

Mu—=Nu+b
to get the iterative method

Mut) = Ny 4p



=t = Ml 4 M

(I = M~1A)u™ + M. (1.4)

f

Comparing this to (1.3), the iteration matrix is G = — M~1A and ¢ = M~1b. A goalis to chose
M so that Mu = ¢ is easy to solve for u. This means that the matrix M~! need not be explicitly
constructed.

Hence, for an iterative method of the form (1.4) derived from a regular splitting, we have

convergence iff

p(I — M14) < 1.

The number of iterations, k, required to achieve a relative error of € (|Ju(f) — @lj; < €) is

proportional to
log €
log(p(G))’
The smaller the spectral radius of the iteration matrix G, the faster the asymptotic convergence.

Besides linear stationary iterative methods there are also a number of acceleration methods
such as Chebyshev iteration which can be used to obtain improved convergence rates.

The most popular of the acceleration methods is conjugate gradient [36] with a precondi-
tioner (PCQG) for symmetric positive definite matrices A. PCG generates the kth approximate
solution u(*} to the true solution @ as a lnear combination of the k direction vectors that span
the kR Krylov subspace Ki(ro,4) = [ro, ATo, .., A¥=Drg] where ro is the initial residual
{ro = b— Aul®).

For PCG, the number of iterations to achieve a relative error of € in the A-energy norm ({u(*) —

u)tA(ul¥) — @) < ¢€) is proportional to
%K.(M_lfl)% In % 41,
where the condition number of matrix G, k(G), is defined by
K(G) = |1GlI21 G~ |2-

For G Hermitian, k(G) = % The matrix M above is called a preconditioner for A. It is
chosen so that an equation such as Mz = b is computationally easy to solve for z given b. {This is
used within the PCG method.) From the equation above it is also desirable that x(M ~'A) be as

small as possible. By definition of &, we always have k(M ~1A) > 1. Hence, we strive to find an M
for which k{M~14) = 1.



The distribution of the eigenvalues of the preconditioned system M~'A is also crucial. Clus-
tering of the eigenvalues will increase the rate of convergence {12,13].

PCG however can only be used when A and M are Hermitian positive definite. We wish to
deal with nonsymmetric and indefinite real matrices A and hence nonsymmetric and indefinite
preconditioners M.

Fortunately, there is a great wealth of Krylov-space methods to handle these situations. For
these methods there are no simple results analogous to the condition number result for PCG.

Some examples are CGNE (Conjugate Gradient Normal Equations), GMRES (Generalized Min-
imum Residual), ORTHOMIN, ORTHODIR, and the recently, established QMR (Quasi-Minimal
Residual) method. It should be noted that there are examples where these methods perform rad-
ically differently when solving the same matrix system [44]. Herein, GMRES will be used as the
acceleration method for the nonsymmetric indefinite problems. Several preconditioners will be

examined as used with GMRES.



Chapter 2

The Incomplete LU Factorization

As mentioned earlier there are direct methods such as the LU Factorization based on Gaussian
Elimination for solving Az = b. In an LU factorization, the matrix A is factored into the product of
alower triangular matrix L and an upper triangular matrix U so that A = LU. The matrix equation
is then solved by first constructing the solution w of the system Lw = b and then constructing the
solution u of the system Uwu = w. These two matrix equations are easy to solve since the matrices
are triangular.

Such methods may become computationally expensive since they do not take advantage of the
sparsity pattern of the matrix A. This means that the L and the U matrices may be dense despite
being derived from a sparse matrix. So the storage requirements for these factorizations can be
large (O(N?) rather than O(N) needed to store the original matrix A).

Also, an LU factorization does not always exist, and even when one does exist, it may not be
numerically stable [32].

Hence we are led to incomplete factorizations. In an incomplete LU (ILU) factorization, we
also generate lower and upper triangular matrices, but the matrices L and U are restricted to have
sparsity patterns similar to that of A. In an incomplete Cholesky factorization for a symmetric
matrix, we construct the L and U matrices such that U = L%

There is quite a proliferation of literature on incomplete factorizations. Let A represent the
matrix resulting from the discretization of a second order self-adjoint elliptic operator. The condi-
tion number of this matrix is k{A) = O(h~2). Dupont-Kendall-Rachford [27] show that a modified
incomplete LU factorization gives s{M~14) = O(h~t). Axelsson [8] gives conditions for when a

generalized SSOR. preconditioner yields k(M ~1A4) = O(h™'). Gustafsson [33] shows that the in-



complete Cholesky factorization (M = LL!) also yields s{(M~4) = O(h™"). Meijerink and van
der Vorst [41] prove that if the matrix A is an M-matrix!, then the incomplete LU factorization
yields a regular splitting for A.

Herein, we will restrict ourselves to incomplete LU factorizations where L and UV have sparsity
patterns contained within that of A.

In this chapter, I present a general form for the incomplete LU factorization preconditioners
for matrices with general five and seven point stencils., This formulation incorporates the standard
incomplete preconditioners ILU, MILU(§), and RILU(w). It is also seen to include the variant
presented by Wittum [64]. From the generalized form the robustness of the Wittum LU variant as
a multigrid smoother is linked to the increase in diagonal dominance of the resulting preconditioner
when compared to the usual ILU or MILU methods. In the form presented these factorizations
hold for both point and block matrices. This general formulation is used in chapters 6 and 7 in
the analysis and implementation of the point and block incomplete LU factorizations for coupled

systems.
2.1 The five-point stencil
Consider the typical second order partial differential equation in two dimensions

-V (K{z, y)Vu(:c,y)) = fon £

Let Q be a rectangular region with n, and n, uniform divisions in the z- and y-directions respec-

tively. Let hy = —L—, h

__1 fco arder o g — 4 :
o T v T m g and use the natural rowwise ordering where z; = thg, 1 <4 < ng,

and y; = jhy, 1 < j < ny. Similarly let K5 = K(zi,y;) and fij = f(2:,y;). Approximate the

terms of the equation using centered differences as in

K a,i(igng — i) — Kioapz5(ui — wio1j)
h2

T

a ,.0u,

and similarly for %(I{g—‘;)ﬁ. Expand these expressions and scale to get a system Au = f. The

matrix A has a five-point stencil expressed in general equation form for the (i, )th variable by

@ijtij + bijttizr,; + Cijthijer + dijion; + i1 = fij

LA matrix A is an M-matrix if ai; < 0 for 1 # j, A is nonsingular, and A7l is elementwise > 0.



which will be denoted using the matrix stencil form

dij aij by

or, equivalently by the picture

a{j

eij

With the natural rowwise ordering the equation for the (3, _;i)th variable corresponds to the It pow

of A, 1 = (j — )ng + ¢, illustrated by

I — ny -1  I+1 L+ ng

ow {
o | ] |

For example, the value e;; is element (I, —n.) of the matrix A. In the incomplete LU factorization
of A, we restrict L and U to have the same sparsity patterns as A and that the resulting matrix
M = LU is required to agree with the matrix A wherever A is nonzero except possibly for the
diagonal elements (e.g. (M)rs = (A)s for r # s). If we also specily that U is a unit triangular

matrix, then M is given by

Qi Cij
M=LU=|d; o 1 az-_jlb,j.
€ij
This can also be expressed using an LD-1{ form
Cij
M =LD7'U = | dy ay aj;! ai; b

10



The LD-1{] form readily shows the relationship between the original matrix 4 and the corre-
sponding entries in L and U. Only the a;; entries need be computed or stored for implementation
purposes. The other entries needed are the same as those of the original matrix A. Multiplying

out these matrix equations we get

€5 T4l
The entries m;_1 j41 and myyq j_1 are called fill-ins because they occur in locations where the

original matrix A had zeros. Their values are given by the expressions
—1
miopien = di0l Cio1 (2.1)
Sy = e.a~l b
m1+11j_1 - eijai,]‘—-l ‘l.?_l
and the diagonal entries of M are given by

Ve — gy oyl , . oy —1 ..
mij = aij + dije b1y e cio1 (2.2)

There are now various conditions that could be specified to yield an M with different proper-
ties. I have found that the following formula [24} incorporates the typically used incomplete LU

factorizations.

Rowsum condition

rowsum(M) = rowsum(A) + § + (1 — w) - (fill-ins in M ). (2.3)

This includes the parameter & of Gustafsson [33] which is an amount added onto the diagonal of the
matrix M and the relaxation parameter w of Axelsson and Lindskog [12]. The parameter § = ch?
is a small amount added onto the diagonal of the matrix which makes the matrix slightly more
diagonally dominant (and hence more stable numerically). During Gaussian Elimination fill-ins in
the I, and U matrices would normally occur. In some methods these fill-ins are simply discarded.
However, in other methods, some amount or all of the fill-ins are added onto the diagonal of the
matrix L. The amount is specified through the relaxation parameter w.

The above rowsem formulation of the ILU factorizations will be denoted

11



MILU(6, w). It yields the typical incomplete LU factorizations as given below:
ILU : b=w=0
(M)ya = (A)ss for (A)rs # 0
MILU(6) : é=ch®w=1
(M)s = (A)ys for (A)rs #0 and 7 £ s
rowsum({ M} = rowsum{A) + 6
RILU{w) : §=0,we[0,1].
It will also be shown that this formulation includes the method used by Wittum in [64].
In particular, for the two-dimensional five-point stencil above, the rowsum condition (2.3)

reduces to

Miot g1+ Mitrgt +mij = 6+ 6+ (1 - w)(Micyipn + Mit1j-1)
= mi; = &4+ § — w(mi_1 41 + Mig1,j-1) (2.4)
= a; + 6 — w(fill-ins)
Hence, w regulates the amount of the fill-ins to subtract from the diagonal of the original matrix A
in creating M. Combining (2.2) and (2.4) we get an expression for the diagonal elements c;; of L.
aij = aij + 8 — dijarty j(bio g+ weiny) — eije g (Cij1 + whij) (2.5)

For a problem with Dirichlet boundary conditions we also have the following boundary con-

straints:
by = Ofori=mn,
e;;j = Oforj=mny
dij = Ofori=1
eij = Oforj=1
ILUp

In [64], Wittum introduces a variant, ILUg, of the usual incomplete factorization. Wittum’s
paper gives detailed analysis and a proof of robustness for [LUg as a multigrid smoother.

The model partial differential equation is

o .
K(e)u = »—(eﬁ+a—y2)u:fmﬂﬂ[0,1]x[0,l]
¥ = gon df.

12



The equation is discretized with uniform grid spacing h to yield the matrix equation

-1
1
Ki(e) = 7z | —€ 2(14¢) —e J
-1

In the notation of the general five-point stencil
ai; =21 4¢€), byy=dij=—¢ cij=ej;=-1L
The iteration ILUpg is then given as
w1 = 40 o MY (K ()ut — b)

where

M =(L+D)D"YL+ DY, D =nh"*diag{d;;},

1
L:_ —€ 2(1""6) . »

h2
-1
and § € [0,1], and
2(1+¢€) i=j=1
di; = 2(1+€)w€(€~—,5')d;',j1_1 i=1,j>1
21+ ) = (1 - BN, is1j=1
21+ €) ~ ele — H)dpj_, — (1 - By ij>1

As noted in Wittum’s paper, ILUy is identical with the usual five-point ILU factorization and

ILU_, is identical to MILU(é = 0). The similarity of ILUg to these others however goes deeper.

By looking at the general form for MILU, we see that ILUg= MILU(6 = 0,w = —8).

But w simply regulates the amount of the fill-ins to subtract from the diagonal of M, see

equation (2.4). Hence, ILUs amounts to adding a fraction § of the fill-ins to the diagonal of A to

obtain the diagonal values for M. Using the expressions (2.1) for the two fill-ins in this case we get

M4 = €/dis1g,  Miy1-1 = €/dijoa.
Using (2.4), the diagonal elements of M are then
Mi; = A + 20e/di_y ;.

13



Hence the resulting matrix M is more diagonally dominant than the original matrix A. Thus, M
is more stable numerically than the original matrix A. This serves as an apostiori indication of
why ILUj acts as a robust smoother.

In general, it may be worth considering the following heuristic for choosing an incomplete

factorization for the general form MILU(0, w):

. +sign{m;_1,; + mij_1) for a good preconditioner
sign{w) =
—~stgn(m; j..1 + my;-1) fora good smoother

2.2 The seven-point stencil

We can also find analogous incomplete L and U matrices for the seven-point stencil arising {rom the
discretization of second order elliptic operator in three dimensions —V - (K (z,y, z)Vu(z,y,2)) = f
on (1. Now let § be a regular parallelepiped in three dimensions divided into uniform pieces ng, ny,
and n, in the z-, y- and z-directions. Let u;;, = u(®;, 5, 2), analogously to the two dimensional
case, and similarly for K ;x and f; ;.

