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ABSTRACT. ]

We will show that, for semi-discrete approximations and two-step totally
discretized approximations to the initial-boundary value problems of linear hy-
perbolic equations, Kreiss’ conditionis a sufficient condition for the semigroup
stability (or Iy stability). This result proves that the semigroup stability is
contained by the sirong stability used in the well-known GKS theory for the
difference approximations. )

1. INTRODUCTION

Consider the foliowing first order one dimensional hyperbolic equations

du du
1 e = A
{1) 5 Aam +Cu+F
in the quarter plane Q = {(z,t) | z,t > 0}. Here u{z,t) = (u(D{(z,1),... ,u®) (e, 1))
and F = (F(x,1),..., F"(z, 1)) are vector funclions, A4 and C are n x n con-
stant matrices so that A is diagonal,

A= 0 AII- s with A <0,A >0,

Al AY are I x L and (n — 1) x (n — I).diagonal matrices respectively. The solution
is uniquely determined[4][7] if we prescribe the initial conditions

@ (z,0)=f(a), >0
and the boundary conditions
(3) w'(0,8) = Sull(0,6) + g(t), t>0,

where u' and u?! are the partition of u according to that of 4, and S is.a Ix (n—1)
matrix.
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We assume the well-posedness of the above initial-boundary value problem (IBV
for short) in the following sense.

Assumption 1,1. The IBV problem (1,2,3) is well-posed in the sense:

1) For a dense set of smooth dale there is a smooth solution.
2} The solulions of the homogeneous egquations (F = () and homogeneous
boundary condition (g = 0) satisfies

(4) llu(, Bl < Ke™*|lu(-, 0)l},
where 19 and K are universal constants.

{(4) is interpreted as the stability in the semigroup sense. Note that |} - || is the
usual L? norm in the half space. For the solutions of inhomogeneous equations, the
estimates can be obtained by Duhamel’s principle. The theory of well-posedness
for the continuons IBV problems is well developed. Readers can find results from
[11{4][7][12] and other sources, we will simply not get into it in this paper.

The definition of stability in the semigroup sense (4) will also be used for later the
difference approximations to (1,2,3). We will show that, for semi-discrete approx-
imations and two-step totally discretized approximations to the initial-boundary
value problems of linear hyperholic equations, Krelss’ condition is a sufficient con-
dition for the semigroup stability (or I, stability). This result proves that the
semigroup stability is contained by the strong stability used in the well-known
GKS theory for the difference approximations. For the semigroup stability of the
semi-discrete approximations, our theory is perhaps unique. For totally discretized
approximations, our results overwrite and generalize the other two classical theories
by Kreiss[5}[6] and Osher[11].

2. SEMI-DISCRETE APPROXIMATIONS

2.1. Prerequisite. The methods of line are nowadays very popular methods to
solve for the approximate solutions of hyperbolic equations. The first step of the
methods 1s spatial discretizations, which result in consistent ordinary differential
equations or what are called the semi-discrete approximations, and the second step
is the employment of standard numerical methods for selving ordinary differential
equations. In this section we will study the well-posedness of the semi-discrete
approximations only. For that purpose, we introduce a mesh with size h = Az >
0, and, with the notation u,(f) ~ u{rh,t), approximate the equations (1) by a
consistent semi-discrete scheme of the form

(5) %’;ﬁl:Qup(t)JrFy(t), v=12,...

P

Q=) AF,

j=—r

where A; are linear functions of A and C. Initial conditions follow naturally from
(2), 1.,

(6) w, () =1£, p=12....
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Boundary conditions, both natural and artificial, are put in the form

N uy(t) = ZC,,jEju#(t) +g,0), p=-r+l,~-r+2,...,0

j=1

For our later reference, we call (8) the basic scheme of the semi-discrete approxi-

mation.
The solution space of the IBV problem (5,6,7) is I*™(1, co), which is defined by

PA(—M, N)= {u= {0;}0y,u; € C" | ||ul|-p,x < 0}

where the norm comes from the associated inner product

N
(w,v)_py N = Zu},f'jh
M

thus

(2 my = (W,u) 3N
For the sake of convenience, the indices of the norm and inner product of 1% (1, oo)
will be omitted. And we write I2(—M, N) for I*1{~ M, N).

To the well-posedness of the semi-discrete problems, the solvability is never a
problern as we can always obtain the formal solutions. The stability of the problems,
therefore, becomes our main concern. Naturally we will only be interested in those
special discretizations which result in stable semi-discrete approximadtions for the
corresponding Cauchy problems.

