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ABSTRACT

The nonlinear quantum kinetic equation for the interaction of sound waves is solved via
analytic and numerical techniques. In the classical regime energy cascades to higher frequency ()
according to the steady state power law ®-3/2. In the quantum limit, the systerﬁ prefers a reverse
cascade of energy which follows the power law @-6. Above a critical flux, a new type of
spectrum appears which is neither self-similar nor close to equilibrium. This state of nonlinear
quantum wave turbulence represents a flow of energy directly from the classical source to the

quantum degrees of freedom.



The anharmonic terms in the Hamiltonian for fluid mechanics account for the scattering of
one sound wave by another. In the claggical limit this nonlinear e
wave interaction,] In the quantum limit the corresponding phenomenon is called the phonon-
phonon interaction.2 For a fluid 3 and even more complex systems 4 the quantum and classical
regimes can be bridged by a single kinetic equation. This equation describes the nonlinear time
development of the spectral intensity along with effects that are due to the scattering of acoustic
energy by the zero point motion .3

We have used this kinetic equation to study the fate of acoustic energy that is injected into a
fluid so as to drive it far off equilibrium (i.e. far from the Planck distribution). In the classical
region of wave-number space, energy cascades from low frequency to higher frequency so as to
generate a steady state power law distribution © that is analogous to the Kolmogorov spectrum 7 of
vortex turbulence. This distribution for classical wave tarbulence is shown in figure 1. Classical
wave turbulence accounts for the spectrum of wind driven surface waves in the ocean 8 and Alfven
waves driven by the solar wind.® In the quantum region of parameter space there is a reverse
cascade of energy from higher to lower wave numbers. As shown in Figure 2, the steady state of
quantum wave turbulence is also characterized by a power law dependence for the spectral
intensity, We believe that this reverse quantum cascade underlies the high frequency phonon
redistribution processes measured in references {10, 11].

When the input of low frequency energy exceeds a critical value, we find that it is possible
to realize a cascade in which energy is mechanically transported directly from the classical to the
quantum domain. An example of this new off-equilibrium steady state, which spans the classical
and quantum domains, is shown in Figure 3.

To study turbulence in quantum systems we consider a "sea" of interacting dispersionless
waves with small interactions between waves. For this case, the frequency @ is related to the
wavenumber k by the expression ® = ck, where c is the speed of the sound. The lack of

dispersion for acoustic waves implies a basic 3-wave resonant nonlinear interaction such that



waves with frequencies @ and @9 scatter to produce waves with frequency w3=w; £ ®w3. A
nonlinear Boltzmann type of equation describes the time rate of change of the wave action due to
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three-wave interactions. The general kinctic equation valid in both the classical and gquantum simits
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where 6(®)=V®2/21t2c3 corresponds to the density of states, V is the container volume, "I" is
the mean averaged action, p is the density, G=1 + (p/c)dc/dp is the Gruneisen coefficient, and
# 1s Planck's constant. The coupling between different modes is determined by G. The kinetic
Equation (1) has all of the information of the quantum theory of interacting phonons. The energy
per unit volume per unit frequency interval, or so called spectral intensity can be obtained from
e(o)=I(w)oc(w)/V.

The equilibrium solution to Equation (1) is the Planck spectrum:
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where kp is Boltzmann's constant and T is the temperature. For small 7 ; e(w) —
kpTw?2/2n2c3 which is equipartition of energy. For Aw/kpT >>1; I — hexp(-hw/kpT)
which is Wien's law,

The analytic solutions for wave turbulence follow from the conservation of wave energy

with respect to its flow in phase space: 6



_-_1._._ Y N Y- -
WLEIC g ) 18 tn

this fact (3) yields:
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where by 0I(wy)/dt we mean the expression on the right hand side of (1). The classical limit of
(4) involves the quadratic terms in "T" which clearly balance when "I" is proportional to @972,
The strong quantum limit of (4) involves the linear terms in (1) and these balance for "I"
proportional to @-9. Substituting these forms for the solution into (4), one recovers the well

known power spectrum for classical wave turbulence: 6
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as well as the quantum power spectrum of off-equilibrium noise:
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In (5) the constant A = 1/(52.42)1/2 = 0.138 [see reference 12] and in (6) the constant ay =
1800/37. These solutions apply in the steady state and when e(®) is large compared with its value
in equilibrium. Generalizations of (5) which account for different dimensions and dispersion laws
lead to explanations for wind driven surface wave spectra.8

The quantum solution decays more slowly than the Planck spectrum; therefore, in contrast

with the classical cascade, we are dealing here with a reverse cascade of energy from a high



frequency to a low frequency. The reverse cascade of energy in the strong quantum limit is
evidence for spontaneous decay of phonons or frequency down-conversion. 10, 1L, 13
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verifying the validity of the steady state cascades (5) and (6), 2) elucidating the temporal
development of the classical and quantum off-equilibrium spectra, and 3) determining the spectrum
of wave turbulence at the interface of classical and quantum mechanics. Numerical solutions of the
strictly classical kinetic equation have been carried out to verify the exponent in the classical steady
state spectrumn. 14, 15