The equation of the (¢, j,k)th variable is expressed in general form by

i ki gk + Digktirs ik Cigkti i1k T G kUi gk
+ €kt 1k + fiikUike1 T Gigktink-1 = fijk-

A is now given by the seven-point stencil

k -1 plane k plane k+ 1 plane
Ci g,k
LTRY : dijk @ik Digk : Sigk
€5,k :

or, equivalently, by the picture

Cijk

Gijk

dijk bijx
J ¥}
@ijk

fijk

€ijk
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The equations for the (¢, 7, k)th variable corresponds to the "M row of A where | = {({k — Lny +
(j — 1))ny + ¢ This row is illustrated by

[ — ngny [ —ng -1 { I+41 I+ 1y [+ ngyny,

| L] I
rowl —] S ]

fisk

Gijk €k dijk  aie bijk Cijk

The incomplete LU factorization for A is then specified by M = LU where the matrix L is the
lower triangular matrix given by

k — 1 plane k plane k+ 1 plane
8,5,k dijk %k
€1,k
and the unit upper triangular matrix U/ is given by
k — 1 plane k plane k + 1 plane

S
Yigk T Cidk

1

L —1p.
ik bigk

S T
ik figk

We can also write M = LD~1{/ where D! is the diagonal matrix D! = diag(«;};) and U is
the upper triangular matrix

k — 1 plane k plane k + 1 plane
S5,k
@ik bigk fijk
The resulting matrix M = LU = LD~1U is
k — 1 plane k plane k + 1 plane
i1, 5, k—1 Mi_1 41,k Cigk
Sigik Wi 41 k—1 di 5k mi 5k by j.k Mi_1,5k+1 Figk

i,k Mi4l,3—1,k i 3—1,k+1

Here there are six fill-ins given by the expressions

M41,5,k—1
My j4ik-1
Mi—1,j+1,k
M1, —1k
i 1,5,k+1

My j—1,k+1

— syl .

= g‘:J,ka:’,j,k—lb‘-J:k”‘l
Ry J

= 4,5,k % 5 pafig k-1
di s et s

= 8GRy g kCi-100k

-1

= i keiybii-1k
di ol s ficL

= G k0 s eli-Lik

-1
= eij k0 ;g pfii-1k

15
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The diagonal entries of M are given by
Mijk = Qigk T ds,j,kaf_ll,j,kbf—l.j.k + Ei,j,kai_,}_.l‘kci.j—l,k + gi,j,ka;f},k_lfi,j,k_p
The rowsum condition (2.3) applies using the six fill-ins above
ik = @ik + 6 — w(6 fill-ins in M) (2.7)

Combined with the previous equation for m; ;. we get the recurrence defining the diagonal elements

of L.
Qigr = digh+ 6~ digreilye(bicne + wleicyik + ficgk)
ei ik _q pleii—r T w(bii1k + fij-14)) (2.8)
— gignei g (figho1 + w(bijk-1 + Cijh-1))

And as for the five-point stencil, if the equation had Dirichlet boundary conditions, then we have

the following constraints

bijpo = 0, i=ny

ik = 0, j=ny

fije = 0, k=mn,

dijz = 0, i=1 (2.9)
eijk = 0, J=

gije = 0, k=1

2.3 Observations

In MILU(§,w), § = 0, for w # 0, adding an amount of the fill-ins back onto the diagonal of
the matrix L does not necessarily make the resulting matrix more diagonally dominant than the
original matrix A. It actually amounts to subtracting a fraction w of the fill-ins from the diagonal
entries of A to create the diagonal elements of M. If the fill-ins are positive, this is making the
matrix M less diagonally dominant. This can be seen from formulas (2.4) and (2.7).

As an example, consider the discretized two-dimensional Laplace’s equation, —~Au = f. Using

centered differences, the stencil values are a;; = 4, bjj = ¢i; = dij = e;; = —1. Since the recurrence
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for a;; yields positive values, the fill-ins are positive,
Mi_1g41 = eioyy, mipnio = Lo

and hence m;; < a;;. This is crucial in the creation of a good preconditioner where we desire
K(M~1A) = 1 since it causes min A(M) to be less than min A(A).

The above observation also explains the robustness of the method used by Wittum in {64] as a
multigrid smoother. For w < 0, we would get mi; > @ij. The resulting matrix M is more diagonally
dominant than the original matrix A. As a smoother, it is important that the matrix M be stable.

The above formulas for the five-point and the seven-point general MILU matrices are also valid
when dealing with block matrices. The recurrences for a;; and ¢; jx hold in block form simply by
substituting 47 for the scalar 8.

The point and block forms of these factorizations are used in the analysis given in chapter 6

and in the experimental implementations of chapter 7.
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Chapter 3

Fourier Analysis Technique and

e-pseudo-eigenvalues

3.1 Introduction

Eigenvalues of iteration matrices and preconditioned systems are important in forecasting which
methods may be better than others in terms of rate of convergence. However, there are drawbacks
to exact eigenvalue analysis.

One major obstacle is the determination of analytic formulas describing the eigenvalues for
a general matrix. This is a difficulty which arises in the analysis of incomplete factorization
preconditioners such as ILU and MILU. While it is possible in some situations to determine bounds
on the minimum or maximum eigenvalue or the condition number [27,7], the analysis is typically
difficult and/or tedious. A Fourier analysis technique, however, can then used to obtain heuristic
results as has been done in [20,19,24,22].

The second problem with exact eigenvalue analysis is that eigenvalues of a non-normal matrix
can be highly sensitive to perturbations. This means that the exact spectral radius of an iteration
matrix may not give a numerically realistic indication of the usefulness of the iterative method.
This leads us into the theory of e-pseudo-eigenvalues.

Herein, I first present an overview of the Fourier analysis technique for iterative methods for
elliptic equations. I then give an overview of the theory of e-pseudo-eigenvalues based on papers
by Trefethen {54} and Trefethen and Reichel [48]. For the one-dimensional case, I demonstrate a

relationship between the theory of e-pseudo-eigenvalues and the Fourier analysis technique. The
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Fourier analysis technique has been shown to be a useful method in heuristically studying the
effectiveness of iterative methods and preconditioners [20,19,24,22]. As yet a rigorous explanation
of why this technique can work so well for non-periodic non-constant coefficient matrices has been
evasive. In the symmetric case, the technique yields the true eigenvalue expression, but if is does
not always yield a good approximation for non-symmetric matrices. For non-normal matrices, due
to the sensitivity of their eigenvalues to perturbation, Trefethen and others have utilized a theory
on e-pseudo-eigenvalues in the study of matrix equations. Herein, it is shown that for Toeplitz
matrices the theory of e-pseudo-eigenvalues includes the Fourier analysis technique as a limiting

case. Hence, the Fourier eigenvalues serve as an approximation to the e-pseudo-eigenvalues.

3.2 Fourier Analysis

Fourier analysis is a pervasive subject in all of mathematics. Here we are interested in how it
can be used to determine eigenvalues or approximate eigenvalues of a given matrix. Consider a
one-dimensional constant coefficient problem with periodic boundary conditions discretized on a
uniform grid with N grid points. Let Au = b denote the resulting matrix system where A is an
(N +1) %X (N + 1) matrix.

Let u(®) be a column vector of length NV +1 composed of the one-dimensional Fourier exponential

modes.! The j*1 component of u(*) is given by

2rs

( _Lne < g
N-l-—l, =

ujs) = ei% where 6, =

The N + 1 vectors {ul®) : 0 < s < N} are eigenvectors of the matrix A. The fact that we know
a basis for the matrix A makes it quite easy to determine an analytic formula for the eigenvalues
of A.

Although matrices are rarely constant coefficient periodic, Fourier analysis is still used in the
same way that von Neumann analysis is used for parabolic systems [49], and local mode analysis
is used for multigrid methods [17]. It is not surprising to see Fourier analysis used for the analysis
for discretized elliptic equations [20,22,24,19]. In synopsis, the Fourier analysis technique requires

the following steps.

1Similatly, for a constant coefficient matrix with Dirichlet or Neumann boundary conditions we could use the

Fourier sine or cosine modes, respectively, as eigenvector components.
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(a) Treat the matrices involved as if they were periodic. This may involve ignoring the original

boundary conditions of the problem and/or extending the original matrix.

{b) Force the matrices to have constant diagonal entries. This may entail using an asymptotic

value for the diagonal entries, as in the case for the ILU preconditioner.

(c) From concepts developed in {20] use the relation hj = 2h4 to relate the periodic mesh size to

the Dirichiet mesh size.

After performing the above steps, we would have constant coefficient periodic matrices whose
eigenvalues are the Fourier vectors comprised of the Fourier exponential modes of the appropriate
dimension. We are then able to use exact Fourier analysis on the altered matrices to determine
approximations of minimum or maximum eigenvalues of the original matrices.

This is done simply by computing
Ayls) = \Byle)

where A represents the modified matrix, and A} = AB)(A) denotes the s Fourier eigenvalue of
A. Since A is constant diagonal, this computation can be easily done using component or stencil
form. The A} are a function of 87 = 2rsh, = 21s/(n, + 1) where np = 2ny + 1 and 1 < s < np.
Thus, ol ¢ (0,27).

The Fourier approximate eigenvalues of A, FA(A),, are then given by the eigenvalues of A:

FA(A), = ABY(A).

3.3 e-pseudo-eigenvalues

For non-hermitian matrices, the eigenvalues of the matrix can be highly sensitive to perturbations.
Hence, when analyzing a matrix to determine its behavior as an iteration matrix or as a precon-
ditioner, the true eigenvalues of the matrix may not yield numerically useful information. In fact,
we are more interested in the behavior of the eigenvalues of a perturbed matrix A.

This leads us to the theory of e-pseudo-eigenvalues. The references [54,48,53] are crucial for
this section.

e-pseudo-eigenvalues can be defined equivalently in a number of ways. Herein, we will use the

following definition from [54].
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DEFINITION: Given € > 0, the number A € C is an ¢-pseudo-eigenvalue of the N x N matrix A if
) is an eigenvalue of A+ F for some E € CNV*N with ||E|| < e. The set of all e-pseudo-eigenvalues

of A, called the e-pseudo-spectrum, is denoted A{A) or simply A..

So rather than examine the exact eigenvalues of a non-hermitian matrix -A .we want to ex-
amine A,. However, computing A.{A) using the definition is not always desirable or feasible for
large N.

Consider a one-dimensional problem resulting in a system Au = b with A being the Toeplitz

matrix
g a cee AN
a1 ay - .
A= . (3.1)
M 25}
a_py 0 _g ao

The symbol of this matrix is given by f(z) = Yo _n @xz*. The fundamental observation of [48]

is that for large N and small ¢, A, looks approximately like the union of three sets:
Ac =, UQRU(A+A). (3.2)
The notation is as follows:

., = {zeC:I(f(5)z) >0}
QfF = {2eC:I(f(Sr),z) <0}
S, = circle of radius r, 7 = (e/e)}/V

Sp = circle of radius B, R = (¢/C)~"/N

I(f,z) = winding number of f about 2
A = the eigenvalues of the matrix A
A+ A, = union of e-balls about the eigenvalues of the matrix A

The values ¢ and C are generally taken to be 1 [48].

f(S,) and f(Sg) are easily computed. And, it appears that they typically provide a good
envelope for A (A). By computing the regions enclosed by f($,) and f(Sgr), we can get a general
idea of the behavior of the matrix without the computationally undesirable tasks of computing A

ot A(A) from definitions.
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3.4 The link between the Fourier technique and e-pseudo-eigenvalues

In this section it is shown that the Fourier analysis technique yields a limiting expression for the
boundaries of the regions {2, and Of,
LEMMA: For the general one-dimensional Toeplitz matrix the boundary defined by the Fourier
eigenvalue expression, FA(A),, is a limiting case of the boundaries of . and Qr.

Proof. Consider again the Toeplitz matrix (3.1). We have already noted that the symbol of

this matrix is given by

N
flz)= Z apz®. {3.3)
k=—N

From {3.2) we are interested in the regions {1, and Q. Here, we look at the boundaries of 2, and
QF which are determined by the images of §, and Sg via the symbol f(z). The image of 5, via
£(2), £(Sy), is given by

f(8:)={z = f(re®) : 8 € [0, 2]},

where
N N

flret?) = Z ap(re’)* = Z reag(e? )k (3.4)
k=—N k=-N
with » = /N, and similarly for f(Sgr) using R = ¢~ /N instead of r. As N — oo, we haver — 1,
R — lsince e € 1.
To apply the Fourier analysis technique to this Toeplitz matrix (3.1) we follow the steps outlined

earlier. The periodic version of the matrix A is

ap cvr GN-t QN OQ_N vee Gy
- an R 11 ay az s AN
A=

a.nN d_1 o a1 2304

g-1 v &N GN GN.1 ' B9

where A is an order 2N + 1 matrix.

We calculate the 7% component of

Tul® = A()g(®)
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i(i+N )P

to get
Al = a0 4 agelGHIAY L ane
boa_ D8 Ly g eili-NEY
N Lgle)
= Z ak61k9" 'U',g-s)
k=-N
o A(S)(ﬁ)ugﬂ.
The Fourier eigenvalues of A are then given by the eigenvalues of A,
- N 047\ ke
FA(A)s = AO(A) = 30 (™), (3.5)
k=—N

where 8§ € (0,27).

