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Abstract

‘A new, efficient, and accurate numerical method for solving hyperbolic
conservation laws with stiff source terms is developed to simulate inviscid, chemically
reacting flows, In the first part of the method, an essentially non-oscillatory (ENO) shock
capturing scheme using numerical ﬂuxes and TVD/Runge-Kutta time discretization is
applied to solve the conservation equations without the inclusion of source terms. The
reaction chemistry in the absence of fluid motion is then solved in the second step. A new
technique for proper treatment of the stiff source terms is included in the second step in
order to avoid stiffness problems, so that correct solution of stiff combustion waves.can
be obtained, even for large time steps and grid sizes. Numerical results for one-
dimensional shock tube and ZND detonation waves for alternative test cases are obtained,

with excellent correspondence between numerical predictions and analytical and

experimental data.
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1. Introduction

Modeling of non-equilibrium gas-dynamics is frequently hampered by numerical
om the stiffness of the chemical source terms. Stiffness problems can
lead to solutions yielding non-physical waves with incorrect wave speeds and strengths.
These non-physical phenomena have been observed numerically by Colella, Majda and
Roytburd [1]; Ben-Artzi [2]; and LeVeque and Yee [3]. For flows containing contact
surfaces separating species with different ratios of specific heats, numerical experiments
show that erroneous oscillations and computational inaccuracies occur around contact
discontinuities (see Abgrall [4], Chargy et al. [5], and Karni [6]).

In this paper a new, efficient and accurate numerical method for solving hyperbolic
conservation laws with or without stiff source terms is developed to simulate inviscid and
chemically reacting or mixing flows. A new téchniquc for proper treatment of the source
terms, developed by Engquist and Sjogreen [71, is included in this method in order to
avoid the aforementioned stiffness problem. With this method, correct solution of stiff
combustion waves can be obtained, even for large time steps and grid sizes. The
numerical difficulty at a contact discontinuity for mixing flows will also be addressed,
and we will show how to eliminate this problem.

The accuracy of the method will be demonstrated by three test cases. The first test
case is the simulation of the Sod's shock tube problem with a diaphragm separating two
non-reactive ideal gases with different ratios of specific heats. The second test case is the
simulation of a Chapman-Jouguet detonation wave with one-step kinetics, Finally, the
ignition processes in hydrogen-oxygen-argon mixtures behind a shock wave reflected
from a rigid wall are simulated in the third test case. A detailed 37-step chemical reaction

relating 8 species is used in this simulation.



2. Governing Equations

The governing equations for one-dimensional, multi-component flow of inviscid,
compressible, and reactive gascous species are the Euler equations for the gas mixture
and mass conservation equations for each species. The Euler equations are the
conservation laws for mass, momentum, and energy. For a mixture of NS species, the
governing equations in vector form can be written as

Ui+Fx=8 2.1)

where U, F, and S are vectors given by
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Components of vector U are called conservative variables, and F contains the conserved
fluxes. Here, p is the mixture density, u is the mixture velocity, e is the total energy per
unit volume, p is the mixture total pressure, Y; is the mass fraction of species i, and w; is
the mass production rate of species i.

We will assume that all species satisfy the ideal gas equation. The equation of state
is

pRuTz X @.3)

i
where R, is the universal gas constant, T is the mixture temperature, and W; is molecular
weight of species i.
The total energy per unit volume can be cxpressed as

2
= 1)+—pu +Z pY:h; (2.4)



where h?i is the heat of formation of species i. yis the ratio of specific heats of the

mixture; ¥ will be defined in the next section.
UIE iS
(2.5)

3 Thermodynamic Properties of the Mixture
The épeciﬁc heat at constant pressure for species i, ¢p ;, is taken to be in the form of

a polynomial fit in temperature,
N
Cpi=n2 Y g TCVD) (3.1)
!'n=1
The ratio of specific heats of species i is then
c .
¥i=—22 (3.2)
Cpi-=
W;
The mass weighted mean specific heat at constant pressure of the mixture is defined as
NS
=2, cpiYi (3.3)
i=1
ture is defined as
(3.4)

and the mean molecular weight of the mix
Wel
- Wi

We define the ratio of specific heats of the mixture in the same way as for an

individual species (7v;), but using the mass weighted mean specific heat and mean

molecular weight of he mixture : -
- , (3.5)

Thus, in terms of conservative variables, ¥ can be expressed as
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Note that, in terms of conservative variables, yis a function of p, pYy, pY2, ...,

pYns.1 . Derivatives of ¥ with respect to the conservative variables are given below
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4. Numerical Method



Most researchers employ a fractional step algorithm to solve the system of
hyperbolic conservation laws with stiff source terms (e.g., [1,8]). In this section, we will
extend this algorithm to solve the system of equations (2.1) in order to eliminate the
aforementioned stiffness problems.

