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Abstract

High order accurate centered flux approximations used in the computation of numerical solutions
to nonlinear partial differential equations produce large oscillations in regions of sharp transitions. In
this paper, we present a new class of filtering methods denoted by ENO-LS (Essentially Nonoscillatory
Least Squares) which constructs an upgraded filtered solution that is close to the physically correct
weak solution of the 'origina.l evolution equation. Our method relies on the evaluation of a least
squares polynomial approximation to oscillatory data using a set of points which is determined via
the ENO framework.

Numerical results are given in one and two space dimensions for both scalar and systems of hy-
perbolic conservation laws. Computational running time, efficiency and robustness of the method
are illustrated in various examples such as Riemann initial data for both Burgers’ and Euler’s equa-
tions of gas dynamics. In all standard cases the filtered solution appears to converge numerically to
the correct solution of the original problem. Some interesting results based on nonstandard central
difference schemes, which exactly preserve entropy, and have been recently shown generally not to

be weakly convergent to a solution of the conservation law, are also obtained using our filters.
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YResearch supported by ONR, grant N00014-86-K-0691, DARPA grant in the ACMP program and NSF grant DMS
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1 Imtroduction

Numerical improvements in the computation of high order accurate numerical solutions to nonlinear
hyperbolic conservation laws have been recently obtained. Hence, following Total Variation Diminishing
(TVD) schemes, the Essentially Nonoscillatory (ENO) method has been introduced and proved to be very
efficient in the computation of high accurate numerical solutions for several types of physical problems
including Computational Fluid Dynamics (CFD) problems or front propagation using the Hamilton-
Jacobi framework. However, these high accurate methods use a lot of computational time. For that
reason, filtering methods were developed, beginning in the late eighties. The first one, described by B.
Engquist and B. Sjogreen in [1], uses simple TVD and conservation properties to correct nonphysical
spurious oscillations from one time step to another. The correction step consists in pushing numerical
data points up or down to an acceptable level while preserving conservation. In [5], we presented a new
class of filtering methods of any order of accuracy. Our method relies on switching fluxes at locations
in which spurious oscillations are detected. This method was observed to be very efficient and its cost
relatively low since high order ENO fluxes are evaluated at a few points only- a central difference method
is used most often. .

In this paper, we investigate some interesting computational properties of centered schemes after
numerical oscillations have developed and propagated for some time. We define a new class of filtering
methods that can be applied to highly oscillatory numerical solutions. This relies on the construction
of an ENO stencil of points ([2, 7, 8]) which is fitted with high degree polynomials from a least squares
procedure. Our numerical filter is capable of smoothing oscillations having large amplitude and high
frequency, but without removing sharp singularities which are crucial components of these solutions.
Furthermore, the filtered solution seems to retain the oscillatory solution properties of the unfiltered
schemes in some special "entropy preserving” cases as defined in [3] by J. Goodman and P.D. Lax,
and in [6] by J. Liu and D. Levermore. We investigate some numerical examples using several centered
approximations in order to illustrate the former property. The main conclusion indicates that for standard
central differences, our filtered solution always converges accurately to the strong limit, whereas the
predicted oscillatory behavior is retained even after using our filter in the examples of (3, 6].

Our main test problems will be inviscid Burgers’ equation and the inviscid Euler equations of gas



dynamics. We first consider Burgers’ equation:

U+ (), =0 0

with smooth initial condition U(z,0) = Uy(x), U, € C=(0,1), and periodic boundary conditions. We
will discuss the main properties of the numerical solution obtained from some schemes based on the

approximate fluxes:

Fj1= 1z, +U3), (2)
Fiy= w(U2,, +U?) — L(U2, + U2 ), (3)
Fa= (U2, +U2) — 155(U2,, + U2 ) + 55(UR, + U2 ), | (4)
Fiyy = U3, 4+ UiUja + UD), (5)
Fiy= ' UiUin (6)

The fluxes (2,3,4) are just‘ standard central differencing of second, fourth and sixth order of accuracy,
respectively; while (5,6) are the interesting examples ana,l&zed in [6] and in [3], respectively. The oscilla-
tory solution obtained from any of these fluxes is then corrected by the ENO-LS method, preserving the
formal order of accuracy.