By comparing the Fourier eigenvalues of A, equation (3.5), to the images of S, and Sg via the
symbol for A, equation (3.4), we see that (3.5) is a discrete version of (3.4) where r = 1. And as
already noted, » = 1 and R = 1 are the limiting values as N — oco. |

Thus the theory of ¢-pseudo-eigenvalues includes as a limiting case the Fourier analysis tech-
nique. This theory may then provide the explanation as the why the Fourier analysis technique
has yielded good approximations even for situations where Fourier analysis does not strictly apply.

For the non-limiting case, the boundary formed by the Fourier eigenvalues lies between {2,

and QF. And so the Fourier boundary would enclose most (if not all) of the ¢-pseudo-eigenvalues.

Empirically, we will see it seems to inciude all of the pseudo-eigenvalues.

3.5 Examples

In this section, some examples are given demonstrating the relationship between e-pseudo-eigenvalues

regions and the boundary defined via the Fourier eigenvalues.
As a first simple example consider the following one-dimensional problem

~Ugg + YU =f, ¥ >0
u(0)=u(1)=10
on Q = [0,1]. Let Q be divided into # uniform intervals of mesh size h = 47, and use centered
differences for uz; and upwind differencing for yuy. We get the matrix equation
Au=15b, AeR™" (3.6)

23



where A has the stencil
—l—7h 2+7h -1 ]

So, A is a tridiagonal matrix of the form

where ¢ = 2 +vh, b= —1,and ¢ = -1 — vh.

The Fourier eigenvalues of A are
FA(A), = a + bei® 4 ce~t, 8, € (0,27).
Now consider the ¢-pseudo-eigenvalues: the symbol of the matrix is
f(z)=a+bz4czh

As before, we consider z € S, or z € Sg with r = ¢//N and R = e~ LN,

In Figures 3.1-3.4, we use this nonsymmetric problem (3.6) to demonstrate the relation between
the true eigenvalues of the problem and the Fourier and e-pseudo-eigenvalues. ‘The nonsymmetry
of the problem is varied by altering the value of the parameter 7. Here N = 100 and € = 104,

In each of these pictures, the true eigenvalues, the e-pseudo-eigenvalues, f(S,), and f(Sg) are
plotted. See the legend given in Table 3.5.

In each of these pictures we see that the e-pseudo-eigenvalues are enclosed by Qg which is

surrounded by the Fourier boundary.
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Symbol Itern Represented
solid line Q,
dashed line QF

o e-pseudo-eigenvalues
X Fourier eigenvalues
* eigenvalues

Table 3.1: Legend for FA and A, figures
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Figure 3.1: Regions for (3.6} with v = 0.
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Figure 3.3: Regions for (3.6) with v = 150.
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3 4 5

Figure 3.4: Regions for (3.6) with v = 200.
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In Figure 3.5, example (3.8) of [48] is plotted along with the Fourier eigenvalues. The matrix is

0 2 \

A= R (3.7)
SR
10

In figure 3.5, the roles of §2, and QF have reversed. f(S,) provides the tighter bound on the
¢-pseudo-eigenvalues. However, we still have the Fourier boundary between f(S,) and f(Sg).

The regions {2, and QF are not always elliptical in shape. Figure 3.6 shows the regions for the
Bull’s head example [48] from the matrix
o ¢ 1 .7

22 0 0 1 .7
0 2 0 0 1 .7

A=
0 22 ¢ 0 1 7
6 2¢ 0 0 1
6 22 0 O
0 22 0

The regions depicted in figure 3.6 are more complex, but it is still easy to see that the Fourier

boundary lies “in-between” Q. and QF and that the Fourier boundary encloses the e-pseudo-

eigenvalues.

3.6 Summary

The Fourier technique discussed above is only an approximate method, yet it experimentally yields
good bounds on the minimum and maximum eigenvalues, and condition numbers. As mentioned

in [53] this may occur because the Fourier technique is computing approximate eigenvalues of the

original matrix.

For the one-dimensional scalar case, I have demonstrated a connection between the Fourier
analysis technique and ¢-pseudo-eigenvalues regions. The Fourier boundary is the limiting case of

the O, and QF boundary regions for e-pseudo-eigenvalues.
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Figure 3.6:
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Hence, the theory of e-pseudo-eigenvalues of Trefethen not only yields reasons why e-pseudo-
cigenvalues are more crucial than eigenvalues for analysis methods for non-hermitian matrices, it
also lends itself to explaining the usefulness of the Fourier amalysis technique.

The two-dimensional Fourier analysis technique will be used later in this dissertation in the

analysis of point and block incomplete LU factorizations for coupled equations.
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Chapter 4

Incomplete LQ Factorization

4.1 Introduction

In the solution of large sparse linear systems of equations of the form Au = b, Krylov space
methods are frequently the methods of choice. For symmetric positive definite problems, one
would likely use preconditioned conjugate gradient (PCG). For nonsymmetric problems, there is a
great supply of such methods, including GMRES (Generalized Minimum Residual), ORTHOMIN,
ORTHORES, CGNE (Conjugate Gradient Normal Equations), and CGNR (Conjugate Gradient
Normal Residual). And for each of the methods just named, the use of a ‘good’ preconditioner,
M, can accelerate the rate of convergence.

In {33], Gustafsson presents the generalized SSOR preconditioners. Meijerink and van der Vorst
[41) show that a matrix A will have a stable incomplete LU (ILU) factorization if A is an M-matrix.
Zlatev [66] uses an incomplete LU factorization of the matrix A where elements of L and U whose
magnitudes fall below a specified tolerance are dropped (set to zero). In [50], Saad employs an
incomplete LQ (ILQ) factorization. In an LQ factorization for a matrix A, L is a lower triangular
matrix and @ is an orthogonal matrix such that A = L@. The ILQ factorization of Saad is based
on retaining only a specified number of the largest magnitude elements in L and Q. Saad compares
the performance of CGNR/ILQ, CGNR/IC, GMRES/ILU, GMRES/ILUP (ILU with pivoting)
and CGNR/SGS (symmetric Gauss-Seidel}.

In this chapter, I examine the use of the ILQ preconditioner with GMRES and CGNE. I use
the ILQ factorization presented by Saad. I introduce an ILQ factorization based on the sparsity

pattern of A. GMRES/ILQ and CGNE/ILQ are compared with GMRES/ILU, GMRES/MILU(D),
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and GMRES/MILU(d).

The test system comes from a nonsymmetric partial differential equation whose nonsymmetry
is controiled by a parameter v. The effect of varying v on the behavior of the ILQ based methods
is investigated. Also, for fixed v, the number of grid points n in one dimension are varied to study
the ‘optimal’ number of large magnitude elements to retain.

For the set of tests presented here, GMRES with an (M)ILU preconditioner out-performs both
GMRES and CGNE using the ILQ preconditioners of similar sparsity. However, stable (M)ILU
factorizations do not always exist, and in these cases, ILQ may be a good choice. With this in mind,
it is determined that there is an ‘optimal’ number of elements to keep in an ILQ(m) factorization

and that this value depends linearly upon the number of grid points in each dimension.

4.2 'The ILQ Preconditioner

In an LQ factorization of a matrix 4, L is a lower triangular matrix and Q is an orthogonal matrix.
At each step of the usual LQ (or QR transposed) factorization method [32], a row of L and the
corresponding column of Q are computed. The incomplete LQ (ILQ) factorization technique used
by Saad is described as follows. Integers P and Pg are specified. During the incomplete LQ
factorization process, one row of L is constructed as usual, but only the Pr largest magnitude
elements of L are retained. The remaining elements in that row of L are dropped (set to zero). The
corresponding column of Q is then constructed based on A and the altered version of L. Similarly,
only the Py largest magnitude values of that column of Q are kept. Saad considers factorizations
such that Pr, = Pp = m.

Another dropping strategy is the sparsity pattern strategy used in ILU factorizations. Here
[ introduce an ILQ factorization where only those elements of L and @ are kept whose positions
correspond to the positions of nonzero elements of the original matrix A. This will be referred to
as ‘same sparsity’ ILQ.

In this chapter, the incomplete LQ factorization described in [50] and a new ‘same sparsity’

ILQ will be examined.
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4.3 Using ILQ with GMRES and CGNE

We want a preconditioner M for A based on the ILQ factorization. We could use M = LgJ. Then
M Au=1b
where b = M~1b, could be solved via
QL Au = b.
However, this is not desirable since Q is not guaranteed to be nonsingular in the ILQ case. (Even
using the @ from the true LQ factorization would be undesirable. Multiplication by Q* would
be costly in operation count and hence overall execution time since ) would in general be a full

matrix.)

Since M = L) is hopefully a ‘good’ approximation to A, then we might consider that
A= LQ.

S0,Q ' =Qt=A'L~tand M~} = QL1 = A'L-1L—E,
The symmetry of the above equation also leads to a natural preconditioner [50] of the normal

equations
AAly = b, (4.1)
namely
L' AA Ly = L7

where u = Ay, Thus, we also implement CGNE with preconditioner M = LL*.

4.4 Implementation

Consider the following equation in two dimensions.

—Nu+yu,=f on Q=[0,1] x[0,1]
v=0 on Q.

The right-hand-side, f, corresponds to a true solution of u(z,y) = zy{1—z)(1—y). This equation
is discretized on an n X n partition of  using the usual five-point second order discretization of
the Laplacian and first order upwind differencing for the convection term. Using lexicographical
ordering of the grid points, we get the matrix system Au = b where A € R™*7* hag the following

stencil
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with h = H%T

The nonsymmetry of the problem is controlled via the parameter v.

For each of the methods implemented, the stopping criterion is that the ratio of the current
actual residual to the initial actual residual is less than 10~7. All experiments were performed via
MATLAB. (The use of MATLAB made relatively quick implementation possible. However, the

amount of storage and time needed to run these routines in MATLAB are reasons why experiments

were restricted to small numbers of unknowns, n, in each dimension.)

4.5 Numerical Results

4.5.1 Comparison of Similar Sparsity Patterns

Suppose we consider those incomplete factorizations of A where the I matrices have similar
sparsity. In Table 1 (n = 7,7 = 1) and Table 2 (n = 7,7 = 6), we have the number of iterations
needed to converge for various incomplete factorizations. ILU, MILU(0), MILU(d), ‘same sparsity’
ILQ, and ILQ(m) with m = 3 all yield L matrices with three non-zero elements per row. (The
value d was chosen to be 2w2h? [20].)

It is seen that the incomplete LU factorizations out-perform the ILQ factorizations in two ways.
The number of iterations for (M)ILU are considerably less than those for ILQ. And the solution of
M~y for (M)ILU takes only two triangular solves. Whereas M ~'v for ILQ takes two triangular
solves and a matrix multiply by A*. Hence, ‘same sparsity’ ILQ and ILQ with m = 3 are less
efficient than (M)ILU with this test situation.

It should be noted that there are situations where a stable (M)ILU factorizations may not
exist [41]. In these cases, ILQ would certainly be worth trying over (M)ILU. See [50] for such an

example.

4.5.2 Behavior as a Function of m {# of large elements kept)

In those situations where it is determined that ILQ should be used for preconditioning, the question

arises as to what dropping strategy works better, and how much should be dropped. Figures 1, 2,

34



Iterations
Preconditioner || GMRES | CGNE
ILU 10
MILU(0) 10
MILU(d) 10
ILQ sparse 22 25
ILQm=3 26 32

Table 1: Comparison of iterations for similar sparsily patterns, v = 1.

Iterations
Preconditioner || GMRES | CGNE
ILU 10
MILU{0) 16
MILU(d) 10
ILQ sparse 2 22
nQm=3 23 24

Table 2: Comparison of iterations for similar sparsity patterns, 7 = 6.
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and 3 (n=7, for ¥ = 1,6, and 15 respectively) plot the number of iterations required for convergence
using ILQ(m) as m is varied from m = 1 (diagonal L and Q) to m = n? (full L and Q, e.g. true
LQ factorization).

Iteration counts for the (M)ILU and ‘same sparsity’ ILQ, and ILQ(m) with m = 3 are also
given (labeled by lower case letters). See Table 3 for the legend of the symbols. For the methods
labeled by lower case letters the m values along the z-axis have no meaning. These labels are
placed in the figures for ease of comparison of the iteration counts from the y-axis.

For m = n2, GMRES/ILQ(m) and CGNE/ILQ(m) both satisfy the stopping criterion after one
iteration. This is expected since this case is using the true LQ factorization of A.

The most interesting observation is that in each case, as m increases, there is a value of m
where the number of iterations drastically decreases, After that value of m, further increase in m
leads to very little reduction in the number of iterations. This ‘optimal’ value of m depends on 7,

but the dependence seems slight.

