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On the stability definition of difference approximations
for the initial boundary value problem

by
Heinz O. Kreiss and Lixin Wu

1. The continuous problem. Consider the Cauchy problem for a first order system of
linear partial differential equations with constant coefficients

o ° '
a—u=i A,'Etj—+Bu+F, —oo < z < 00,
t = oz;
(1.1)

=: Pu+F, J=12,...,8, t20,
u(z,0) = f.

For numerical purposes there is essentially only one satisfactory way to define wellposed-
ness,

Definition 1.1: The Cauchy problem is well posed if
1) For a dense set of smooth data there is a smooth solution.

2) The solutions of the homogeneous equations (F = 0) satisfy an energy estimate
() < KedE™ lu(-, t4)]]. (1.2)
Here || - || denotes the usual Lo-norm and K, a are universal constants.

Estimates for the inhomogeneous system are obtained by Duhamel’s principle. Other
definitions, like the original one by Hadamard [2] and Petrovskii [7] have the disadvantage
that they are not stable against lower order perturbations. This is essential, if one wants
to localize the problem and use the principle of frozen coefficients. In fact, for systems
with constant coefficients Yamaguti and Kasahara [11] have shown that our definition is
the weakest definition, which is stable against lower order perturbations.

Let us now consider (1.1) in the halfplane R_ defined by z; > 0,—00 < z; < o0, j=

2,...,8. X,

~
W

Fig. 1.1



Then we have to augment (1.1) by boundary conditions consisting, for example, of
linear relations between the components of u

Su =g, zy = 0. (1.3)

By a suitable change of variables we can always make the boundary conditions homoge-
neous.

Therefore we can use Definition 1.1 also for the halfplane problem. || - || now denotes
the Ly-norm over the halfplane and the estimate (1.2) is required to hold for the case
F=g=0. :

The definition is very satisfactory for symmetric hyperbolic systems with boundary
conditions of Friedrich’s type. In this case one can derive the energy estimates by inte-
gration by parts. For more general boundary conditions and non-symmetric hyperbolic
systems another approach has turned out to be more powerful. We have the

Lopatinsky condition. Consider (1.1)-(1.3) with F = g = 0. The initial boundary value
problem is not well posed, if we can find a sequence of solutions of type

u(z, 1) = e <o >0 (7)), ltso“>i12=f oW Pdz; =1,  (1.4)
0

with Real;—, ,8(Y) = co. Here z_ = (z3,...,2,) and wt = (wé’.), ...,wﬂ")) are constant
real vectors and s¥) are complex numbers.

To find necessary algebraic conditions for the problem to be well posed we introduce
(1.4) into the homogeneous equations (1.1)—(1.3) and obtain the eigenvalue problem

(8 - P(iw-,a/az))go = 0,
Sp=0, || <oo.

(1.5)

Thus we can phrase Theorem 1.1 in the form
Theoerem 1.1: A necessary condition for wellposedness is that there is a real constant
no such that (1.5) has no eigenvalues with Real s > ng.

R. Hersch [3] has shown that one can solve the initial boundary value problem, if there
is no eigenvalue with Real 8 > ny. Without restriction we can assume that the initial data
are homogeneous, i.e.,

u(z,0) = 0. (1.6)

Otherwise we introduce a new dependent variable by w = u — e™* f(z). Let u be a smooth
solution of the initial boundary value problem with sup, e=7°%|u(-,t)|| < oo and denote by

o0
i(z;,8,w_) m/ /Re'('t'*"'(“""">)u(a:,t)dz_dt, n > no, (1.7)
0
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its Fourier-Laplace transform with respect to z_ and ¢. It satisfies

(s ~ P(w-,8/8z;))a = F, Real s > no, (1.8)