The Euler equations of gas dynamics:

U+ (FO). = 0, o
U(.’L‘,O) UO('T)1

It

are to be solved for ¢ > 0 and r in some interval {} with appropriate boundary conditions, where
F(U) = vU +(0,p,vp)"

and U = (p,q,p), p is density, ¢ is momentum, v is velocity, and p is the pressure. In this work,
we use conventional second, fourth and sixth order central differencing with ENO-LS post processing
applied to Euler’s equations. See [4] for an analysis of the oscillatory Von Neumann-Richtmyer scheme

approximating Euler’s equation, [9].



2 The ENO-LS Filter, Algorithms:

The ENO-LS method mimics the construction of ENO polynomials but without involving the evolution

equations. In short, we follow the algorithm just below:

Algorithm 2.1 o 1.) Compute N times the numerical solution of

Ut + A(U).':: = 0
U(z,0) = Uy(z)

i.e we let V0 = Up(z;), and compute VN = I(VO, NAt), for all j = 1,...,n, where I is the solution

semigroup operator that transforms the initial pointwise data Vj.0 to VJ.N after N iteration time steps.

e 2.) Filter the numerical solution computed in step 1.) by an iteration procedure similar to Jacobi

or Gauss-Seidel elliptic solvers; first let:

0 _
wp= vy

for all j =0,....,n, then make use of primitive variables:

J

U;:.;z. =) WrAg, (8)
=0
and finally construct a sequence {U% 1 }m=o,..,m S0 that
2
Uil = E(Um, Um), (9)
?
where M is defined from the stopping criterion:

[[WmH! — W] <e,

form=0,..,M —1, vhere £ is a small parameter of order Az* and

U'.nl - U’:n].
m_ _Jt% i-3
wp =22 (10)

J



Finally, let VN = WM, forj=1,..,n
e 3.) Gotostep 1.) unlesst =1¢,,,,

IRT bl ~d
YVO UL [

iables (8) implies the conservation property
of the sequence {W;},=1 . n, i.¢ the resulting finite difference scheme is always in conservation form.
Moreover, the number of correction steps M can be initially fixed so that the ratio % is as large as
desired. The operator E is a non trivial linear combination of U}’_;_% , U;’_:_"_’;_l, for some j, as in point Jacobi
or Gauss Seidel method. In the Jacobi procedure we have:

URE = BUP, U, UP 1 Ul s, s U ),

1 1y=en
7 % g=g’ Titg? T Ve
and either

i+3?

2
U "‘H = E(Ur,.., U "y UL U™} in the reverse direction;
2

{ U""‘”1 E(UTH, ... UT“‘” M1y UMy ) if § varies from 0 to n, or
2
"*'2 z +1 T

for the Gauss-Seidel method.
An important property of the ENO-LS algorithm comes from the fact that the corrected solution V;N

satisfies a conservation equation. To see that, we first use the relation (10) which can be rewriten as:

(EJ+ ( Jtheryoe UJ+ +s+) U 1) (EJM-( J—f-r_re UJ-—-—+3_,)
Az,

2

WrH = W+ J—— (11)
and then discuss the construction of the least squares process. In (11), the pair of integers (r,., s4) limit
the width of the stencil used in the evaluation of the least squares polynomial. The appropriate stencil is
defined as in the ENO algorithms (refer to [7], [8]). We briefly indicate the main steps leading to such a
polynomial: We first compute the divided differences table of W™ and define the ENO stencil of points
in the region which is the smoothest for successive space derivatives of Wm. We denote the ENO stencil
in the set (z,_,,...,z;,,), where r + 8 = p— 1, and p is the number of data points that we want to take

into account in the evaluation of the least squares polynomial. Hence if we denote this polynomial by

Pith(z) = Y~ Yipi(s), (12)

=0



where (i, ..., ;) are the basis functions of some polynomial space of degree ¢, then the unknown coeffi-

cients Y = (Y, ..., Y,) are solutions of the linear system:
CitiY = Fit}

where C#*% is a (¢+1) x (¢ +1) square matrix, Fi*% is a g+ 1 column vector, and both can be computed

from the basis functions:

i+3

Cii? = Xi_, eelzip1)e®4144)
i+3

Fp?= T Uspisieu(@ing)

The updated value U ™41 follows from letting z = T4y on the previously constructed LS polynomial;

Uy = Pith(z,) = SA(CH) P (o)

1=0 -

The global conservation feature follows provided that we write:

&
mAl _ i+: prmed
Uiy = t_z i+l +tUJ+ L4107

where [ = 0 or 1 depending on whether the Jacobi or the Gauss-Seidel method is used, and

7 g
+3 i+ 1
j+2+t ZZ fkg‘:ot(mj+%)‘:ok(mj+%+t),
1=0 k=0
where D7 = (Ci+%)——1

Note first that the coefficients {a form a sequence of bounded real numbers, and second,

+ .;4}1‘—-—7‘,
that the basis functions (¢, ...¢,) can be appropriately chosen as a sequence of Chebyshev polynomials or
some other set of orthogonal polynomials. The last choice permits us to compute directly the coefficients
o#*+¥ without inverting the matrix C7+3:

a’+l Z ‘Pi(a:j+%)‘:f’i£zj+%+t)‘
J+ g+t P Ci;"i‘

This yields a fast algorithm since matrix inversions are no longer needed.



We now present an extension of algorithm 2.1 to two space dimensions. The simplest possible extension
would be to apply the previous algorithm in two sweeps. The first one will freeze one coordinate and
correct the oscillatory solution with respect to the other free variable. The second one will simply reverse
the role of each variable. This method, while simple, has difficuities near curved shocks. We shall use
instead a fully two dimensional ENO-LS filtering algorithm. The latter will provide the construction of
least squares polynomials in two space dimensions using a set of points which is chosen as the intersection
of one dimensional ENO stencils of data points in each separate direction. The algorithm below describes

our procedure.

Algorithm 2.2 e 1.) Compute N times the numerical solution of

U+ AU).+ B(U), = 0
Ulz,y,0) = Up(z,y)

using a very simple numerical method and then let Ve = Uo(z;,¥;), and VN = I(VO,NAt), for
all j =1,..,ny, and ¢ = 1,...,n,, where I is the solution semigroup operator that we have already

encountered in previous algorithm.

o 2.) Let WP, = VN, and filter M times the primitive variable

urm

i+l i+1

i,
1k=0

by a Jacobi or point Gauss-Seidel iteration procedure, i.e perform:

Umi
27

i+ 3+§-= E(Um,Um-l-l),

for positive integers m. Iterate as long as ||[Wmtl —Wm|| <e, m=0,..., M — 1, and finally let the

filtered solution: V:f;’ = W"fg, forj=1,..,ny,i=1,...,n,.

The construction of the two dimensional least squares polynomial is as follows:

e 2.1) At the location (w;_*_%,yj_i_%), compute the ENO stencils of points
{(@icrs ¥i)sooos (Tig14en, ;) ), and {(2i ¥5-ry)s o-s (Tir Yi4a4s, )}, JOr Tt s, 41 =n; andr,+s,+1 =

ny, where n; and ny ere the preset mazimum number of points along the z and y azis. These sets of

7



points form two segments crossing at (z;,y;). Then, define the x and y ENO stencils of points along
these y and z segments, respectively. The two dimensional ENO stencil is taken as the intersection
of the union of the predefined x and y one dimensional ENO stencils (refer to figure (1)). The
least squares polynomial is then simply defined on this two dimensional ENO stencil and is set to
P(""'%’j*%)(m,y) =31 o Yipr(z,y). Again, the unknowns coefficients Yy, k = 1,...,p are computed

by solving the linear system Cl+3itd)y = pli+da+d)

o 2.2) Let UL, = PO+, y 1 0),

i+4.4+3

¢ 2.3) Recover the conservative solution

1 1
Uﬁil- L+ U - U:ﬁ 1 -UmM st
Wm+ = zits t—3dT) e Z7T3 (14)
i AzAy ’

form=0,..,.M—-1,
o 3.) Gotostep 1.) unlesst =1,,,,.

An example of two dimensional ENO stencil is given in figure 1. The main interesting feature of such
construction is based on the localization of the least oscillatory part of the solution within the much
larger rectangle [z;_, ,z;,,.] x [Wiry» Yids, )

In section 4, we investigate the two dimensional Burgers’ equation and study numerical propagation
of a shock along the radial axis. With centered fluxes, some spurious numerical oscillations propagate in
the direction of the flow; however the two dimensional ENO-LS filtering method is able to filter all these
oscillations while still giving the correct location of the curved shock wave.