Symbol Method/Preconditioner

+ GMRES/ILQ{m)

o CGNE/ILQ{m)

a GMRES/ILU
GMRES/MILU(0)

c GMRES/MILU(d)

d GMRES/ILQ sparse

e CGNE/ILQ sparse

Table 3: Legend for Figures 1, 2, and 3
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Number of Iterations

Figure 4.1: Number of iterations of ILQ(m) as a function of m (v
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4.5.3 Behavior as a Function of n (# of unknowns in each dimension)

To further study the ‘optimal’ m value, the CGNE/ILQ{m) code is executed for n varying from 3
to 10 (A € R %" ranges from 9 X 9 to 100 x 100). For each n, we again vary m increasing from
m = 1. The results are given in Table 4. For a fixed value of n (except n = 3), we again see a
1apid drop in the number of iterations up to some value of m. The number of iterations becomes
fairly insensitive to further increases in m.

This observation also indicates why ILQ(m) with m = 3 is not a good choice of preconditioner.
The value of m is too small to be past the steep drop off, so the number of iterations is very high.

By examination of Table 4, we see that a value of m = n + 2 is typically an ‘optimal’ number
of large magnitude elements to keep in terms of iteration counts. This is a crucial result when
considering storage space and computation time for non-MATLAB implementations. This value
of m ensures that I is sparse (number of nonzeros in a row is O(n)). Hence, sparse matrix

manipulation routines can be utilized in the computations.

m, Number of Large Values Kept

nl 1 2 3 4 5 6 7 8 9 10 11 12 13 14
3/ 9 9 &8 8 7 5 4 3 1

416 16 12 10 9 8 7 6 5 5 4 3 3 3
5192 22 17 13 12 10 9 7 7 6 6 5 5 3
613 28 24 16 14 12 10 9 8 7 7 7 6 6
7148 37 32 18 17 15 12 1 9 9 7 T T 7
862 47 42 21 19 20 13 12 10 10 8 8 8 8
977 58 55 24 21 2 15 15 1 11 9 9 9 9
10193 70 74 28 23 33 17 17 12 12 10 9 10 10

Table 4: Tterations of CGNE/ILQ(m) for varying values of n and m (y = 1).

An extra couple of elements in L can significantly speed convergence. Yet, picking an m
too large may only add computational work (due to the increased sparsity pattern) without any
decrease in iteration count. For example, for n = 6, m = 10,11, or 12 all require the same number

of iterations.
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4.6 Summary

The following observations have been made.

¢ We have found that for the test problem used here, the (M)ILU preconditioners with GMRES
out-perform the ILQ preconditioners of the same sparsity with GMRES and CGNE.

e For the ILQ preconditioners, the ‘same sparsity’ ILQ is found to be inferior to ILQ with

m > 4.

o And most importantly, it was seen that a value of m = n + 2 is an ‘optimal’ choice to use

with ILQ for an n? x n? matrix A from this test problem.

There are many other interesting ideas involved with these ILQ preconditioners. For example,
certainly the number of values kept in L and @ need not be the same. If the values P, and Py were
different, perhaps a better preconditioner may result. Also, we could consider an ILQ factorization

by sparsity pattern where levels of fill-ins are allowed as is done with some (M)ILU factorizations.
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Chapter 5

Coupled Systems of Equations

5.1 Introduction and Motivation

In this chapter, I provide an introduction and motivation for the study of coupled systems. I
present the three model coupled systems (A, A/, and B} to be the focus of the second part of this
dissertation. Some notation and general theoretical results necessary for the analysis undertaken
in chapter 6 are summarized in this chapter.

In this study of coupled systems of equations, we are motivated by the steady-state normalized

two carrier drift-diffusion equations from semiconductor modeling

—Au+v—p—~N(z)=0
V- (vVu-Vuv)=90
V. (pVu — Vp) = 0.
The functions u,v,p, and N(z) represent the electrostatic potential, the density of electrons,
the density of holes, and the doping profile, respectively.

To attack this set of nonlinear equations with numerical linear algebra techniques, the equations

are reduced in the following manner:
1. Consider only the one carrier system. {Ouly u and v are kept in the equations.)
2. Linearize the resulting equations.

3. Assume that “the response of carriers to a change in the electric field is much faster than

the effective rate of change in the field.” In other words, assume that Vv >> Vu. (This
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assumption is not unusual, see [15].)

This yields the following pair of linear second order coupled elliptic equations in » and v with

positive parameters ¢ and 7,

AN =
w4+ v f (5.1)
~Av+eVo+nAu = g

The one-dimensional version of this system has been examined in [14].

5.2 Ordering “by equation” and “by grid point”
Consider for a moment the simplest form of second order two parameter coupled model problem

~-Autav=f (5.2)

~Dv+yu=g¢
on a region = [0, 1] x [0, 1] with Dirichlet boundary conditions where «,y are both real constants.
The usual five-point stencil discretization of the Laplacian on an n X n mesh is used with uniform

grid spacing h = ?1%'1' The resulting scaled 2 x 2 block system with n X n subblocks is

Aw =1 (5.3)
where
A h? —\p, ol _ A5 ah?l ¢ prixen
o7 BEYANY vh* I A
~1
Ds=-h*Dp=1 -1 4 -1
-1
U
w =
v
b= B2 f _ f
g g

In the above system, the grid points for u are ordered prior to those for ». For example,

w = (ulla Uiy oo oy Unn, P11y o - -y 'Dnn)'
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As discussed in chapter 1, this will be called ordered “by equation.”
The discretized system can be ordered in a variety of ways. In particular, the ordering “by grid

point” for this problem would use
B = (U11, %11, + + + 3 Unny Pnn )

The system would then appear as
Aw = (5.4)

where A is an n X n block pentadiagonal matrix with 2 x 2 subblocks,

- T
. 4 ah? 10
A= -1 A ~-I|, where A= , I=
/ vh? 4 0 1

Let P denote the permutation such that
A =PAP.
Given either equation or grid point ordering, a variety of point and block methods can be
examined. Methods for (5.3) lend themselves to 2 x 2 block methods where the subblocks are n X n
matrices. These block methods will be called “block equation” methods.

Methods considered for (5.4) will be n x n block methods where the subblocks are 2x 2 matrices.

These methods will be designated “block grid” methods.

5.3 The Three Model Problems: A, A’, and B

The system {5.1) however is still difficult to analyze directly due to the convection term eVv. Hence,
a set of three model problems will be examined. The first two problems will lend themselves to
analytic techniques. Information gleaned from these will then be utilized in methods for the third
model which is (5.1).

Consider again the two parameter model (5.2). Since our desire is to find effective methods
for (5.1), we are not interested in the saddle point cases where a or 7 are zero.

First, suppose that ay > 0, then the matrix (5.4) can readily be rescaled into a symmetric

system using the transformation matrix

I 0
0 sign{a)fl

S =
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where 8 = \/y/a. Then S-1.4S = A. Hence, we get the following matrix system which will be
called Model A.

&y BT
A=h? ﬁ,Ih ﬁ[m\ : ﬁl — ﬁh2
b By

Now, suppose that ay < 0, then analogously we get the non-symmetric one-parameter system

A T
A = h? ho P (5.5)
i VAV
The above will be referred to as Model A’
The third model problem is that of {5.1). We will call this Model B.
AN I AN h2I
A = B? h = ’ , (5.6)
T]Ah -—Ak + EVh *7’}&5 A5 + ¢S

€ = «h,

where upwind differencing is used to approximate the €Vv term of the equation (5.1), so that

€85 = eh?V), = (eh)(hVp)=¢€ | -1 2

-1
It will be shown that while Models A and A’ look similar, the difference in sign leads to vastly
different behavior for some methods. The eigenvalues of the Model A system are real but can

be indefinite or even singﬁlar for certain ranges of the parameter §'; whereas, the eigenvalues for

Model A’ are complex, yet the real-parts of the eigenvalues are always positive.

5.4 Reduced System (Schur Complement)

For Models A and A’, we might consider dealing with the reduced systems.
Consider Model A, using one step of block Gaussian Elimination, we get the following system

for the original system (5.5).

As B % I
0 C v g-po5f
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where the Schur complement matrix is given by
C =0 = (BY L5

To solve the original problem, we could then take the following steps.
Step 1, solve for v in the reduced system Cv = § — 3’ Az!f. This Schur complement equation

can be written in two different forms:
(D5 — (BAF Y
(Af - (B

Note that for § € Range(AAs)) = [Amin(Ds)s Amas(2s)] both versions of the system are ill-

g - ﬁ’Aglf,
Osi—Bf.

conditioned. The second version of the Schur complement system has the advantage that there is
no solve required on the right-hand-side of the equation. However, it has the disadvantage that
A? — (821 may be more ill-conditioned.

Step 2, solve for u in Agu = f — §'v.

Both of the above solves could be accomplished by using Fast Fourier Sine Transform.

But the goal in this thesis is to determine good iterative methods for more general equations
than that of Model A or A’. The Schur complement of more general equations will certainly not
lend themselves to exact solvers. The hope, however, is that iterative methods which are found to
be good for Models A and A’ will be useful in solving more complicated systems which cannot be

solved exactly.

5.5 Eigenvalues of Jacobi and Gauss-Seidel Iteration Matrices

In the analysis of iterative methods we are concerned with the eigenvalues of the iterative matrices.
When it is possible to compute, it is always easier to compute the eigenvalues for the Jacobi
iterative matrix than for a Gauss-Seidel iteration matrix.

However, in certain cases the eigenvalues of the Gauss-Seidel iteration matrix can be determined
directly from the eigenvalues of the Jacobi iteration matrix.

The following is a brief summary of results from the text by Young [65] which relate these

eigenvalues. These results will be used in the analysis undertaken in chapter 6.

DEFINITION: Given a matrix A = (aj;), the integers ¢ and j are associated with respect to A if

ai; # 0 or aj; # 0.
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DEFINITION: The matrix A of order N is consistently ordered (CO-matrix) if for some ¢ there exist
disjoint subsets Sy,Sg,---, 8 of W = {1,2,-.-, N} such that ™ _1 Sx = W and such that if ¢ and

§ are associated, then j € Skpp1 i j > dand j € Sp—1if j < i, where S is the subset contaimning i.

THEEOREM: 5.1, Let A be a CO-matrix with non-vanishing diagonal elements and let J be the

Jacobi iteration matrix of A. Then

(a) If u is any eigenvalue of J of multiplicity p, then —p is also an eigenvalue of J of multiplicity

p.

(b) The eigenvalues, A, of the SOR(w) iteration matrix, £,,, satisfy the equation
(A 4w — 1) = w2

(¢) In particular, the set of eigenvalues of the Gauss-Seidel iteration matrix L1 includes the num-
ber zero together with the numbers pf, p3, - - -, p2 where 1,k p2, - -+, £y are the nonzero

eigenvalues of J.

Young [65] also generalizes the above results to group iterative methods. “With group iterative
methods, one first assigns the equations to subsets or groups, such that each equation belongs to
one and only one group. One then solves the groups of equations for the corresponding unknowns
treating the other values as known. A special case of a grouping is a partitioning. Here for some
integers ny,mg, -+, Mg such that 1 <ny <ng < -ong = N the equations for ¢ = 1,2,-.+,n; belong
to the first group, those for i = ny + 1,7y + 2, -+, ny belong to the second group, etc. Methods

based on partitioniﬁgs are usually known as block methods.”

DEFINITION: An ordered grouping = of W = {1,2,-.+,N} is a subdivision of W into disjoint
subsets Ry, Ry,-++, Ry such that By + Ry + - Ry = W.
Given a matrix A and an ordered grouping 7, with q groups, we define the ¢x ¢ matrix Z = (2rs)
by
0, if Ay, =0,
1, if A, #0.

ZTS -

DEFINITION: The matrix A is a 7-consistently ordered matrix (a 7-CO-matrix) if Z is consistently

ordered.
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THEOREM: 5.2. If A is a 7-CO-matrix? such that D(™ is nonsingular, then the conclusions of the

Theorem 5.1 are valid if we replace J by J{™) and £, by oo

5.6 Notes and Notation

Following the group notation of Young [65], we use the following definitions:
Ty = point grouping in the “by equation” ordering
g = point grouping in the “by grid point” ordering
7 = block grouping in the “by equation” ordering
# = block grouping in the “by grid point” ordering

Let W, denote the Fourier Sine matrix and W, denote the Fourier Exponential matrix in two-
dimensions. W, is orthogonal and has the property that W; 1 = W! = W.,.

W, is composed of the n? vectors w(st),1 < s,¢ < n where the ((j — 1)n + i)t* component w*?)
is given by

wlt? = Vahsin(isth) sin(jtrh) = V2hsin(i6,)sin(j ),

where 8% = srh and q&%d) = txh.
w, W, W, 0

Let Ws = 1 ) wsd =
Vi w, -W, 0 W,

The Fourier Exponential matrices are used when analyzing constant coefficient matrices with
periodic boundary conditions. W, consists of n? vectors w*t,1 < s, < n where the ((7—1n+ 1)t

component is
wigz_,t) = Vheltomhs)ig(2mht)i — (/R eifsgibe

where s = /=1, 8) = 2swh, and o7 = 2tmhy. As in [20], we have disregarded the s, = 0 values.
Using W,, the matrices W, and W,y are defined analogously to W, and W;q.