Assumption 2.1. The operaior Q) for the Cauchy problem of the semi-discrele
equation (5} is semi-bounded, i.c, there exists a real constant o such that

(1, @u)—00,00 + (QU) U} —co 00 < 200(2, U)—co,00-
The imnmediate consequence of semi-boundedness of @ is, with F = 0,
()l -c0,00 £ e {[u(0)]|-co,c0

In the prospect of the convergence of the approximate solutions to the exact
solutions, we also define the stability for the semi-discrete problems in the semigroup
sense as that used for the continuous problems.

Definition 2.1. The discrele problem (5,6,7) is stable if the solutions of the homo-
geneous equations (F = 0} with homogeneous boundary conditions (g = 0) satisfy
an enerqy estimate

[lu(, I < Ke™|ul:, 0)]],

where ny, K are universal constants.

The estimate for inhomogeneous equations can be obtained with Duhamel’s prin-
ciple,

[u(- DIl < Kﬁ"“(flu(-,o)ﬂ»*]nt (-, 7ild7).

Next we will introduce the major results of the semi-discrete version of the
classical GKS theory[13]. upon which our theory will be based. In the GKS-theory,
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the following stability definition, which is named the stability in the strong sense,
is adapted:

Definition 2.2. The discrete problem (5,6,7) is stable if for n > ng, the solutions
of the problems with homogencous initial value (f = () satisfy

Jo (w0, )3 + (9 — no)llu(-, O)||%)e~ 2 dt

(8 . <K [Z(lgl% + n-}no 1 F(-,2)|[%)e 2 dt,

where 1p, K ere universal constants.

The terms with index B are boundary norms defined by

—r+1

(9) s = 3 Il o= ).
i=0

{1

The necessary and sufficient condition for the strong stability is determined by
_an eigenvalue problem, which is obtained by taking the Laplace transform on the
homogenized equations of (5,6,7):

(10) siy=Qb,,  Re(s)20, v=12,...
Uy = 27 Cujlipyy, p=-r+1,—r+2,...,0.

The eigenvalues and generalized eigenvalnes of (10) are defined below.

Definition 2.3. Let C = 0. 5 is an eigenvalue if it salisfies the following cond:i-
tions:

1) (sI-Qua=0,

(2) Re(s) >0,

(3) &y = Zﬁ:lcpjﬂwj: p=-r+l,-r+2,...,0,

(4) when Re(s) >0, |||z < oo.
5 is a generalized eigenvalue if condition 1,2 and 8 are satisfied, and condition 4 is
replaced with

(4) when Re(s) = 0, %(s) = lim.o (s + €), where Re(e) > 0 and u;(s+€)

satisfies (1) with s replaced by s+ ¢.

We can now state

Theorem 2.1 (Strikwerda). The approzimations (5,6,7) is slable according to
Definition 2.2 if and only if (10} has no eigenvalue nor generalized eigenvalue on
the half plane Re(s) > 0.

The eigenvalue condition in the above theorém is usnally referred as the Kreiss’
condition. Sometimes it is more convenient to use the following interpretation of
the Kreiss condition[13].

Lemma 2.1 (Strikwerda). For the semi-discrete approzimations, Kreiss condi-
tion i3 equivalent to thal, if F=0,f= 0,

(11) litlp < Klgls-
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There are certain assumptions in the (GKS theory which have to be imposed in
this paper as well. In fact, we have found no semi-discrete approximation which is
an exception to these assumptions.

Assumption 2.2. The basic scheme (5) is either dissipative or nondissipaiive, i.e,
the reots of the characleristic equation

P
(12) o det]sT-Q(i€) =0, QiE)= ) Ayete
j=-r
satisfy either
Re(sy <0, 0<lf|<m,

or

RB(S) =0, |E| <

Finally in this section . we claim that we can reduce our stability study to scalar
problems. The definition of stability in the semigroup sense has the property that
it is stable against lower order perturbations. More specifically, with Duhamel’s
principle and the Gronwall’s inequality, we can show(see {9} for instance)

Lemma 2.2. Suppose the solution of infinile system

du
Fria

salisfies energy estimale
lu()]l < Ke™*||u(0)]].