Next, we consider hyperbolic systems of conservation laws exemplified by the inviscid Eulers’ equations

of compressible gas dynamics:

U +F{U),= o,
U(z,0) = Up(x)

for which there exists a complete set of real eigenvectors and eigenvalues; i.e VF(U)} = P-1AP, where
A is a diagonal matrix with entries A; < A;... € A, and P is a matrix whose columns define a complete
set of eigenvectors of the system. Note that the eigenvalues can be multiple, which is the case for the

Euler equations of gas dynamics in two space dimensions. Using the eigenvector decomposition, a field by

8
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Figure 1: 2D ENO-LS stencil.

field approach is used, i.e the fluxes will be corrected in each fields (our filter sometimes failed to remove

oscillations near strong shocks when applied to the conserved quantities). Briefly, we proceed as follows:

Algorithm 2.3 (Field by field ENO-LS method) o 2-1.) Let
Wm = (WI’",...,W;")T, and define the primitive variable = f:=1 WrAz,
2

o 2-2.) Compute the left and right eigenvectors L?:(f), ;::(f), for k =1,...,d (d is the number of
2 2
equations) of the Roe matriz (see e.g. [2]) AWr, W), and decompose the primitive vector Vits
2
along each characteristic field:

T4t 4L i EHR)

= $d k) m,(k)

T k= T sy
for which we have frozen the index j in order to get the same decomposition for all neighboring points
z; +% +ikys for I(k) = —r(k}, ..., +s(k) involved in the calculation of the least squares polynomial which

is constructed in step 2-3.).



o 2-8.) Select an ENQ stencil of p points, i.e {mj_,.(k),...;:cﬁ,(k)}, for r(k) + s(k)+ 1 = p; and then
define the least squares polynomial PU+3) of degree q so that:

o.m";]-!(k) = P(J+ %‘)(G;n!(k) m,(k)

+i +%—r(k)""’aj+§w+s(k)’mi+%)'

o 2-4.) Transform back the filtered field by field solution to the primitive vector:

d
m+1 __ m+1,(k) pm,(k)
Viit = 2%t} Ry

and finally recover the desired physical variables:

Wmtt = j+% 2 (15)

o 2.5.) Iterate until the stopping criterion
[Wmtt — Wri <,

form =0,...,M — 1, is reached; and finally let U;’V = VVJM

Note that this algorithm can be extended to two space dimensions by correcting separately oscilla-
tory fields involved in the r and y fluxes, respectively. Moreover, this algorithm does not make use of
the evolution equations but does use the eigenfunction decomposition in order to track efficiently the
propagation of spurious oscillations.

To conclude this section, we indicate that we mainly supposed that the numerical oscillations always
propagate with the flow speed along local characteristic fields and that tile amplitudes of such oscillations
are not too large so that the oscillatory solution does not become unbounded, e.g., negative density and Jor
pressure is not allowed. In all our numerical experiments, we had to turn the filter on not only to recover
an acceptable final solution but also to reduce the amplitude and frequency of spurious oscillations during
the calculations. Hence, we usually preset the value of the ratio & in the numerical experiments just

M
after singularities have developed.
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3 Numerical Convergence Study:

In this section, we investigate the numerical convergence of the approximate solution computed via the
ENO-LS algorithm given an initial oscillatory solution which has been evaluated from one of the standard
centered fluxes (2), (3), (4); or from one of the "entropy conserving” fluxes {5) or (6). As test problem,

we study first the numerical evolution of Burgers’ equation (1) in one space dimension:
U2
Ui+ (7):: =0,

with initial condition U{z,0) = sin2xz, in the domain [0,1], and extend the solution by periodicity
outside 0 and 1. A shock wave develops at t = £ at the point z = 1,

We first display in figure (2) the solution using 100 cells and a CFL condition of } for a second order
centered difference (CD) scheme using the flux (2), and then correct that solution by applying 7 iterations
of the ENO-LS algorithm. Note first that the exact solution is perfectly recovered with exact location of
the singularity because of the use of primitive variables in algorithm 2.1; second, these results are obtained
for the set of coefficients (p,¢) = (13,2), which implies that the corrected solution is only second order
accurate in smooth transition areas; third, the upper right plot displays the corrected solution when
both (3,2)CD and (3,2)ENO schemes are sequentially used. In that case, we correct by 5 ENQ iterations
after every 25 CD steps. This method for filtering oscillations is also very efficient for one dimensional
problems (refer to table 1); however, many more ENO iterations are needed in two dimensions. Basically,
10 ENO iterations are needed after every 10 CD steps in order to recover an accurate solution for the
two dimensional Burgers’ example 4.3, which is a quite expensive technique compared to the overall cost
induced by the ENO-LS method.