For each of these block matrices, we have W—1 = W*.

1This theorem actually holds for the broader class of = GCO-matrix matrices [65].

47



Chapter 6

Analysis of Methods for Models A
and A’

6.1 Introduction

This chapter presents the analysis for varjous iterative methods and preconditioners applied to
Models A and A’ as described in the previous chapter. I investigate certain point and block
methods, especially those based on orderings “by equations” and “by grid point.”

Eigendecomposition and Fourier analysis are utilized in the analysis. Detailed steps to the
derivations are provided for the more difficult cases for Model A. Corresponding differences in
these derivations for Model A’ are summarized in the section after that.

From the formulas derived, expressions for the spectral radii, p, are determined. Convergence
regions for the iterative methods are presented. For specific values of the coupling parameter §,
the spectral radii values are tabulated. In chapter 7, these theoretically calculated values for p
will be compared with the corresponding experimental results.

For the preconditioned systems, we use the Fourier and eigenvalue expressions to generate
spectral plots for the preconditioned systems. From these plots, we make predictions on the efficacy
of the various preconditioners. These analytic predictions will also be compared with the actual

experimental results given in chapter 7.
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6.2 Analytic Formulas for Models A and A’

Tn the following tables, I summarize the formulas derived for those methods with which we are
interested in this dissertation. Exact eigendecomposition has been performed whenever possible.
However, in some cases, such as the MILU factorizations, eigendecomposition is intractable. Hence,
1 have also employed Fourier analysis to derive expressions for the iterative methods and the
preconditioned systems.

Table 6.1 contains the formulas for Model A. Table 6.2 contains the corresponding formulas for
Model A'.

Both eigenvalue, A, and Fourier eigenvalue, FA, expressions are given as needed. Sinee we can
easily determine A(M~1A4) from AMI — M~1A) and vice versa, only one of these expressions is
listed.

For the Jacobi methods, we have that the expressions for the eigenvalues and the Fourier
eigenvalues agree, For the Gauss-Seidel methods, we need both the eigevnvalues and the Fourier
eigenvalues in the comparison of the methods. ABF [14] is used herein only as a stationary iterative
method.

Hence, only the eigenvalues for the iteration matrix are derived. In the case of the MILU meh-

ods, we only have expressions for the Fourier eigenvalues upon which to make analytic predictions.
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Table 6.1: Model A, Derived formulas for exact and Fourier eigenvalues

Notation | Method name, ordering | Expressions for A and FA
Jep Jacobi, point equation | A;x = FA(M™1A) = ﬂsm:(e"”j‘mg(%)ﬁﬂ‘
Jsa Jacobi, block grid Dot = FA(M-1 ) = ST Ch)an (540
. . _ Ty Alsin? (5 )ein®( B ))+p
JBE Jacobi, block equation | Ay = FAM*A) = o (% }+ain;2_‘-‘;t))
GS Gauss-Seidel MI = MzEA) = 0, (M - M7 A))2
) g.- . i
G SpE point egquation FA(M“I-A) = Hoin i..’(zif‘ﬂf?i )D:h}B
R ~ Teard sin? 4 +4°
GSpa block grid FAM-1A) = 4(312_(('3?2:‘- +1::¢E?;,)g)i 2
MILUpg | MILU, point eguation
—1 _ FA(A
FA(M~1A) = FA‘(%
FA(A) = 4(sin®(%) +sin?($) £ 8/
FA(M) = FA(A) + £ (cos(f, — ¢1) —w) + 6
=i (1 — 2w _ \/1 — 2(cos 8, + cosde) + = cos? (%ﬁs—‘-) )
Z
o= S84 /(358)? _ 21 4w — wf)
MILUge | MILU, block grid

FA(M~14) = }Eﬁ%

FA(A) = 4(sin®(%) + sin®( %)) + ¢

FA(M) = FA(A) + X (cos(f, — ¢:) —w) + 6
ox =%+ /() ~20+w)

vy =4 B +6
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Table 6.2: Model A’, Derived formulas for exact and Fourier eigenvalues

Notation | Methed name, ordering | Expressions for A and FA
Jpp Jacobi, point equation | Ayx = FA(M~1A) = “smn(?)ﬁ-ﬂn:@l))*m’
R | - sin?( 2 TR T -l
JBE Jacobi, block equation | Aye = FA(M™1A) = X ;?Sigf("; ;rsifl;f*(";;))ﬂ
~ A ¥ N []
Jse Jacobi, block grid Myie = FA(M=1 J) = e G )ein (540
GS Gauss-Seidel MI = MgLA) = 0,(AMI — MFTA))?
n 1 . 7
GSr point cquation | FA(M=14) = “CRCH I (5 e
. = indf 2L T 7
GSse block grid FA(M-1A) = 2 (g )2p
MILUpg | MILU, point equation
—1 4y — FA(A
FA(M~1A4) = FAJ(;%
FA(A) = 4(sin®(%) +sin($4)) + o'
FA(M) = FA(A) + £ (cos(8, — ¢:) —w) + ¢
A (L — L\/l ~ 2(cosd, + cos ¢1) + 4 cos? (ﬁﬁ—;—ﬂ) )
2
@ =2+ /(5)" - 21 + v up)
MILUgg | MILU, block grid

FA(M~1A) = %‘“AAA(%

FA(A) = 4(sin?(&) + sin?(2L)) + o'

FA(M) = FA(A) + 2 (cos(0, — 1) —w) + 6
ox =% +/(3) - 2A1+w)

v =41+ 6
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6.3 Derivations for Model A

This section presents the analysis of the iterative methods as applied to Model A described in the
previous chapter. Detailed steps are provided for the more involved derivations which have been

summarized in the previous section. The matrix system for Model A is

'7
A = B2 2;[; . B = BR.
h

The following matrices and notation will be used in the analysis of Model A.

4 1 1 1
A _ 5 T — I

g 4 Y= 1 -1

Q
Q = blockdiag(Q) =
Q
Note that
A(A) = Q-1 4Q = 44 0 . Ap(A) 0
0 4 - 0 A_{4)

In general, for a matrix C, A(C) will denote the diagonal matrix consisting of the eigenvalues

of C.

6.3.1 Eigenvalues for A4

The Fourier Sine matrix diagonalizes A5, we have:

WinsW, = diag(ha(Ds))

MilBs) = Aa(~h20) = 4Gsin2(%) 4 sin?(2)
Amin(D5) = 2(xh)?

Amaz(Ds) = 8.

We apply the W, transform to A to get

Ast(Ds) + 5 0
0 Asi(AS) - ﬁ!

WTAW, =
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Thus, we get the eigenvalues for A.
f 2 93 .2 ¢t 7
Ast£(A) = Aye(Ds) £ 5" = 4(sin ("2';') + sin (E)) + 48

Since, Amin(A) = Amin(As) — B, to have A be positive definite, we need §' < Agt( L) for all
s,t. For very small A, this means we need 8/ < 2(rh)?. For §' € [Anin(Ds), Amas(L5)], A can be

singular. Hence, many of the standard iterative methods will fail to converge for 5’ in this region.

6.3.2 Jpg: Jacobi, point equation

The method is defined via the matrix

M = D™) = diag(A) = diag(-{lj:).
The eigenvalues of the preconditioned system are then given by

As(MTLA) = Ehes(A) = (sn2(2) 4 sin?(2)) & 2.
6.3.3 Jpg: Jacobi, point grid
The method is defined by the matrix
M = D) = digg(A) = dz’ag(:li) = plro),
Therefore, the eigenvalues of the preconditioned system are then given by
At (D)) LA) = Ayt (PDIIP)=H(PLAP)) = Ayez (D)1 A),

So, the eigenvalues of the Jpg preconditioned system are the same as those for the Jpg precondi-
tioned system.
6.3.4 Jpg: Jacobi, block equation

The method is defined by

VAT

M = D™ = blockdiag(A) = 3
0 AN
M=14 = Ioaay :
pagt I
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The eigenvalues are given by

hs(M1A) = AECH) +o’(3)) £
4(51112(—51) + 51n2(-2£))
6.3.5 Jpg: Jacobi, block grid

The method is defined by

M = D = plockdiag(A),

ML= . 41 . I A -I

To determine the eigenvalues of the preconditioned system, first diagonalize the 2 x 2 blocks

by applying the orthogonal transform with Q to get

.
QI MTAHQ =] . (A(A))T - ~I A4) -TI
—I
4(sin?() + sin?(%)) £ 3
4% p '

Ast;{;(MulAv) =

6.3.6 GS: Gauss-Seidel

Both A and 4 satisfy the conditions of the Theorems of Young (65} presented in chapter 5 that
relate the eigenvalues of the Gauss-Seidel iteration matrices to the eigenvalues of the Jacobi iteration
matrices.

Hence, we determine the Gauss-Seidel iteration matrix eigenvalues via
Ast(I = MZLA) = 0, (Aee(I — MTTA))?

where Mgs = D + L is the preconditioner for Gauss-Seidel and My = D is the corresponding
preconditioner for Jacobi.

The eigenvalues of the preconditioned systems are then related via
AMMGEA) = AMFEAN 2T - AMMTFLA)).
Note that Mgs is not necessarily symmetric or positive definite.
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6.3.7 GSpr: Gauss-Seidel, point equation

The method is given via

M = D) 4 £lm),

The eigenvalues of the iteration matrix are
5\ 4 1.\’
Mot = M~1A) = 0, ((sinz(%-) +ain2(8)) + Zﬁ’) .
Whereas, the Fourier eigenvalues are given by the expression

4(sin?(4) + sin?($)) + B

FA(M™14) = T T o

6.3.8 (GSgg: Gauss-Seidel, block equation

The method is given by
M = D) 4 clr),

The eigenvalues of the iteration matrix are then

— -1 = ﬁ’ 2
AulI = M714) =0, (4(smz(%a)+sin2(%)))'

6.3.9 (GSpg: Gauss-Seidel, block grid

The method is given by
M =D 4 fim),

The eigenvalues of the iferation matrix are

2
a0 (L)

Whereas, The Fourier eigenvalues for the preconditioned system are

4(sin®(%) + sin®(%)) £

FA(M_lA.) = 4 — (653; .+. ef(ﬁ:) :i: ﬁl’

Note that for 8 = 0, the Fourier eigenvalue expression is the same result as for point Gauss-

Seidel as derived in [20].
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6.3.10 ABJF: Alternate Block Factorization

To calculate the eigenvalues for the ABF iteration matrix, the theory relating the eigenvalues of
the GSgg to the eigenvalues of the Jgg matrix for the system AD™! could be used.
Here, the eigenvalues will be calculated directly:

| ar pr
o\ proar
Dl o= L -
16—\ _gr ar )’
Al = L [ADs— BV BT
16— (8 \ a4pr—pos 4bs— (B

Note that the off-diagonal blocks of AD-! have diagonal vahies of 0.
Let a,b represent the following matrices

a = 4A5 — (ﬂ!)zf,

b = 48'I - f'As.

Then the Gauss-Seidel] iteration matrix for AP~ can be written as
-1

1 a b
LU = -
b @
0 —a-1b
0 alba=1b

So the eigenvalues of —L~1U are those of a~1ba~1h. Since, a and b are both diagonalized by

W, we get

M-y = o, (i\%)?

(4&—46 '(Siﬂz(%ﬂﬂinz(%)))?

\16(sin?(%) + sin®(§) - (0')?

0 ( B(1 - (sin®(%) +sin®(%)) )2 |
"\ 4(sin?(%) +sin®(§)) ~ 18

o
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p(ABF) dependence on ('

For p € [2\//\,,“-,1(&5), 2\/,\,”,,,;(&5)] 2 2v/2[rh,2] the denominator of
Ast(ABF) can vanish. The main diagonal blocks, 485 — ()21, of the system AD~' are sin-
gular or near singular. So the GSpg iteration method on AD-1 is unstable. Hence, for 8’ in this
region ABF should not be used.

Now consider very small 8 (in particular, 8 < 2\/Anminl K5 =~ 2¢/2rh). We have p(ABF) =
(1= Amin(bs)) ) .\
mazx = ~ - .
Amaz{ ABF) ( /\mi"(as)_z(ﬁ:)z) (x—ﬁm—” ; )
So, p(ABF) < 1, for #' in the positive definite region for A (' < 2(7h)? < 24/2mh).

Next, consider large ' (i.e. 8’ > 2/ Anas(Ds) = 4v/2). Then

g Y
p(ABF) < (%—(“m) .

To insure convergence of the method we need p(ABF) < 1. Hence, we need B > 8. For 3! > 8,
4 2
p(ABF) < (W) .

For this model problem, we expect the ABF method to converge for 8’ < 2(rh)? or §' > 8.

6.3.11 MILUpp: MILU(w,é), point equation

This section considers the pointwise MILU(6,w) “by equation” factorization of A.
The formulas for MILUpg follow directly from the seven-point stencil formulas presented in

chapter 2 where the stencil values are given by

aiir = 4,
bijk = ciji = dijr = ek = —1,
ﬁ’9 k= }-a
fijk =
0, k=2,
0, k=1,
Gijk =
g, k=2.