The fractional step algorithm involves the following steps :

i) Firststep: '

In this step, we allow the specieg to convect passively, i.e., we solve the
homogeneous system of equations (2.1) :
U+ Fy=0 (4.1}
The work of Shu and Osher [9], using the essentially non-oscillatory (ENO) shock

capturing scheme based on numerical fluxes and TVD/Runge-Kutta time discretization, is

extended to solve the multi-component flow of (4.1),

il) Second step:
The stiff ordinary differential equations describing the chemical kinetics are
solved in this step.
We have
=—=0 (4.2a)

a(‘(?;i) = o i=1,..,NS-1 (4.2b)

Combining the above equations, we obtain
(YD), = -‘gi i=1,.,NS-1 (4.3)

iti) Third step :
The above steps are coupled together by updating the primitive variables using

the new values of Y; obtained from the second step.



There are remaining stiffness problems, however, due to the interaction between

the variables in the above steps. For a very fine mesh and time step, a stiff combustion

vave can be resolved; however, for realistic choices of time step and grid size, non-
physical waves with incorrect wave speed and strength will be obtained (see [1-3]). This
numerical phenomenon is due to the non-equilibrium points at the shock front introduced
by conservative shock capturing schemes as shown by [3]. Even with modern shock
capturing schemes which are able to resolve the shock front with only one or two cells,
the corresponding temperature of these points can prematurely ignite the chemical
Teaction.

Since, for a detonation wave, no chemical reaction should start before the shock
wave has passed through, we want to prevent these non-equilibrium points from
triggering the reaction. Engquist and Sjogreen [7] propose a simple solution to this
problem by modifying the temperature at grid point i as

T;=min (Ti.qg, Ti.d) 4.4)
where d approximately equals the number of non-equilibrium points. We modify the
second step of the above algorithm by applying equation (4.4) when calculating the right-
hand-side of the system of equations (4.3).

Higher order accuracy can be obtained by extrapolating T; from its neighboring

cells. Filters to identify the non-equilibrium points can also be used. We will not explore

these techniques further since (4.4) already works well for the present applications.

5. Numerical results

5.1) Multi-Component Mixing Flow



The first test problem that we study is Sod's shock tube problem. The shock tube is

open at both ends with a diaphragm separating two non-reactive ideal gases with different

ccific heats. The initial data (non-dimensionalized) are

pi=1 pr =0.125
n= pr=0.1
mzﬁ u,—O s
=14 =12
Yy=1 Y1:=0
Yo1=0 Yo,=1

This same test problem has been studied in [4-6]. These researchers used a different
model for the ratio of specific heats of the mixture (see [10]). They also assumed that the
specific heats at constant volume for gases on the left and on the right of the diaphragm
were the same. Figure 1 presents the results I;y Larrouturou [11] which employ Roe's
scheme with first order accuracy. Figure 2 presents the results by Karni [6] which
incorporates a second order upwind scheme. From these results, we can see that these
methods have difficulties resolving the contact discontinuity; there is a non—physicai step
in the velocity profile and an erroneous dip in the density profile across the contact
discontinuity.

For the present calculation, we use ¥y as described in section 3. We allow air to
represent the ideal gas on the left of the diaphragm. The dimensional specific heat at
constant pressure and molecular weight for air (species 1) are, respectively,

cp1 = 1.007 x 107 erg/gK
W =28.97 g/mol



The region to the right of the diaphragm contains an ideal gas with y=1.2. Assuming that
the initial temperatures have equilibrated across the diaphragm (T}=T;), we can calculate

s S

uiC gas

ropeitics for species 2 as
Cp2 =2.152x 107 erg/gK
Wy =23.176 g/mol

In this calculation, we use 100 cells with a uniform spacing of Ax=0.01. The
results are presented in Figure 3. In this figure, the open circles represent the numerical
solutions with third order accuracy as obtained by the present method; the solid lines are
exact analytical solutions to the problem.

Excellent agreement between numerical results and analytical solutions is achieved.
The aforementioned numerical difficulties do not appear in this solution. We suggest that
the numerical difficulties as obtained in [4-6] may be due to

1) adifferent model for yand its derivatives, or

i) the assumption that ¢, 1 = Cy 2, Or

iii) a combination of i) and ii).

5.2) Chapman-Jouguet Detonation Wave with One-Step Kinetic

A stiff Chapman-Jouguet (C-J) detonation wave is simulated in this section. As a
test case, we simulate ozone decomposition. Following [1-2 and 12], we assume that the
unburned (species 1) and burned (species 2) gases are perfect gases with constant ratios
of specific heats; ¥=1.4 is used for both species. A single one-step kinetic mechanism is
assumed; we use a simplified Arrhenius model where the reaction rate is a step function
depending on temperature. The mass production rate as expressed in (2.2) thus becomes

@ = kp (5.1)

with



k=KY;H(T-T.) (5.2)
where T, is the critical temperature and
x>0

Hog= (5.3)
0 x<0

Hence, the ODE (4.3) can be integrated exactly, and the mass fraction of unburned gas
can be calculated by
Y3 = Y2 exp[-KAtH] (5.4)
The constants are given as
Te=500K
K =5.825 x 109 sec!
h{; = 5.196 x 10° dynes-cm/g
The initial states for unburned gas are
po = 1.201 x 103 g/cm3
po = 8.321 x 10° dynes/cm?
=0
Yi=1
Y;=0
The computed C-J initial states for the burned gas are
pcr = 1.945 x 1073 g/em’
pcy = 6.270 x 106 dynes/cm?
ucy = 4.162 x 104 cmy/sec
Y1=0
Y;=1
Finally, the speed of the C-J detonation wave is 1.088 x 10° cmy/sec.