We shall discuss the results obtained with larger values of ¢ in section 4 in which we investigate
numerical order of accuracy of the filtered solutions from the ENO-LS algorithm. Also, a similar study
is investigated as the number of evaluation points p increases.

In figure (3), we plot the numerical solution before and after the filter steps when n = 1000. Again,
convergence to the physical solution is reached within 10 Gauss Seidel iterations. Note that this number
increases by a factor of nearly 2 when Jacobi iterations are used.

In figures (4) and (5), we show the filtered solutions which were initially computed using the standard
(3,4)CD and (3,6)CD schemes (fluxes (3) and 4)), respectively. Note that the corrected solution is well

reconstructed in smooth regions while a smearing of the shock over about 10 cells is observed. This

11
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Figure 2: (3,2)CD scheme + ENO-LS method - 100 cells.
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Figure 3: (3,2)CD scheme + ENO-LS method - 1000 cells.
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Figure 4: (3,4)CD scheme + 10 ENO-LS method - 1000 cells.
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Figure 5: (3,6)CD scheme + 10 ENO-LS method - 1000 cells.
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smearing can be primarily explained from the high (fourth) degree least squares polynomials (g = 4)
used in those experiments.

Our second numerical test is devoted to showing that the filtered solution computed via the numerical

flux (5):
Finy = 50, + Uil + U3).

does not converge to the physical solution. It was observed in [6] that this scheme preserves mass and
entropy (which in this case is taken to be 1U/2). It was also shown there that the numerical solution does
not converge to a weak solution of the original problem. Basically, as the mesh size tends to zero, some
spurious oscillations are still visible near the shock and cannot be removed. We ran the last two previous
experiments but used the approximate flux (5). We plot the numerical results in the figures (6) and (7)
when n = 100 and n = 1000, respectively. For 100 cells (figure (6)), the oscillations near the shock are
all smoothed out; however, the location of the shock is smeared over about 10 cells. This results were
obtained for the same set of coeflicients (p, ¢) = (13,2). Indeed, the solution is not well reconstructed. As
the number of cells increases, the filtered solution is well réconstructed except near the shock. Numerical
oscillations are still visible and cannot be removed. Note that the results visualized in figure (7) are given
after 16 Gauss Seidel iterations which is much more than we needed when standard centered differences
are taken. |
Our final Burgers’ equation test deals with a similar convergence failure property to the correct
physical solution when the flux approximation (6) is implemented. The numerical flux is:
1
Fitp = Uil

1
Z

This scheme again conserves both mass and entropy (this time the entropy is taken to be logU;), and it
was shown in [3] that the numerical solution does not converge to a weak limit of the original problem
as the stepsize Az tends to zero. In the numerical experiments, we noticed that the amplitude of the
oscillations grew very fast and was rapidly becoming unbounded. Tile results are plotted in the figures
(8) and (9) for n = 100 and n = 1000, respectively. Note that, in the case n = 100, the filtered solution .
is again not very well reconstructed, and for 1000 cells, some oscillations are still visible after 20 ENO-LS
iterations on the right of the shock. Moreover these oscillations could not be removed, even after many

additional filtering iterations.
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Thus our techniques have been observed to construct converging sequences of filtered numerical solu-
tions towards the expected solution given initial oscillatory data that has been computed from a central
difference flux approximation. Our hope is now to show that our method is not only robust but is also

ast. This is the topic of last section.

4 'Time Efficiency of ENO-LS Algorithms:

In this section, we want to test the ENO-LS filtering method for several test problems involving nonlinear
“hyperbolic systems of conservation laws. We will focus our attention on comparing precisely the CPU
times of the ENO-LS method versus more classical and filtered methods. Among them, we will consider
the straightforward central difference (CD) method, the expensive ENO (Essentially Nonoscillatory)
technique {7, 8], and our FM scheme (Filtering Method) [5]. We will run three examples for 1D and 2D

Burgers’ equation, and for Eulers’ equations of compressible gas dynamics.