Here n; = ny = n and n, = 2. Each of the coeflicients obeys the Dirichlet boundary constraints
(2.9). These constraints are written out above for fi;r and gijx for emphasis only.
From chapter 2 we then get expressions defining the MILUpg preconditioner M. Here oy; is

a scalar.
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Hy Go
where
O!,;J'II 0
= 3
0 aijel
w1 i1 0
w i
£ = ,
ﬂ' -1 iz
\ . .o . -1 /
1 \
a1 —1 s
U = )
-1
0 Qg2 -1
\
with
o150 —1 . Yaicrge -1
Gy = -1 mgjt -1 ) Ga= -1 mijz -3
i -1 lfogj_1 : -1 l/eyj-1,2
AL
Hy = | —p/aic150 g 1y Ha= g ~p s 51
i —f' e 10
and
L -1 -1
Mij1 =050+ o0 1
Mg = oigat iyt oi e+ (8) e,
The fill-ins for H; and G4 are
-1 -1 -1 -
ai-—l,j,l’ ailj""'lll, _ﬁ,ai‘“lvjvl, _ﬂ!aisj_Ll
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and the fill-ins for H, and (G, are
I ! ! /el
a;'__1,q‘,'23 a;’,;uiiga _ﬁ Q; a3, 1? _ﬁ at,a,l

The rowsum condition yields the following two formulas.

, — we] -1 7 -1 ¢ —1
mij1 = (4+6)— w(ai—l,j,l R TRl A THS IS R B ai,j-1,1)>

(44 8) — wlail j, + a7ty , ~ 20 }y).

45,2

From two sets of equations for m;;; and m; ;2 we determine the recurrences defining «; ;; and

then oy jo:

@ijr = (4+8) - (1+w-wd) el +oili)
(44 8) — (L+w— wi) oy ;y ++oi)y,) — (B) i),

It

@®i,5,2

However, in order to use Fourier Analysis on M we will need only an asymptotic expression for a.

The two asymptotic relations (from m; ;1 and m; ;2 respectively) are

af —(4+8a+2(1+w—ws) =0,
o — (44 Ha+2(1+w-wf)+ () =0.

Using the first of these two we get the asymptotic value (where the larger root has been chosen)

2
(124-;64-\/(4;6) - 214+ w—wf").

The asymptotic matrices are then given by

for a;jk,

G H
M=LDWU =
H G
/e -1
G=| -1 m -1|, H=}| -fea g s
-1 l/a - =B

where the value for m is calculated from the asymptotic expression for m; ;1 (which is the same as
that for m; ;2 in this situation):
9 -
«
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We now wish to calculate the eigenvalues of M. This is done by first computing

W*GW W*HW\ [ FA@G) FA(E)

Vv'e_; MW = =
weE'W WrGW |\ FA(HY) FA(G)

The Fourier eigenvalues are simply the eigenvalues of the above system which are given by

FA(M) = FA(G) + /FA(H)FA(H?)

where

FA(H)

t
ﬁl _ %(e-—:ﬂ, + e-—uﬁ,)

FA(HY) = f- Do 4 et

FAIPAGY) = (37 (1= 2(cosd, +cos ) + o ost (252 )

2 2
FA(G) = FA(Ls)+ = cos(f, — b)) +6 -af(l - 8.
Thus, the Fourier eigenvalues for M are given by

FA(M)

FA(As) + %005(93 ) +6 - 2_&"1’-(1 ~ 8

2 4 93 - d’t
+ ﬁ'\/l - E(COS f, + cos ¢y) + = cos? (~—2~»)

FAu+(A) + g—(cos(ﬁs ~ ) —w)+ 6

(v 2 4 z(,‘?_“?i)
F 5 (1 ~ —\/1ma(c030,+cos¢vt)+a2 cos 5 .

Also, we have

FAa(A) = (D) £ 5.
And finally, the Fourier eigenvalues for the preconditioned system are

FA(A)

FA(M™A) = FALM)

6.3.12 MILUgg: MILU(w,§é), block grid

In this section we consider an M ILU factorization of 4 using 2 x 2 blocks rather than scalar values.
Since A is a block five-point stencil matrix, we can utilize the formulas of chapter 2 for the

general five-point stencil MILU(§,w).
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In this case the stencil values are now 2 X 2 matrices given by

4 pf
dijk = :
g4
-1 0
bijk = cisk = dijk = Cijk =
g -1

with ngy = n, = n. The diagonal elements of the resulting preconditioner M will be denoted M;;
(instead of m;;) to emphasize that the diagonal elements are 2 X 2 blocks. Note here that a;j is a

2 % 2 matrix,

-I
M=LDU = | -] ajt a;; —1
T
a:—ll,j .y
= -1 Mi; -1

where M"J "a‘hJ+an 13+a,3 1

The fill-ins are the extra terms o7}, ; and of J ;- The rowsum condition for this case is then

diag(M)

it

diag(A) + 61 — w(a;_ H—I—Oz’J 1)

M;; A+ 6T —w(og I3-1-01,_T 1)
which leads to the following recursive formula defining a;;:
aij + (1+ w)aj_ 13+°‘z—;-1)" A+él
Consider the asymptotic relation for a:
a+2(1+ w)a™t = A+ 61

Suppose that A and o are simultaneously diagonalizable with

A(A) = diag(ly), Il =4 A,
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and ¥ = diag(oy) is the diagonalized version of . Then we get the following relationship between

the eigenvalues of A and those of a.
o —(ly + 8o +2(1+w)=0.

Solving the quadratic we get

Iy +6 Iy +6\?
oy = *: +\/(*;” ) — 2(1 4 w)

using the larger root as usual.
In order to find the Fourier eigenvalues for M we treat M as a constant coefficient matrix (use

the asymptotic matrix of @ and that M is periodic),

a”l T
M = -I My -1
-I a7t
M = A+ 68— 2wat.
First, we diagonalize M by applying @ to get
-t -1
QIMQ = I AM;;) ~1
-7 T
-1 -1 my 0
AMy) = QT MuQ=A+460-2wE7" =
0 m.

i

my .«\-_r}:(A) + 46— 'Z'U_JO';}.

Second, we permute using P to get
( g;l -1 . \
-1 my -1 0

-1
-1 o3

PIQTIMQP =
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Third, we apply W.q to get

Ans O
0 Ag

WP MQOPWey

(Ast):k

Mt

diag(my — 2(cos(8,) + cos(¢s)) + ;; cos(8s — ¢¢))
Ax(A) + 6 — 2woit.

The Fourier eigenvalues of M are the eigenvalues of {Ast)+ given above:

FAs+(A) Ast{Ds) £ 4
FALe(M) = AlDs) £ B + ;2; (cos(6, + §) — w) + 6

Il

FA,s (A) + f—i (cos(B, + 1) —w) + 6

FAat:l: (A)

FA(M™LA) Fhus (M)
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6.4 Derivations for Model A’

In this section we now turn to the analysis of methods for Model A’ where

FAYRNNG Y §
o BAY

A=

The eigenvalues for the Model A’ matrix are
Ast(A) = Ay(Ds) £ 1" where v = v/ 1.

Fortunately the analysis for Model A’ follows analogously to the analysis for Model A. Thus,
only a few steps of MILUpg are worthy of special notice are given below.
MILUpg

The main difference between Model A’ and Model A is that g; jo = —f' for Model A’ rather
than g; ;2 = B’ for Model A.

Since g; ;2 does not enter the equations for m; ;3 or a; ;1 of Model A these expressions are the
same for Model A’.

However, we do get differences due to sign changes:

o = s -1 -1 N2a;}

Mija = Oijet 0y o+ 0pg g, (B AL
S 1 -1 f,~1

mije = (4+6) ~wlaly 4+ oy, + 2000 ;,)

These two formulas then yield the recurrence
@ij2=@4+8)~(l+w~ wﬁ')(a:—ll,m + +ai_,jlu-1,1) + (ﬂ’)zaf,_jl,l-
The asymptotic expression from this recurrence is

o — (44 8a+2(1+w—wf') - (8')% = 0.
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6.5 Analytic Results for the Iterative Methods

Tn Table 6.3, the expressions for the spectral radii are listed along with the associated regions of

convergence (regions where p < 1).

Table 6.3: Model A, Spectral Radii within Convergence Regions

Method Convergence Region | Spectral Radius
Jpr (Jpg) | B < 2(wh)? — 1 ((xh) - 18)
GSpE B < 2(wh)? 1— ((7h)? —1p)
JBE B < 2(wh)? W
GSpE B < 2wh)? (ﬂf‘ﬁr)z
JBG B < 2(mh)? 1_ % ((wh)? — %ﬁ’)
g >8 T
GSpe g < 2rh)? 1— ((wh)? — 1)
i ().
T TR )
g >3 p(ABF) < (.54?4)2

Table 6.4: Model A, Calculated Spectral Radii (max|A|) for n =7
Method | #/ =0 | =1 |f =6|4=10|p =50

Ipe 0.9239 ¢ >1 >1 >1 >1
GSpp 0.8536 >1 > 1 > 1 >1
JBE 0 >1 > 1 >1 >1
GSgE 0 >1 >1 >1 > 1

Jog 0.9239 | >1 > 1 0.6159 | 0.0803
GShe 0.8536 ] >1 > 1 (.3794 | 0.0065
ABF 0 >1 >1 0.2850 : 0.0056

Note that all the methods considered so far will fail to converge in the region where A can be
singular. For large coupling it is clear that “block grid” iteration methods or hybrid methods are
to be preferred.

Table 6.4 tabulates calculated spectral radii for the iterative methods as applied to Model A

for specific values of 3. The value of nis 7, s0 that there are 98 unknowns. The spectral radii are
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calculated from the expressions given in Table 6.1 using p = max |A| where X is an eigenvalue of
the specified iteration matrix.

Since the rate of convergence of an iterative method is proportional to —logp, p = 0 shouid
mean exact (or near exact) convergence in one iteration. A value of p near 1 may show little or no
convergerce.

From Table 6.4, we expect to see rapid convergence for the methods Jpg, GSBE, and ABF for
A" = 0. This is easily explained since the matrix A is being inverted exactly. We also expect to
see very quick convergence for Jpg, GSpg, and ABF for large values of the coupling parameter
(8 > 10).

Table 6.5 lists the expressions for the spectral radii for the iterative methods as applied to
Model A’. The associated convergence regions are also noted.

Note that the denominator for ABF for Model A’ is more robust than that for model A. Later
results will also show that ABF for Model A’ is better behaved than ABF for Model A.

Table 6.6 presents the calculated spectral radii for the various iterative methods. Again, Jpg,

GSpa, and ABF should be preferable for 3 > 0.
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Table 6.5: Model A’, Spectral Radii within Convergence Regions

Method Convergence Region | Spectral Radius

Jpe (Jpg) | B < 2(mh)? 1— L ((xh)2 + 5(8)%)
GSpg B < 2(wh)? 1= ((nh)? + L(82)
JIBE B < 2(mh)? “ﬁ'(f_;;ﬁ
i P4

GSps | < 2<h) (sf7)

, T 3(7h)?

>

o6 rz0 e
Gore__[#30 5

4 i
ABF prz0 CREE

Table 6.6: Model A’, Calculated Spectral Radii (max|A]) for n =7

Method | @ =0 | =1]|@F =6} =104 =50
JpE 0.9239 | 0.9571 >1 >1 >1
GSpE 0.8536 | 0.9161 >1 >1 >1
JBE 0 >1 >1 >1 > 1
GSpE 0 >1 >1 >1 >1
Jeag 0.9239 | 0.8963 | 0.51256 | 0.3431 | 0.0737
GSpg 0.8536 | 0.8033 | 0.2626 | 0.1177 | 0.0054
ABF 0 > 1 0.3549 ¢ 0.1333 | 0.0055
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6.6 Analytic Results for the Model A Preconditioned Systems

Here we present the analytic results for the preconditioned systems.

Figure 6.1 through Figure 6.5 present the spectra of the preconditioned system, M~1A, as
calculated for Model A from the expressions of Table 6.1.

Fach page depicts the spectra of the various preconditioned systems for a fixed value of 4.
Figures 6.1, 6.2, 6.3, 6.4, and 6.5 cover the values of 8 = 0, 1, 6, 10, and 50. The spectral plots
depict the real part of the cigenvalues (z-axis) versus the imaginary part of the eigenvalues (y-axis).

For the Gauss-Seidel methods, both the eigenvalues and the Fourier eigenvalue plots are given.

To rank the preconditioners in exact order of performance simply by looking at these pictures is
an unrealistic goal. However, we can attempt to predict which preconditioners are to be preferred
in terms of number of iterations to converge and which are to be avoided.

We will look for the following characteristics of the spectra:
o highly localized (well clustered) eigenvalues

o clustering near 1

o little if any clustering near 0

A preconditioner to be preferred will have spectra obeying these heuristic rules more than an
inferior preconditioner.

Using this criterion, we place a possible ranking on the preconditioners. This is given in Table
6.7. This ranking is based solely on the spectra, it does not take into account the computational
cost of the differenct preconditioners.