S4(0,s,w-) = 4§, (-, 8,w-)|| < o0. '
Conversely, if there are no eigenvalues with Real s > o, then one can solve {1.8) and
obtains a solution of the initial boundary value by inverting the transform. One can also
estimate the solution in terms of F,g. However, in general there is a loss of derivatives and
the estimate is not stable with respect to lower order terms, i.e., one can change B in (1.1)
such that the eigenvalue condition ceases to be fulfilled. Therefore one has to strengthen
the eigenvalue condition. H. Kreiss [4], R. Sakamoto [9] have required that for > ng the
solutions of (1.8) satisfy an estimate of type

120, 8,w-) + (n = mo)?[la(-, 8,0 ) < K (1§ + 1P (-, 8,w-) %) (1.9)

Here 1o, K are universal constants, which do not depend on g, F, s,w_. For a large class of
hyperbolic problems (which includes strictly hyperbolic systems) a rather complete theory
has been developed (see also M.S. Agronovich [1]).

In particular one has proved

Theorem 1.1: Consider the eigenvalue problem (1.5) with B = 0. The estimate (1.9) is
valid if and only if there are no eigenvalues or generalized eigenvalues for Real s > 0.

Also, J. Rauch [8] has shown that (1.9) implies wellposedness according to Definition
1.1.

Unfortunately, (1.9) is more restrictive than the estimate of Definition 1.1. Consider,
for example, the wave equation

Uzt = Ugg + Uyy

written as a first order system

u f-=1 0\ fu c 1 7
()= ) 6).+(a) (),
with boundary conditions
u=v-+g.

Its solutions do not satisfy the estimate (1.9}, but for ¢ = F = 0 they satisfy the estimate
(1.2).
We will weaken (1.9) to the resolvent condition

Definition 1.2: Assume that g = 0. We say that the solutions of (1.8) satisfy the resolvent
condition, if there are constants K and no such that

(7 — no)ll(- 8,w- )| < K| F(:8,0-)])- (1.10)



The inverted Fourier-Laplace transform shows that (1.10) is equivalent with

(7 — no) /Om e~ |lu(- t)|[*dt

roo (1.11)
< Kj | F(C )P, 0> o,
0

and we define

Definition 1.8: Consider the initial boundary value problem (1.1)-(1.3) with f = g = 0.
We say that it is well posed in a generalized sense, if for a dense set of smooth F there is
a smooth solution, which satisfies the estimate (1.11}.

There are no dificulties to prove that the definition is stable against lower order
perturbations. Thus we can treat systems with variable coefficients. Also problems in
general domains can be reduced to halfplane problems.

One can also express (1.10) as an eigenvalue condition. We allow certain eigenvalues
or generalized eigenvalues with Real s = 0. Definition 1.3 is not more restrictive than
Definition 1.1, i.e., if the estimate (1.1) holds, then {1.11) follows. We conjecture that the
definitions are equivalent. We conjecture also that Definition 1.3 is the weakest definition,
which is stable against lower order perturbations.

2. Semidiscrete approximations. In this section we will discretize the space derivatives
tut keep time continuous. We will explain our results with help of an example. For
simplicity we consider (1.1) in two space dimensions and assume that B = 0. We begin
with the Cauchy problem. Let h > 0 be the mesh size and introduce gridpoints by

z, = h(vy,12), vy =0,%1,42,....
Ly A

¥

Fig. 2.1

We introduce also the translation operators E; by

Eif(z1,22) = f(2z1 + hy22),  Eaf(z1,22) = f(z1, 22 + h).



Then the usual backward, forward and centered approximations of 8/8z; can be written

— = (A1Do1 + Az Dg2)v, + F,,
v,.(0) = f..

Corresponding to Section 1 there is only one satisfactory way to define the stability of
(2.1). We introduce a discrete Lg-scalar product and norm

(2.1)

(v,w)p = Z < v,,w, > h3, lol2 = (v,v)s,

and define
Definition 2.1: Consider (2.1) with F = 0. We call the approximation stable if there are
universal constants &, K, such that

oG 8)[ln < Ke2E=1) o, t1) |l

If A;, A; are symmetric matices, then summation by parts gives us
Ll <o (22
dt -

and stability follows. (K =1, & =0).
In general, if (2.2} holds for a difference approximation, then we say that it satisfies
an energy estimate.