10



We use 100 cells of uniform spacing. To follow the moving wave and to keep the
reaction zone roughly at the middle of the mesh, we keep eliminating cells at the left and
creating new cells at the right.

For a very fine mesh and step size of

Ax=5x106cm
) At=5x 10125
the ZND detonation wave with a von Neumann spike is resolved correctly without using

the technique in [7] as discussed in section 4. The results at 1 x 10-# seconds are

presented in Figure 4. With the inclusion of equation (4.4), the solution only changes

slightly.
Now, for a realistic choice of time step and grid size of
Ax=5x10%cm
At=1x1010g

the results at 1 x 10-6 seconds are shown in Figure 5. In this figure, the open circles
represent the correct solution of the detonation wave as obtained by the present method.
If the source term is not treated properly (as done, for example, in [1-2]), non-physical

solutions are obtained; these are shown by the asterisk symbols in Figure 5.

5.3) Detonation Wave with Multi-Step Kinetics

The ignition processes in hydrogen-oxygen-argon mixtures behind a shock wave
reflected from a rigid wall are simulated in this section. This simulation is based on the
reflected shock tube experiments performed by Cohen and Larsen [13]. The
corresponding numerical simulation is computed by Oran et al. [8], who use the flux-

corrected transport method along with an adaptive grid in their solutions.

11



We use a detailed 37-step chemical reaction relating 8 species (Hz, O, O, H, OH,
HO,, H,0; and H,0), described by Maas and Warnatz [14], in the present simulation.

—

M n mamaral ont ~f Abhamednal oao et oo
1n¢ gendra sei o1 endimicalr reactions

N N
Z ViMi © Z ViV (5.5)

i=1 ‘i=1
where M, is the chemical symbol for species 1, v;k and V;k are the stoichiometric
coefficients for species i appearing as reactant and product, respectively, N is the total

number of species involved, and kg and kyy are the forward and backward reaction rate

constants, respectively. The mass production rate of species i from the reaction step k is

N . N o
Wi = WiV Vil ] o - ke[ T €1 (5.6)
j=1 j=1

where c; is the molar concentration of species i.

The system of ordinary differential equations (4.3) describing the chemical kinetics
is solved using the CHEMKIN scheme developed by Kee et al. [15]. Heats of formation
have been taken from the JANAF tables [16].

The left-hand boundary of the shock tube is a rigid wall, and zero-derivative of
primitive variables is applied at the right-hand boundary. The initial mixture of the gases
is

Hy:02:Ar/2:1:7/
The initial condition is an incident shock, at x = 3 cm, traveling to the left. The states
behind the incident shock are
p2 = 2.0539 x 104 g/em?
p2= 3.6686 x 105 dynes/cm?
up =-5,1564 x 104 cm/sec

12



The initial states for the undisturbed region are
p1 = 7.20486 x 10-5 g/cm3
p1 =7.17277 x 10* dynes/cm?
uy =0
We note that the above initial states are only slightly different from those in [8].

We use a coarse grid of 100 cells with uniform spacigg.ﬁ,r (Ax =0.12 cm). Since the
combustion wave in this problem is not stiff, equation (4.5) is not needed. Figure 6
presents the calculated positions of the incident shock front, the reflected shock front, the
reaction wave, the transmitted detonation wave, and the contact discontinuity as a
function of time. The incident shock is reflected at the rigid wall at about 35 ps. The
reaction wave accelerates to a detonation at about 140 pis, then it merges with the reflected
shock front at 180 ps. The transmitted detonation wave and contact discontinuity are
decelerated due to the incoming flow. Figure 7 presents the density profiles at 115, 144,
166 and 211 ps. Figure 8 presents the density, pressure, velocity and temperature
profiles at 166 pus. Mass fraction profiles of Hy, O;, OH, HyO at 166 ps are shown in
Figure 9.

In general, the present results are in very good agreement with those measured from
the experiment by [13] and numerically calculated in [8], as shown in Figures 10 a and
10 b.

The attractiveness of the present methodology is that severe limitations on spatial
and temporal step sizes are eliminated, thus providing a computationally less-expensive
means of carrying out detonation calculations. Ongoing and future work on the

development of these efficient numerical schemes focuses on simulation of two-

dimensional, compressible reacting flowfields.
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Figure 10a. Schlieren photograph with relative times marked for the ignition processes
in hydrogen-oxygen-argon mixture by Cohen and Larsen ( 1967)
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Figure 10b. Calculated results for the ignition processes in hydrogen-oxygen-argon
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mixture by Oran et al. (1982)
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