There are two categories. Within a category the methods are placed in approximate order from
what appears to be the “best” spectra to the “least.” These orderings are particularly volatile since
the rules above are strictly heuristic. However, the two categories into which the preconditioners
are placed are more crucial. The categories divide the methods according to their spectra into (1)
those that appear that they will perform particularly well, followed by those which may perform
well but may require a large number of iterations, and (2) those which will yield an extremely large

number of iterations. The latter are the preconditioners to avoid in general situations.
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Table 6.7: Model A, Convergence predictions for the preconditioners

good to mediocre poor
3'=0 | Jpg, GSpg, [LUpg, ILUsg, MILUpg,
MILUpG, GSpp, GSpa, JeE: JBa
p =1 | Jpg, Je, GSpp, GSpg, MILUpg, JgE, GSBE
ILUpg, ILUgg, MILUpg
8'=6 | Jez: Jeg, MILUpg, ILUgg, ILUpg, MILUzg, Jze, GSBE
GSpp, GSpa
4 =10 | MILUpg, GSpg, Jpg, ILUpg, MILUgg, ILUpg, Jpp | GSpg, GSpr, IBE
8' =50 | GSng, Jag, MILUpg, ILUpg, ILUsG, MILUgG, Jrs | GSpr, JoE: GSpE
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Figure 6.1: Model A, 5/ =0
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Figure 6.2: Model A, f/ = 1
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Figure 6.3: Model A, 3/ = 6
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Figure 6.4: Model A, ' = 10
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Figure 6.5: Model A, g’ = 50
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Table 6.8: Model A/, Convergence predictions for the preconditioners

good to mediocre

Poor

Jpg, GSpE, ILUpg, ILUpg, MILUpg,

MILUgpg, GS5pg, GSpa, JrE, Joc

MILUgg, ILUgg, ILUpg, MILUpg, GSpg, GSpE

Jaa, Jee, JBE, GS8E

ILUgg, MILUpg, MILUppg, Jpg, GSBa, ILUpE, GSPE

Jpg, GSpr, JrE

MILUgg, ILUpG, GSpa, JeG, MILUpg, ILUpE

Jpg, GSpg, Jpg GSBE

g'=0
8" =

p=6
8 =10
pf = 50

ILUgg, MILUgg, Jag, GSpa, MILUpg, ILUpg

Jpg, GSpg, JBE, GSnE

6.7 Analytic Results for the Model A’ Preconditioned Systems

As was done for Model A, the spectra for the preconditioned systems for values 8’ = 0,1, 86, 10, and
50, are presented in Figures 6.6, 6.7, 6.8, 6.9, and 6.10, respectively. Each plots the real-part (z-

axis) of the eigenvalue versus the imaginary-part (y-axis) of the eigenvalue for the preconditioned

systems as calculated from the expressions given in Table 6.2 for Model A’.

Since Models A and A’ coincide for 3’ = 0, the corresponding plots for ' = 0 for Models A

and Af are identical.

For Model A’, Table 6.8 lists the predicted convergence behavior of the preconditioners as based

on the spectra pictures.
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Figure 6.6: Model A', ' = 0
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Figure 6.7: Model A’, 5/ =1
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Figure 6.8: Model A', ' = 6
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Figure 6.9: Model A/, 8’ = 10
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Figure 6.10: Model A/, 8’ = 50
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Chapter 7

Experimental Results

In this chapter, I provide extensive experimental results for the three model problems. For Models
A and A’, the experimental results are compared to the analytic results of chapter 6. It is clear that
the analysis is quite useful in predicting the usefulness of the iterative methods and preconditioners.
For Model B, no analysis is presented within this dissertation. However, from the results for Models
A and A’, robust methods are chosen and used in the solution of Model B for a wide range of the
two parameters.

In summary, I demonstrate the following results for Model B. Among the iterative methods,
ABF is found to be the most robust. Among the preconditioners, the block ILU and MILU methods
using the “by grid point” ordering are the most efficient and robust.

For each of the models, the experimental results are based on the solution of

Al 1,

v g

il

where the right-hand-sides f and g are chosen so that the true solutions for u and v are given by

u(z,y) = 322%(zx - Dy(y® - 1),
vz, y) = 162(1— z)y(l—y).
The model equations were discretized on an n X n grid. Hence, u and v represent N = n? length
column vectors and A is an order 2N matrix. For n = 7 there are 98 unknowns, and for n = 15
there are 450 unknowns.

The codes were written in Fortran 77 using double precision floating-point arithmetic. The

experiments were all run on a Sun 3-280.
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The stopping criterion for convergence in all cases was for the ratio of the current residual to

the initial residual to be less than 10~7.

7.1 Experimental Results for the Iterative Methods

In this section, I present the experimental results for the iterative methods for both Model A and
Model A’.

Tables 7.1 and 7.2 give the actual iteration counts and computational times (in parentheses)
for the iterative methods when applied to Model A for the test problem with n =7 and n = 15,
respectively.

It is no surprise that these experimental results correspond to the analytical results given in
Table 6.4.

For the corresponding values of p in Table 6.4 that were only slightly less than 1, we see that
the corresponding iterative methods did not converge for that value of 5. No iterative methods
converged in the range where A is singular (e.g. §' = 1,4’ = 6). For 5’ > 10, (GSpg is seen to be
the most efficient in time, although ABF has the least number of iterations.

Tables 7.3 and 7.4 give the iteration counts and computational times (in parentheses) for the
iterative methods when applied to Model A’ for the test problem with n =7 and n = 15, respec-
tively.

As with Model A, these results correlate with the analytic results of Table 6.6. As before, if p
of Table 6.6 is only slightly less than one, the iterative methods does not converge for that value
of 3.
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Table 7.1: Model A, Iterations (Time) for iterative methods, n =7
Iter g =0 f=1|3=6 g =10 B =50

JPE - - - - -
GSpg ] _ ] ] _
Jeg |1 (1.28) ; . . ]
GSpg | 1 (1.18) ; ] _ _

Jea - - - 161 (2.16) | 11 (0.48)
G'Spa - - - 19 (0.84) | 9 (0.46)
ABF |1 (1.30) - - 17 (3.52) 1 7 (1.02)

Table 7.2: Model A, Iterations (Time) for iterative methods, n = 15
Tter g =0 f=1|p=6 g =10 B =50
Jeg |1 (17.22) : ; ; ]
GSpp | 1 (23.16) ; - , _

JBe - - - 69 (11.66) i 13 (2.48)
GSpg - - - 21  (4.40) 9 (2.18)
ABF |3 (37.82) - - 17 (17.72) | 7 (4.82)
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Table 7.3: Model A’, Iterations (Time) of iterative methods, n =7
Tter g=0 |g=1| p=6 g =10 4 =50

JPE - - - - -
GSp - - - - -
Jee |1 (1.26) ) ; - .
GSpe | 1 (1.20) ] _ ] )

JBG - - 145 (1.62) )29 (L10) |11 (0.48)
GSge - - |23 ooy |17 (0.78)] 9 (0.46)
ABF |1 (1.20) - |20 (520y |15 (2.92) | 7 (1.00)

Table 7.4: Model A’, Iterations (Time) of iterative methods, n = 15

Tter g=0 |@g=1] p=6 g =10 B =50
JBa - - |51 (8.74) | 31 (5.54) | 13 (252)
GSpe - - |97 (568) |19 (408 | 9 (2.16)
ABF |3 (37.78) - 135 (3070) |17 (15.12) | 7 (4.96)
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7.2 Experimental Results for the Model A Preconditioned Sys-

tems

Tables 7.5 and 7.6 present the execution results of preconditioned GMRES for for Model A forn = 7
and n = 15, respectively. Only those preconditioners that demonstrated at least fair robustness
for n = 7 were executed using n = 15.

Apgain, as with the iterative methods, we see that the preconditioners have difficulty in the range
of B that yield A singular. Only Jpg and Jpg preconditioners converged for all the values of 5’
tried. Jpg is typically faster in total execution time than Jpg, especially as the coupling becomes
large. For ' very large, the ILUpg and MILUpg are the most time efficient. Unfortunately,
GMRES with these preconditioners does converge through the entire range of 3 values for this
model.

We can also compare the performances to the predictions of chapter 6 as given in Table 6.7.
While the methods are certainly not in the same order, we do see that if a method was predicted
to have poor convergence in Table 6.7 that it did not converge in the experiments. There are
methods that were put in the “good to mediocre” category that also failed to converge during
the experiments. In these cases, there must be other reasons than that explained via spectral
distribution.

Hence, when studying preconditioners, the analysis technique has shown that it can weed out
poor preconditioners. It, however, does not insure that a predicted “good to mediocre” precondi-

tioner will actually be worthwhile.
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Table 7.5: Model A, Tterations (Time) of preconditioned GMRES, n =7

Precond g =0 A =1 g =6 8 =10 A =50
Ipg 20 (252) |30 (3.90) |53 (6.96) | 23 (3.06) | 11 (L.50)
GSpp 97 (4.20) | 70 (10.74) ] . ]
JsE 1 (3.16) | 22 (40.46) - - -
GSpr 1 (2.56) ] ] ) ]
s 20 (272)]30 (4.00) |28 (374) | 10 (1.38) | 5 (0.72)
GSss |27 (3.90) | 59 (8.40) - 10 sy s (0.80)
ILUps |12 (2.36) |45 (8.44) ~ |95 (478) | 19 (3.66)
MILUpg | 11 (2.16) | 35 (6.76) - |12 (236)| 8 (1.62)
ILUse |12 (252) |46 (9.22) L4 en] 2 (056)
MILUgg | 11 (2.30) ] - s @92 (058

Table 7.6: Model A, Iterations (Time) of preconditioned GMRES, n = 15

Precond g=0 g=1 f =86 g =10 B =50

IpE 43 (26.24) | 91  (55.30) | 53 (32.26) | 21 (13.08) | 11 (7.10)
I5G 43 (26.80) | 82 (50.96) |32 (20.22) | 10 (660) | 5 (3.56)
GSpg - - - g (6.52) | 5 (3.86)
ILUpg | 21 (18.88) | 180 (158.44) ~ |28 (25.16) | 22 (19.94)
MILUpg | 17 (15.48) | 269 (236.36) -1 o3e | s (779
[LUsc |21 (20.42) | 399 (372.28) - a4 w@s0) | 2 (274)
MILUsg | 17 (16.48) . L4 @as |2 @em)
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7.3 Experimental Results for the Model A’ Preconditioned Sys-

tems

The Tables 7.7 and 7.8 give the experimental results for GMRES using various preconditioners for
n =7 and n = 15, respectively.

Unlike the results for Model A, Model A’ does have several preconditioners that provide good
results throughout the range of parameter values. This is due to Model A’ not becoming singular,
as does Model A, for ranges of the parameter ',

We can see from these tables that ILUgg and MILUpgg are the most efficient in terms of
overall execution time throughout the range of 3’ values.

Again, we can compare the experimental results with the analytical results of chapter 6 as given
in Table 6.8. For Model A/, there are striking differences in performance from Model A. In Model
A, many of the preconditioners did not perform well as already discussed. However, for Model A/,
GMRES with most of the preconditioners still converged.