Now we consider the halfplane problem. In this case we use (2.1) for z; > 0 and
determine v for z; = 0 by boundary conditions

Lv=g, LiDiv=0, z,=0. (2.3)

Here we have augmented the boundary conditions (1.3} by extrapolation conditions con-
sisting of linear relations between the components of Df v. We assume that we can use
(2.3) to express v(0, z2,t) in terms of ¢ and v in interior points z; > 0.

Now we define the discrete Lo-scalar product and norm by summing over all interior
gridpoints z; > 0.

As in Section 1 there is an eigenvalue problem connected with the halfplane problem.

8t = (A; Doy +A2Dog)t‘t, z; >0,

(2.4)
Lé=0, LiD%6=0, z; =0.
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All the definitions and theorems in Section 1 have counterparts for the semidiscrete prob-
lem. For example, if we consider {2.1},(2.3) with F = g = 0, then we can use Definition 2.1
to define stability. Recently Lixin Wu [6] has proved the semidiscrete version of J. Rauch’s
result.

Theorem 2.1: Assume that the difference approximation satisfies an energy estimate for
the Cauchy problem. If the eigenvalue problem (2.4) has no eigenvalues or generalized
eigenvalues for Real s > 0, then the approximation is stable, according to Definition 2.1
for the initial boundary value problem.

As in Section 1 the eigenvalue condition can be too restrictive. For a detailed discus-
sion we refer to N. Trefethen [10]. Corresponding to Section 1 we will therefore introduce
the concept of Stability in a generalized sense. We assume that g = f = 0. Then we can use
the boundary conditions (2.3) to eliminate v({0,z;,t) from (2.1) and obtain an (infinite)
system of ordinary differential equations

dv
"-EE- = QV + F,
v(0) =0.

(2.5)

Here v consists of v in the interior gridpoints z; > 0. (In actual calculations the system is
finite dimensional because more boundary conditions are added to restrict the computa-

tional domain.}
We define

Definition 2.2: We call the approximation (2.5) stable in a generalized sense, if there are
constants K, no such that for all F with e ||F||Z < oo and all0 < h < hg, 3> 70

(n = o) ] T envidt < K j " e |2, (2.6)

We can Laplace transform (2.5) and obtain the resolvent equation
(s] — Q)% =F. (2.7)
By Parseval’s relation, (2.6) is equivalent with the resolvent condition

(7 — no)[¥lln < K||Flln, 7 >mno
ie.,

(7 = @) ln < (2.8)

n—no

Fourier transforming the resolvent equation with respect to y we obtain for our example

(s — Ay Doy + is‘“}‘:”h,;z)a =F, 2 >0,
e (2.9)
Lo =0, LD%6=0, z, =0.
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(2.9) is a system of ordinary difference equations with constant coefficients, which can be
solved explicitly. Therefore we can, at least in principle, decide whether the estimate (2.8)
holds.

It is now also clear how to proceed for more general approximations. We can always
write the semidiserete approximation in the form (255}; Then we define the stabilitv by

B e i 2 @A Rt_0ELe) 0 aas 222 Sroraasy Y

{2.6), which leads to the resolvent condition (2.8).

3. Runge-Kutta methods. We consider now the system of ordinary differential equa-
tions (2.5} and want to solve it numerically by using a method of Runge-Kutta type.
Therefore we introduce a timestep k and discretize time. We assume that Q does not
depend on ¢. In this case the methods of Runge-Kutta type are of the form

v(t + k) = L(kQ)v(t) + kG, (3.1)

v(0) =0,
where . ‘
P
L=Y a,49r (3.2)
F=0 J:
is a polynomial in kQ. (For simplicity of notation we write v instead of v and || - || instead
of ||+ ||».) In particular, if the method is accurate of order p, then
aomalz---zap...—._l
and for the standard Runge-Kutta methods of order p < 4 we have
P 5 :
L= -—----(k?) , p<a4 (3.3)
=0 ¥

As in the semidiscrete case we can again distinguish between different stability definitions.
In particular, Lixin Wu [6] has generalized his results to totally discretized schemes. Here
we shall restrict ourselves to stability in a generalized sense.