4.1 1D Burgers’:

We first compare the time efficiency of several numerical schemes for the 1D Burgers’ equation (1).
In table (1), we show the average computational time per iteration for 100 mesh points for the CD,
ENO, and FM schemes with several correction angles (see [5]), and for various combinations, performing
alternatively some centered difference and some ENO steps. The notation CD+ENO (40,5,20) simply
means that the calculation starts with 40 CD steps, followed by 5 full ENO iterations, and back to the
centered scheme; the last 20 steps of the calculations are finally performed by the ENO method in order
to recover an acceptable solution. Note that all coeflicients displayed in this table are tuned so that the
numerical solution is high order accurate in smooth regions and no spurious oscillations are detected.
The contents of this table need a few comments. First of all, the fastest algorithm is the one based
on central differences. This is indeed not surprising since only one Fortran instruction is needed iﬁ the
coding of the approximate flux. Second, postprocessing a numerical solution computed from the CD
scheme by an ENO method can be very efficient for lower orders. For a second order method, only one
ENO iteration after every 40 CD steps has to be implemented in order to reduce sufficiently the amplitude
of oscillations. Note however that for the fourth order method, 7 ENO iterations were needed every after
only 20 CD steps. In fact, if these spurious oscillations are not regularly cut off, the final ENO iterations

may not recover the correct numerical solution. Third, the ENO-LS filtering method is the most costly
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Type of Scheme Order of Accuracy CPU time x10~2 | # of corrections, comments
CD (3,2) 0.56 | CD = Centered Differences
CD (3,9) 072 [ -

ENO-RF 3.2) 1.11 | RF = Roe Fix, Entropy fix
ENO-RF (3.4) 168 | -

M {(3,2) 0.76 | FM = Filtering Method, 3% Corrections
FM (3,4) 1.07 | 4% Corrections

FM (3,2) 1.40 | 100% Corrections = full ENO
FM (3,4) 2.04 | 100% Corrections

CD+ENO (40,5,20) | (3,2) 0.74 | 40CD, 5ENO, 20 final ENO
CD+ENO (40,1,10) | (3,2) 0.58 | 40CD, 1ENO; 10 final ENO
CD+ENO (20,7,10) | (3,4) 0.99 | 20CD, TENO, 10 final ENO
ENO-LS (7,2) (2) 1.84 | (p,q) = (7,2), LU Inversion
ENO-LS (7,2) (2) 0.65 | Orthogonal polynomials
ENO-LS (7,3) {3) 2.5 | LU Inversion '

ENO-LS (7,3) (3) 0.89 | Orthogonal polynomials

Table 1: CPU times of CD, ENO, FM and ENO-LS methods.

Type of Scheme | (q,p)  # of iterations | LT and L™ orders.
CD (3,2) (2,5) 12 | 1.81 and 1.63

CD (3,2) (2,9) 9 | 1.75 and 1.50

CD (3,2) (2,13) 71219and 1.9

CD (3,4) (3,5) 15 | 1.59 and 1.40 -
CD (3,4) {3,9) 12 | 2.41 and 2.33

CD (3,4) (3,13) 7 | 2.80 and 2.79

Table 2: Local L! and L> order of accuracy.

when full LU inversion of the C+} matrix is performed. However, when orthogonal basis functions are
introduced, the ENO-LS method is competitive with respect to the fast CD scheme. Note moreover
that ENO-LS correction steps have to be performed at a few times only. Finally, after ranning many
experiments, we noticed that if the ratio E becomes too large, then shocks have a tendency to spread
over a large number of cells. Again, there is a compromise that needs to be reached for fast convergence;
this depends on the large value of the ratio E, and the approximation of the shape near shocks for which
p needs to be slightly smaller. Note that in most of experiments, the ratio E € [4, 6] was optimal.

Now, we want to measure the order of accuracy of the ENO-LS solution. To do s0, we measure from
computations the L1 and L> errors in the slabs {0.10,0.24] and [0.26,0.30]. Numerical orders are shown
in table 2.

Several comments about these results are now discussed. First of all, as the number of evaluation
points increases, the better the quality of the results and the faster convergence is reached. Indeed, we
have to pay the price of higher computations which are required to construct the coefficients involved in

the C#*% matrix and in the vector F3+3. On the other hand, faster calculations can be obtained provided
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that the values of p and ¢ differ only slightly, i.e p = ¢+ 1, [ = 1,2,3,..., but local accuracy becomes

obviously poor. Again, the optimal ratio seems to belong to the interval [4, 6].