This also affects how we interpret Table 6.8, In this table, a preconditioner that was labeled
as poor, may be seen to actually converge experimentally. However, these are typically the slower
of the preconditioners. Hence, the analysis is still useful in eliminating the least efficient precondi-

tioners.
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Table 7.7: Model A’, Iterations (Time) of preconditioned GMRES, n =7

Precond g =0 =1 f =6 F =10 B =50
Jpg 20 (2.62) - |52 (668) |30 (3.88) |12 (1.60)
GSpE 97 (4.22) | 42 (6.48) | 42 (6.50) | 72 (11.04) ;
JsE 1 (3.10) - - - .
GSpE 1 (2.64) - ; . -
Jpa 20 (270) | 65 (8.54) | 15 (2.04) | 10 (1.32) | 5 (0.76)
GSpe 27 (3.86) | 28 (4.08) | 11 (1.64) | 9 (1.38) | 5 (0.80)
ILUpg |12 (234) | 17 (3.22) |19 (3.66) | 19 (3.70) | 18 (3.44)
MILUpg | 11 (2.14) - |14 @) |12 (236) | 8 (L.64)
ILUse |12 (2.44) |12 (250)| 5 (1.14)| 4 (0.94) | 2 (0.58)
MILUge |11 (228) 1 10 (212)| 5 (112)| 4 (0.94) | 2 (0.58)

Table 7.8: Model A’, Iterations (Time) of preconditioned GMRES, n = 15

Precond g=0 pg=1 g =6 /=10 g =50
JpE 43 (26.24) - 156 (34.18) |30 (1852)| 12 (7.64)
GSpg - 70 (50.68) | 56 (40.78) | 96 (69.52) | 382 (275.54)
Ise 43 (26.80) | 106 (65.80) | 16 (10.30) | 10 (6.60) | 5  (3.54)
GSae - 46 (31.36) |12 (852) | 9 (654) | 5  (3.86)
ILUps |21 (18.88) | 24 (21.70) | 21 (19.10) | 21 (19.22) | 22  (19.96)
MILUpg | 17 (15.48) - 14 (1296) | 12 (11.54) | 8  (7.72)
ILUgs |21 (2042)] 14 (13.94) | 5 (5.40) | 4 (450) | 2 (272
MILUge | 17 (16.48) | 11 (11.02) | 5 (5.40) | 4 (450) | 2 (2.76)
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Table 7.9: Model B, Iterations (Time)forn =7,n =0

fter e=10 e=1 e=10 e =50 ¢ = 100
JrE - - - - -
GSps i i i i i
JsE 3 (248)| 3 (366) | 3 (3.200] 3 (298) | 3 (2.98)
GSgs 3 (3.06)]| 3 (3.56) | 3 (3.18)| 3 (2.98)| 3 (2.90)
JBa - - - - -
GSae - - - - i
ABF 3 (3.02) | 3 (352)| 3 (316) |3 (290)| 3 (282)
Precond e=0 e=1 e=10 ¢ =50 e= 100
Jps 35 (456) | 44 (5.70) | 65 (8.34) | 72 (9.34) | 71 (9.16)
GSer | 28 (474) | 30 (5.08) | 26 (4.44) | 22 (3.72) | 21 (3.64)
JBE 2 (4.32) Sl 2 (a94)| 2 (468)| 2 (4.64)
GSsE 2 (3.86) |2 o2y | 2 60| 2 (4.66)
Jse 34 (4.50) | 47 (6.20) | 70 (9.20) | 71 (9.32) | 72 (9.46)
GSpe |21 (3.90) |28 (4.04) |26 (376) |22 (3.20) | 21 (3.02)
ILUsg |13 (272) |12 (254) |10 (2.12) |10 (2.12) |10 (2.12)
MILUgg | 11 (230) | 11 (2.30) | 11 (2.32) | 10 (2.10) | 10 (2.18)

7.4 Experimental Results for Model B

In this section we present the experimental results for Model B. We present the iteration counts
and computational times for the iterative methods and preconditioned GMRES for Model B for a
set of values for € given a values of n. Tables 7.9, 7.10, 7.11, 7.12, and 7.13, correspond to values
of =0, 1, 10, 50, and 100, respectively.

By examining the performance of the methods in these tables, we see that few methods converge
for all the combination of parameter values.

The only methods that converge throughout are ABF and GMRES preconditioned by Jgg,
GSpa, ILUgg, and MILUgg. These are the most robust.

Among these, the ILUgg and MILUgq preconditioners with GMRES are the most time effi-
cient.

We have seen from the n = 7 experimental results that the most robust emthods for Model
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Table 7.10: Model B, Iterations (Time) forn =7,n=1

{ter e=10 e=1 e=10 e=50 e =100
JPE - - - - -
GSpg - - - - -
JBE - - 35 (26.90) { 19 (14.66) | 15 (11.58)
GSBE - - 11 (940) 1 7 (5.96) | T (6.00)
JpG - - - - -
GSpe - - - - -
ABF 3 (3.04) |17 (13.68) |13 (1050)| 9 (7.14) | T  (5.66)
Precond e=0 e=1 e= 10 e = b0 ¢ =100
Jpe - - - 91 (11.74) | 69 (8.90)
GSpE 81 (13.60) - 39 (6.62) | 26 (4.46) | 22 (3.78)
JBE - - 23 (39.44) | 11 (18.42) | 8 (13.82)
GSpE - - 5 (9.96) | 4 (780) | 4 (71.74)
JBe 20 (3.88) |39 (5.20) |81 {(10.70) | 74 (9.76) | 7T (10.20)
GSge¢ 27 (3.92) |29 (4.16) | 28 (4.08) | 28 (4.10) | 27 (3.94)
ILUgpg 10 (2.14) |11 (2.34) [ 11 (2.32) |10 (2.14) | 10 (2.14)
MILUge | 11 (2.34) |11 (2.32) |11 (2.32) |11 (2.32) : 10 (2.14)
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Table 7.11: Model B, Iterations (Time) for n =7, 5 = 10

Iter e=0 e=1 ¢=10 € = 50 € = 100
JpE - - - - .
GSpr - - - 83 (4.46) | 87  (4.84)
Jpe - - - Bl (36.04) | 35 (25.T4)
GSpr - - - 13 (10.34) | 9 (7.36)
JBG - - - - -
GSse - - - - -
ABF 3 (2.34) |15 (9.36) { 25 (16.90) { 15 (11.08) | 11  (8.22)
Precond e=10 e=1 e=10 ¢ =50 e = 100
JPE - - - - 90  (11.60)
GSpr 92 (15.42) - 52 (8.80) | 34 (5.80) [ 31 (5.28)
JBE - - - - 83 (130.60)
GSBE - - - - -
Jea 22 (2.98) 133 (4.42) |49 (6.50) | 69 (9.12) | 83 (10.92)
GSBa 28 (4.06) | 28 (4.08) | 28 (4.12) | 28 (4.04) | 28  (4.06)
ILUpg 10 (2.14) |10 (2.22) |10 (2.12) | 10 (2.14) | 10 (2.14)
MILUps | 11 (2.32) | 11 (2.32) | 11 (2.34) | 11 (2.32) | 11 (2.36)
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Table 7.12: Model B, Iterations (Time) for n = 7, p = 50

Iter e=1{ e=1 €= 10 €= 50 e =100
JpE ] ] ] ] ]
GSpx - ; - _ |83 (4.40)
JBE - - - - .
GSsE ; - - |87 (55.84) | 25 (18.16)
JBeG - - - - -
GSpa - - - - -
ABF 3 (218} 9 (5.26) | 19 (11.70) | 23 (15.00) | 19 (12.74)
Precond e=0 e=1 e=10 =50 ¢ = 100
Jre - - - - -
GSpE - |92 (1546) | 63 (10.62) | 43 (7.34) | 38  (6.46)
JBE - - - - -
GSeE - - - - -
Jag 21 (2.84) | 24 (3.22) |70 (9.30) |51 (6.82) |57 (7.76)
GSpg 28 (4.08) | 28 (4.06) | 28 (4.08) | 28 (4.04) | 28  (4.06)
TLUpe |10 (2.14) |10 (216) |10 (2.16) | 10 (2.16) | 10 (2.14)
MILUgg | 11 (232) | 11 (232) |11 (2.36) |11 (242) |11 (2.34)
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Table 7.13: Model B, Iterations (Time) for n = 7, 7 = 100

Iter e=10 e=1 e =10 e=50 ¢ = 100
JpE - - - - -
GSpE - - - - ,
JpE - - - - -
GSpE - - . - |79 (50.60)
JBa - - - - .
GSga - - - - -
ABF 3 (202)| 7 (432) |15 (8.94) | 23 (14.30) | 21 (13.72)
Precond e=10 e=1 e =10 ¢ = 50 e =100
JrE - - - - -
GSpr - - |94 (1582) |50 (8.44) | 41  (6.96)
JBE - - - - -
GSpE - - - - -
I 20 (272) | 23 (3.12) |44 (5.84) | 40 (5.34) | 51 (6.74)
GSpe | 28 (4.12) | 28 (4.06) | 28 (4.06) | 28 (4.06) | 28 (4.06)
ILUge |10 (2.12) 10 (216) |10 (2.14) |10 (212) | 10 (2.14)
MILUgg | 11 (2.36) | 11 (2.34) | 11 (2.32) | 11 (2.34) | 11 (2.34)
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B were ABF and GMRES preconditioned by Jpg,GSpa, [ LUpg and MILUpg. Hence, only the
data for these five methods have been tabulated in Tables 7.4 and 7.4.

These two tables include the iteration counts and compuational time for
¢=10,1,10,50, and 100 for the set of % values of 0, 1, 10, 50, and 100.

From these results, we see again that ILUgg and MILUpg are the most efficient in time.

Table 7.14: Model B, Iterations (Time) for n = 15, = 0,1, 10, varying €

n==0 €= 8 e=1 €= 10 €= 50 €= 100

ABF 3 (3860)| 3 (44.94) 3 (49.96) 3 {53.12) 3 (58.34)
Jpg 73 (45.34) | 199 (122.32) | 158  (97.16) | 160  (98.70) | 156  (96.18)
GSpg - 61  (41.56) | 49  (33.38) | 44  (29.80) | 42  (28.68)

ILUgg 25 (23.90) | 29 (27.74) | 19 (1834) | 16  (15.58) | 16  (15.60)
MILUps | 18 (1740) | 18 {(17.28) | 16  (15.56) ; 15  (14.92) | 156  (14.66)

=1

ABF 3 (32.70) | 3% (335.30) | 25 (352.04) ] 11 (176.64) 9 (155.34)
Jra 51 (31.00) | 137 (84.84) | 163 (101.14) | 247 (152.82) | 196 (121.28)
GSpg 58 (39.54) | 60 {40.86) 60 (40.82) 60 (40.82) 59 (40.14)
ILUgq 18  (17.54) | 22 {21.38) 22 (21.32) 21 {20.42) 19 (18.50)

MILUpg | 17 (16.62) | 17 {16.64) { 17 {(16.60) | 17 {1666} | 17  {16.62)

n =10

ABF 3 (2642)F 25 {190.78) | 69  (639.62) | 20  (382.96) | 21 (300.48)
Jpa 50 (31.34) - 115 {71.40) | 189 (117.44) | 200 (123.78)
GSpa 60 (40.86) | 60  (40.82) | 60  (41.02) | 60  (41.80}) | 59  {40.34)

ILUpg 19 (1850) | 18  (17.60) | 18 (17.64) | 19  (18.98) | 19  (18.70)
MILUgg | 17 (16.64) | 17  (16.62) | 17 (16.70) | 17  (16.66) | 17  {(16.68)
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Table 7.15: Model B, Iterations (Time) for n = 15, n = 50, 100, varying ¢

n =50 e=0 ex= 1 e=10 €= 50 e = 100
ABF 3 (2572) | 11 {83.66) | 49 (345.38) | 59  (553.30) | 43 (475.40)
Joa 45  {28.22) | 110 {68.34) - 112 (69.50) | 157  (97.36)
GSpa 59 (40.20) | 39 (40.24) | 59  (40.14) 59 (40.28) 59 {40.14)
ILUgg 20 (19.42) | 20 (19.42) | 20 (19.52) 19 (18.56) 19 {18.48)
MILUgg | 17 (16.60) | 17  (16.58) | 17  (18.60} 17 {16.76) 17 (16.64)
n = 100

ABF 3 (25.32) 7 (54.50) | 27 (194.24) | 63 (523.82) | 55 (528.20)
Jna 44 (27.80) | 53  {34.48) - 198 (122.92) | 112 (71.32)
GSgpa 59 {40.16) | 59  (40.26) | 59  {40.20} 59 (40.18) 59 {40.18)
ILUgqG 20 (19.48) | 20 (19.54) | 20 (18.34) 20 {19.44) 20 {19.46)
MILUgs | 17 {16.78) | 17 (18.62) | 17  (16.68) 17 {16.68) 17 {16.62)
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Chapter 8

Summary

In this dissertation, I have presented a general form for the incomplete LU factorizations for ma-
trices with five and seven point stencils. This formulation incorporates the standard factorizations
ILU, MILU($) and RILU(w) along with the variant ILUg of Wittum. This general form was used
in the analysis and implementation of point and block ILU and MILU preconditioners in this
dissertation.

For the one-dimensional scalar case, I demonstrated a relationship between the theory of ¢
pseudo-eigenvalues and the Fourier analysis technique. I have shown that the theory of e-pseudo-
eigenvalues includes the Fourier analysis technique as is a limiting case.

I also study the effectiveness of ILQ preconditioners for a nonsymmetric model problem. I
introduced an ILQ preconditioner based on the sparsity pattern of the original matrix. The ILQ
preconditioners are compared to ILU preconditioners when used with GMRES and CGNE methods.
I demonstrate that there is an optimal number of large magnitude elements to keep in the ILQ
factorization of Saad.

I then devote the rest of the dissertation to the study of coupled systems of equations. I motivate
and introduce three model coupled equations. For two of these models I have provided extensive
analysis for a variety of iterative methods and preconditioners. This analysis is done via the theory
of group iterative methods of Young and via the Fourier analysis technique. The resulting analytic
formulas are used in predicting the usefulness of the various methods.

Experiments results are presented for all three of the model problems. For the first two models
(A and A’), comparisons and observations are made with respect to the analytic predictions. The

analytic results are shown to be useful in the comparison of the many methods and preconditioners.
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The most robust methods are then used in solving the third model problem (Model B).

For the Model B, experimental results are obtained for a range of values for its two parameters.
It is shown that the hybrid method ABF was by far the most robust. And, ABF was typically the
most time efficient method among the iterative methods. Among the preconditioners employed,
the block ILU and MILU methods based on “by grid point” ordering were seen to be the most

efficient and robust over a wide range of values for the parameters.
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