In the theory for numerical methods for ordinary differential equations one applies
the method to the scalar differential equation

y =y, A = const. (3.4)

Then (3.1) becomes
v(t + k) = L(Ak)v(t), (3.5)

and one denotes by
01 : (the set of all complex g = kX with |L]| < 1).
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Clearly {1 is an open set.

Fig. 3.1

Definition 3.1: The method is called locally stable, if there is an Ry > 0 such that the

open halfcircle
L(Ry) =: {p with |u| < Ry, Real u < 0}

‘ is contained in 1.

In an earlier paper [5] locally stable Runge-Kutta methods have been discussed. For
p = 3,4 the standard methods are locally stable while for p = 1,2, they are not. Most
of the higher order methods are not locally stable. An exception is the new fifth order
method of Dormand-Prince. _

Let us now apply the methods to systems and denote by kr the eigenvalues of kQ.
It is often argued that we need only to choose k so small that kr € (1. For our purposes,
where the system is infinite or for k — 0 becomes infinite, such an argument is not correct.
Consider, for example, the differential equation

u; = —uz; + F, 0<z<1l t=0,

with boundary conditions
u(0,t) = 0,

and approximate it by the upwind scheme

ozt + K) =v(@rt) = 3 (0lEr) = v(z0-1,),

z, =vh, v=0,1,2,...,N, Nh=1,

with boundary condition

v(0,t) = 0.
We can write the system in matrix form
k
1 -,; Y
r 0
v(t+k) = v(1).
o . .
k k
m 1-%



The eigenvalue condition is satisfied for
k/h <2.

However, we know from Fourier analysis that the method is not stable for k/h > 1.

Instead we will again define stability in such a way that it is equivalent with a resolvent
condition. To derive the resolvent condition we need to Laplace transform (3.1). For that
reason we define the solution of (3.1) for all ¢t by the following procedure. G{t) is a
polynomial in F and we can assume that G(t) is defined for all t, {Otherwise we define
G(t) = G(vk) for vk <t < (v + 1}k.} Also, we define

v{t)=0 for 0<t<k

Then v(t) is defined for all ¢ and we can Laplace transform (3.1).
Observing that

/ e”*v(t + k)dt m[ e t-Fy(t)dt = e"‘[ e”**v(t)dt
0 0 0
the transformed equation (3.1) becomes
(21 - L(kQ))p = kG, z=e% s=it+n. (3.6)

Corresponding to Definition 2.2 we have

Definition 8.2: We call the approximation (3.1} stable in a generalized sense for a se-
quence k — 0, h — 0, if there are constants K,no such that for all G with e~ "*||G||? < o0,
all k,h and all n > ng

(= no)? / e=2t||y|2dt < K j e 20| G 2dt.
‘ 1] . 0

Parseval’s relation gives us

Theorem 38.1: The approximation (3.1) is stable in a generalized sense for a sequence
k — 0, h — 0, if and only if the resolvent condition holds, i.e.,

(41 - LkQ)) ™ € s=i€+n, 1> 0. (3.7)

7 —10)’

We will now show that under very mild conditions, (3.7) follows from the resolvent
condition (2.8) of the semidiscrete approximation. '
Assume that the method is locally stable and assume that

p=ta, |a| < Ry, (see Fig.3.1)
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does not belong to {1. Then there is a real ¢ such that
L(ia) = ¢**, p real.
We make
Assumption 38.1: If u = ie, |a] < Ry, is a solution of
L(u) = €°, ¢ real,
then there is no other purely imaginary root u = if8, |8| < Ry, with
L(p) = ¢*.