The nonlinear coupling of the classical and quantum domains-(case 3) can be appreciated by
comparing equation (5) and equation (2). In particular, if the low frcqucncy input flux (go) is
chosen to be larger than a critical flux g, then the distribution (5) goes over the top of the spectrum
where the equilibrium energy is a maximum (and the frequency is (p = 2.88k g T/# ). The critical
flux is that value of g at which (5) is tangent to the Planck spectrum or
G?(kpT)’

qQc=A, 7
pcia

(7)
where "Aq" is a constant, For this range of parameters the motion is both quantum and nonlinear.
Similar comments apply to the reverse flux spectrum (6). Indeed, the value of q at which the
spectrum (6) is tangent to the Planck law is also given by (7) but with a different value of the
proportionality constant.

The continuous kinetic equation was discretized by solving for the action at N uniformly
spaced frequencies, with grid spacing A, and by using a trapezoidal rule to evaluate the integrals on
the right of (1). One merit of the method of discretization is that the equilibrium solution of (8} is
again the Planck spectrum (2). In addition, a source for injecting energy and a sink for removing

energy were added to equation (1) to obtain:
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In order to obtain (8) we introduced the dimensionless time, temperature, flux, action, and spectral

density
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where the characteristic action "I" is kg T/N A in the classical limit (T /N > 1) and I = # in the
quantum limit T /N<< 1(in equation 8 we have displayed the case I =#). The mode numbers
for the source and sink have been denoted by ko and kg, and @ =@ /A . In discretizing (1), o is
replaced by Aj and I;=I(jA). In expression (8) and in the figures the bars have been
dropped. In expression (8) the energy flux is supplied to just one mode and similarly removed,
However, as we demonstrate later, energy can be supplied and removed over a distribution of
modes as long as the input energy is equal to the output energy when a steady state is achieved. In

references 12 and 13 the removal of energy was accomplished with dissipative terms.



Expression (8) was implemented on an Alliant FX-80 and solved for N=1,000. The
equilibrium Planck distribution was used as the initial condition. The initial bath temperature T
was controlled to access the classical, strong quantum, and the nonlinear quantumn regimes. Here,
the classical region is defined as that region where in equilibrium all 1000 modes follow a
Rayleigh-Jeans type of distribution; in the strong quantum regime most of the 1000 modes follow
Wein's Law in equilibrium; in the non-linear quantum regime neither of the two aforementioned
distributions holds true, a Planck distribution must be used in the equilibrium case.

Figure 1 depicts the time evolution of the classical spectrum from a Rayleigh-Jeans
distribution to a steady state spectral energy distribution following a -3/2 power law in the inertial
regime. Figure 1 is a log-log plot of the energy per unit volume per unit frequency as a function of
frequency for 9 different time steps starting from t=0 to t=10-12 where a steady-state is achieved.
An initial bath temperature of 2000 was selected to access the classical regime across all 1000
modes. A flux of 1024 was supplied over a Gaussian distribution of modes centered at ®w=3 and
subsequently removed over modes greater than 300 in such a manner so as to preserve the initial
temperature of the Rayleigh-Jeans distribution at high frequencies. This is accomplished by
increasing the output flux gg in (8) (starting with g = 0 at t = 0) after each time step until a steady
state is achieved in which g = q5. Energy was injected over a Gaussian distribution of modes so
as to couple the energy smoothly from low to high frequencies. Supplying energy to just one
mode results in a forward "hopping” of energy among the harmonics of the system. The steady-
state spectrum in Figure 1 can be divided up into three regions: the region where energy is supplied
or source, the inertial region, and a sink where energy is removed. The spectrum follows a -3/2
power in the inertial region between ®w=10 and =100 before curving around and meeting the
initial equilibrium solution. The -3/2 power law is achieved to three digits accuracy, and the
Kolmogorov constant for acoustic turbulence "A" is found to be approximately 0.15. As the bath
temperature is increased beyond 2000, the numerically calculated coefficient approaches the

analytic value of A givenin (5).



Although a forward cascade of energy is preferred in the strong classical regime, it is
possible to inject energy at a high frequency and remove it from a low frequency. The maximum
flux which can cascade in the reverse direction is down by a factor of 107 from the forward flux.

As an example of how to recover the physical variables we take p = 1. g/cc, ¢ = 104
cmy/sec, A = 106 Hz so that T =20. mK. Then a dimensionless time of order 10-13 corresponds to
areal time of 104 s and flux of order 1024 corresponds to a Mach number of order 106, For a real
system N can be much larger, but we claim that the qualitative insights obtained here with N =
1,000 will remain valid.