J

L 3L 2N oot Talob)

The second test problem is devoted to the Euler equations of gas dynamics in one space dimension. We

consider the initial condition given in example 8 of [8], that is:

p = 3.857143,q = 2.629369, p = 10.3333333 when z < —4

p=1+¢sinbzr,gq=0,p=1. when z > —4

When ¢ = 0, a pure Mach 3 shock is moving to the right from the initia! discontinuity x = 4. When
e = 0.2, we not onl;')} have a Mach 3 shock propagating to the right, but have as well a succession
of weaker rarefaction and shock waves propagating to the left. Numerical results for the ENO and
FM methods of high order of accuracy can be found in [8] and in [5], respectively. We ran the same
problem using 240 CD iterations and then plotted the results in figure (10). Next, we correct this highly
oscillatory numerical solution by performing 7 ENO-LS correction steps. In this experiment, we use
(p,q) = (15,3). The filtered solution is visualized in figure (11). Note that the pressure, velocity, and
entropy are quite well reconstructed, whereas the density is not perfectly recovered near the strong shock
for which some physical oscillations should remain ( refer to [10, 11]). However, we should note the
remarkable improvement obtained from the solutions displayed in figures (10) and (11).

In figures (12) and (13), we use in sequence 50 CD steps and only one ENO iteration for second
and fourth order methods before correcting the final oscillatory solution. The oscillatory solution is now
postprocessed by 3 ENO-LS iterations. The filtered numerical results now look fairly similar to those

shown in [8, 5]

4.3 Example 3. 2D Burgers’ Equation.

The last example is devoted to the two dimensional Burgers’ equation to be solved in the square domain
P g q q

[~1,1] x [-1,1] with initial condition Uy(z,y) = sin 277, where r = +/z7 + y7, for r < 1, and Uy(z,y) = 0

-~ 3

outside the disc r = 1. In figure (14), we visualize the solutions obtained by the (3,2)CD scheme,

followed by 4 iterations of ENO-LS correction steps. In that experiment, we use (p,,p,,q) = (6,6,2),

so that the local rectangle in which the two dimensional ENO-LS stencil of points is taken contains 36
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Figure 10: (3,2)CD scheme.
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Figure 11: (3,2)CD scheme + 7 ENO-LS method (p,q)=(13,3).
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Figure 12: (3,2)(CD,ENO) schemes + 3 ENO-LS method.
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Figure 13: (3,4)(CD,ENO) schemes + 3 ENO-LS method.
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Figure 14: (3,2)CD scheme + 2D ENO-LS method.
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mesh points. Note that a speed up factor of nearly 1.5 is obtained by using the two dimensional ENO-LS
method instead of the one dimensional splitting version. In this numerical example, the amplitude of the
numerical oscillations which propagate radially away from the initial shock location was approximately
3 of the strength of the shock, yet the ENO-LS method recovered the nonoscillatory accurate solution

quite well .

22



References

[1] Engquist B., P. Lotstedt, B. Sjogreen, Math. Comput., 52, 509 (1989).

[2] Harten A., B. Engquist, S. Osher, S. Chakravarthy, J. Comput. Phys., 71, 231 (1987).

[3] Goodman, J. and P.D. Lax, Comm. Pure Appl. Math., 41, 591 (1988).

[4] Hou T., P.D Lax, Comm. Pure Appl. Math., 44, 1 (1991).

[6] Lafon F., S. Osher, "High order filtering methods for approximating hyperbolic systems of conser-
vation laws”, ICASE Report, 90-25, 1990 J. Comput. Phys. to appear, (1992).

[6] Levermore D., J. Liu, to appear.

[7] Shu C-W, S. Osher, J. Comput. Phys., 77, 439 (1988).

[8] Shu C-W, 8. Osher, J. Comput. Phys., 83, 32 (1989).

[9] Von Neumann J., R.D. Richtmyer, J. Appl. Phys., 21, 380 (1950).

[10] Zang T., M. Hussaini, D. Bushnell, _AIAA J., 22, 13 (1984).

[11] Zang T., M. Kopriva, M. Hussaini, ”Pseudospectral Calculation of Shock Turbulence Interactions”,
ICASE Report 83-14, 1983,

23