For any consistent approximation the above condition is satisfied, if we restrict R; to be

sufficiently small, because
L) =1+ p+ 0(u?).

It is also satified, if the approximation is dissipative, i.e., p = ta, 0 < |a] < Ry, belongs
to 0.
Let 1 be a root of the above type. Consider the perturbed equation

L{z) = £p+O+n £ yreal, n>0. (3.8)

We want to show
Lemma 3.1: f{a is a simple root of L(z) = €¥. For sufficiently small |{€ + n| the corre-
sponding root of (3.8) can be expanded into a convergent Taylor series

p{i€ + 1) = fa + (i€ + n) + O(Ji€ + n}?).

Here Realu(i€ 4+ 0) > 0, and « > 0 is real and positive.
Proof: Assume that d”L{ia)/dz” =0, v =0,1,...,p — 1. For sufficiently small (i + n)
(3.8) has p roots z = sa + 1 satisfying to first approximation

(dPL(ie)/dz®)7P = (1 + i€ + 7).

If p > 1, then at least one of the roots will belong to 11, which is a contradiction. Thus
p = 1 and there is an expansion of the above form. We arrive at the same contradiction if
Real (1€ +0) < 0 for some ¢ and therefore v must be real. Observing that Real u(t£ -+ )
must be positive, it follows that 4 > 0.

We will now prove

Theorem 3.2: Assume that the Runge-Kutta method is locally stable and that the
conditions of Assumption 3.1 are satisfied. If the semi-discrete approximation is stable in
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a generalized sense, then the totally discretized approximation is stable in the same sense,
if
kQ| < R < Ry. (3.9)

Proof: We have to prove that the resolvent equation (3.6) of the totally discretized equa-

tion satisfies the estimate (3.7). For every z with |z| > 1 we can write (3.6) in the form
I(u;(2)I - kQ)0, = kG.

The roots p; do not belong to {1. There are three possibilities.
1) |u;(2)| — R > 6 > 0, é=constant. (3.9) implies

I(5(z) — kQ) ™)l < (lns(2)} — B)H < 671

Let Realpu; < 0. We know that u; does not belong to 2 and therefore there is a
constant §; > 0 such that
lui(z)]— R > 6 >0.
Thus the above inequality holds for sufficiently small § > 0.
2) Real p; > 6, > 0, & constant > 0. In this case {2.8) tells us

—

Ieste) — k@) 1 = 2H(EE @)

<—-K

F o

NS
o=

3) Realyp;(z) > 0 but for k = 0 limz = '¢, limu,;(2) = iq, a,p real, |a| < R. Let

‘P+k[i£+n)’

z=e¢e v, £,n real.

By Lemma 3.1
1i(2) = ui (i€ + 0) + vkn + O (K*(|€ln + n?)). (3.10)

Therefore by (2.8)

(2) - k < —ll{=== - < —.
H(#’J( ) Q) “ —= k”( k Q) ” — k(’? _ UO)
Now we can prove the theorem. We want to show that

1

(I — L(kQ))~*|| € const. PRt
If |z| = e"* > 2||L(kQ)]|, then

(e - £:@) ™ < (J2] - I @N) ™ < o < o

|2i
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Thus we can restrict ourselves to nk < constant. Combining the above estimates and
observing that for a given z = ¢*¥ there is at most one root u;(z) = i, we obtain

-1 -1
(1 - L(kQ)) = IIH(#:'(Z) - k@) |
< const. E-na) n - if one of the roots h
i const. otherwise.

]
[
t:r"
-~
=
o]

——
()
——

This proves the theorem,

4. Multistep methods. Instea.d of a Runge—Kutta, method we now consider a multistep
method

r

(T—kB_1Q)u(t + k) =D (o;] + kB;Q)v(t — jk) + kG(t — rk) (4.1)

=0

with real coefficients oy, §;. We want to show that stability in a generalized sense again
follows from the resolvent condition of the semi-discrete problem. The resolvent equation

becomes A
(L1(2)I — kL2 {2)Q) 0 = kG, z=¢*, s=it+n,

and we have to prove that for n > ng

const.

k(- o)’ 2

(L1 ()]~ kL2(2)Q) M| <

Here
r

L= = e, L= fa i+ Y g

Jy= j=0

We apply the method again to the scalar differential equation ¥ = Ay. Then we obtain
the characteristic equation

Ly(s) ~ ula(2) =0,  w= k.