The time evolution of the quantum spectrum from a Planck distribution to a steady state
spectral energy distribution following a steep —6 power of the frequency is shown in Figure 2.
Unlike the classical case, a reverse cascade of energy is preferred. Energy is injected and removed
over a Gaussian distribution of modes centered at ® = 800 and o = 10 respectively. The bath T =
1.5, and the flux is 1000. Similar to Figure 1, Figure 2 illustrates seven logarithmically spaced
time-steps starting from t=0 and ending at t=10-3 where a steady-state is achieved. The power
law in the inertial regime, located between ® = 700 and w = 40, comresponds to w6 (w9 for
action I}, and the numerically computed constant is the same as a, in expression (6) to three digits.
Although a reverse cascade 1s strongly favored, a negligible amount of energy cascades forward of
the source to higher frequencies. The quadratic terms in the kinetic equation are responsible for
this small forward cascade of energy.

In the nonlinear quantum regime ( q 2 q¢ ) neither the linear nor quadratic terms can be
neglected. This is the transitional region between classical and quantum mechanics. The specttum
in this regime is neither self-similar nor close to equilibrium. Thus, our only means of
investigating the response in this region is numerical.

In this regard consider the case where energy is injected at small @ and removed at @p. As
q is increased, the value q = q¢ = 60T is eventually reached. At this value the off-equilibrium
spectrum follows the -3/2 power law at low ® and then turns up so as to become tangent to the

Planck spectral peak as shown in Figure 4, plot A (for this plot q = 6 x 1019 = g¢ and T = 100 and



energy is supplied over a Gaussian distribution centered at @ = 4). It is important to mention that
even if energy were removed at frequencies higher than wp, the steady state spectrum would have
the same form (e.g. Figure 4, plot A or Figure 1) provided of course that g £ q.. Also shown in
figure 4 (plot B) is the case where g = 5 x 1020 > q; the dynamical spectrum following a -3/2
power law and then curves down to meet the Planck spectrum at op.

Above the critical flux the steady state spectral density is dramatically altered when the
sink(s) are situated above @p. As shown in figure 3, the classical cascade carries past the Planck
maximum and then turns down with a slope steeper than Wien's law so as to meet the Planck
spectrum in the quantum domain. This figure was generated for g = 1017 > q¢ and T = 35 where
the energy is input over a Gaussian distribution of modes centered at ® = 3 and removed at modes
greater than 300. For q > q¢ a new spectrum also appears in the reverse cascade. In this case a -6
power law becomes concave downward before joining the Planck distribution as shown in Figure
5 (also indicated is the presence of a small bottleneck of energy at the high frequency source).

The physics of far off-equilibrium waves (phonons) differs from the physics of vortex
flows (turbulence) in that there exits a kinetic (Boltzmann type) equation for the development of the
spectral density 6. Furthermore, this kinetic equation can be written down in a form that spans
both classical and quantum mechanics. In this paper we have studied this kinetic equation and
demonstrated the classical and quantum forward and reverse cascades of energy along with the
dynamical approaches to the steady state spectra. Agreement between the calculated and simulated
Kolmogorov constants for acoustic turbulence has been demonstrated. In addition, we have found
a new spectrum at the interface of classical and quantum mechanics which represents a direct

nonlinear transport of energy from the classical source to quantum sink.
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FIGURE CAPTIONS

Figure 1. Time evolution of the classical wave turbulent spectrum from an initial
Rayleigh-Jeans distribution with T=2000 to a steady-state spectral density that follows a -3/2
power law. An energy flux of 1024 is injected over a Gaussian distribution of modes centered

around ®=3 and removed over a distribution of modes greater than 300,

Figure 2. Time evolution of the quantum wave turbulent spectrum from an initial
Planck distribution with T=1.5 to a steady-state spectral density that follows a -6 power law. An
energy flux of 1000 is injected over a Gaussian distribution of modes centered around ®w=800 and
removed over a Gaussian distribution of modes centered at =10,

Figure 3. Forward cascade of energy from the classical regime to the quantum
regime for q > q¢. An energy flux = 1017 is input over a Gaussian distribution of modes
centered at =3 and removed over modes greater than @=300. The spectrum follows a -3/2 power
law which then turns down with a slope steeper than Wien's law so as to meet the initial Planck
distribution with T=35,

Figure 4. Forward cascade of energy from the classical regime to nonlinear
quantum regime for q=q. and q > q¢. In plot A, g = 6 x 1019 = q; in plot B, q = 5 x 1020
> (c. In both A and B an energy flux is input over a Gaussian distribution of modes centered at
®=4 and removed over modes greater than wp=280. Both curves follow a -3/2 power law before
meeting the initial Planck spectrum with T=100.

Figure 5. Reverse Cascade of Energy from »=560 to ®p=28. An energy flux = 1013
is supplied over a Gaussian distribution of modes centered at ®=560 and similarly removed at
wp=28. The spectrum initially follows a -6 power law before curving around to meet the initial
Planck distribution with T=10.
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