We make the usual assumptions for a multistep method.

Assumption 4.1: The equations
Li(z) =0, ILa(2) =

have no root in common.

Za,-:l, E B;=1.

§=0 J=-1

The roots z; of Ly(z) = 0 with |z;| = 1 are simple.

12



The above assumption implies

Li1)=0, Ly(1)=1, Li(1)#0. (4.3)

As in the previous case there is an open domain {i in the compiex plane u = Ak such that

Li(z) — pLe(z) #0 for |z| > 1.
We make now the same construction as earlier, which leads to

Assumption 4.2: The approximation is locally stable, i.e., there exist a Ry > 0 such that
the open halfcircle
lu] < Ry, Real u <0, belongston.

I p = ta, areal, |a] < R;, does not belong to 11, then there is a z = ¥, ¢ real,
such that . .
Li(e*®?) —dal;(e'?) =0. (4.4)

We make

Assumption 4.3: z = €% is a simple root of

Li(z) —ialy(z) =0.

* Ly(z) has only simple roots near z = 1 and therefore the last assumption holds if we
choose R; sufficiently small. Also

dR(e¥) _ La(e**) L} (%) — Ly (€0) Ly(e*)

dz Li(e'v)
_ Li(e?) — aLj(e'%)
B La(e'¥) #0

Let v, a be the solution of (4.4) and replace i by s +§€ +n, n > 0. Then z =
et gatisfies

Li(2) —uLls(2) =0

with
p(i€+n) = ia+ (i€ +n) + O(|i€ + n?).

In the same way as for Lemma 3.1 we obtain for sufficiently small |s¢ + #|

Lemma 4.1: Realu(i€ + 0) > 0 and v > 0 is real and positive.
Now we can prove

13



Theorem 4.1: Assume that the conditions of Assumptions 4.1 — 4.3 are satisfied and
that the semi-discrete approximation is stable in a generalized sense. Then the totally
discretized multistep method (4.1) is stable in the same sense, provided

1kQ| < R < Ry. (4.5)

Proof: Let z; denote the zeros of Ly(z) = 0. Clearly there is a neighbourhood |z z;],
where the estimate (4.2) holds. Therefore we can write the resolvent equation in the form

k
L,(2)

We know that R(z) does not belong to 1. There are three possibilities.
1) |R(2)| — k||Ql} = 6, é > O constant. Then

(R(z)I - kQ)o = éG.

1
|R(z)| - [|k]I"

1(R(z) = k@) <

ie.,

-1 1
Z1(2)] = kL2 (2)Q)N < R = RGO ILS ()]

and the desired estimate follows. The above inequality is satisfied, if é is sufficiently
small and Real R(z) < 0, because R(z) € 0. 1t is also satisfied, if f—; = 0 and |z]
sufficiently large.

2) Real R(z) > 6 > 0. By (2.8)

IR - k) =k (BE - o) < KR = K
Thus K
-1
”(Ll(z)‘[bkLz(z)Q) “ S 6[L2(Z)1,

and the desired estimate follows.

3) Real R(z} > 0 but lim,~,, R(z) = ia, 20 = €¢'P, a,p real, |a] < R. Let z =
geti¢+tn)k By Lemma 4.1

R(2) = u(i€ + n) = sa + k(i€ + n) + O(K?|i€ + n?),
Real B(z) > vkn + O([¢ln + 7?).

Therefore
const. 1

N k{n—no)’

I(R(2)I - k@) || <

and the desired estimate is again valid.
This proves the theorem.
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