Let H be any bounded linear operator with

17| < 8,
then the solution of the perturbed sysiem

dw
- =@+ Hw

salisfies
()] < Ke'||lw(, 0)ll, v=no+Kp

Thus, lower order terms play no role in stability analysis and hence they will be
laid off from our discussions. Once all lower order terms are ignored, the equations
become decoupled (except the boundary conditions). Under such circumstance, all
our discussions and assertions on a single scalar equation are formally the same as
those on a system of equations. For the sake of simplicity, we will proceed with a
single equation in subsequent sections, and indicate results for systems of equations
accordingly.
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2.2, Kreiss’ Condition and the Semigroup Stability. Our fundamental tech-
nique here is to construct a set of special boundary conditions to form an auxiliary
problem whose solution at every line # = ; can be bounded in terms of the initial
values,

o0
/ e~ 20ty ()|2dt < o (0N, F=1,2,...,
0

where ¢; depends on j only, and then subiract that auxiliary problem from the
original one, (5,6,7). In this way the original problems with inhomogeneous initial
data are reduced to the problems with inhomogeneous boundary conditions but
homogeneous initial data. Then, Lemma 2.1 and energy estimates will lead to our
results.

As we have explained previously, we only need to consider the scalar problem

229 = Qui(t),

1 =1,2,...
(13) UJ(O):fJ, J | Bt | 1
B‘Mo(t) = 0,
where
SR _
Q= S auE, with e, # 0,0, # 0,
j=—r

is the difference approximation to a-é%, and the operator B represents a set of
boundary conditions of the form '

g
ue(t) =D Bujtiprs,  —r+1<p<0,
j:l

which make @ well-defined in 1*(1, c0).
For later discussions we define a one-to-one mapping I : I*(1, 00) — {2(~00, 00}

by
(Tu); = Uj _7':1,2,...,
6 <0

Recalling Assumption 2.1 we know that for any u € 1*(~c0, 00},
Re(u, Qu)—oo,c0 < Doltt, ¥) o0 00,
from which we have

Theorem 2.2. There exists boundary operaior By such that for all u € 12(1,00)
satisfying Boug(t) = 0 the following inequalily holds

Re(u, Qu) < nolu,u) — Z lug |2

j=1
Proor: We translate the boundary conditions, which are not yet determined,
into a single vector u® € I*(—co0, 00),

(u*(¥); = {Ug(t) for —r +1<j <0,

0 others.
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Then, the inner products in [?(1,00) can be expressed by that in I*(—oc0, co):
(,Qu) = (1, Qs +u"))-co00
(1, QI) oo 00 + (T2, Q) — 6 00 -
So we have, after taking the real parts of each term,
Re(u,Qu) < nolu, u) + Re(Tu, Qu)_ 05 0

= 7o(u, u) + Re(u, Qu’)y »
o nn(u,u)—l-Re{U*QlUb},

where
Ub: (u1£ Us, .. ) up ) .
Ub = (u’—r+1 }u—r+21 A :uo) 3

and 7 is a nonsingular triangular matrix

A_r Q_r41 CQ_rs2 vee a_1 aop
0 a_p Aopy1 G_rq2 s a-.
Ql — 0 0 a_p Q_rii1 Cas a_s
0 0 0 O 0 a.r
Hence if we choose
(14) Ut =—Qr'u,

then we will get
Re(u, Qu)i oo < mo(, ) - 3 Jusi™,
i=1
The boundary operator corresponding to (14) is called Bp O
With the special boundary operator By the solution of (13) satisfies

r

(15) =2t (e j S 607 [y dr = [u(0)].

i=1

If we introduce notation

oo
fwyus) = [ e 0
0

then (15) yields
(uj,u5) < (O, G=1,....rm

Next we will show that with the special boundary operator By we can obtain

estimates for any u;. Considering u;,7 = 1,...,r, as known, we treat u;,j =
r+1,...,00, as the solutions of the following system

duy

= = Qu-(t) ,

4t e —

j=r+1Lr+2,...
i (0) = fj,
Uy = Uy, 1<p<r given.



8 LIXIN WU

We split u;(1),j > r+ 1 into
u(t) = v+ () —vi(), J=r+lr+2,...,
where v;(t), j > v+ 1 satisfy
dv;
{ T EQuE ey,

v;(0) = f;,
Bg'vr = 0, '

and w;(t) =y () —v;(t), s =7+ 1,r+2,..., satisfy

dw;
{ 5t = Qu;(t), J=r+1,74+2,...

(16) w; (0) = 0,

wy, =uy—vy, 1<p<r
From Theorem 2.2 and (15) we have
(05, 9) < (O] 100 < WO, 5=r+1,...,2n

Thus we only need to éstimate wi,j =r+1,. .., 2r. Taking Laplace transform on
(16) for s = 5 + 4€ with > 79, we end up with
an { s,wj_:.ij’. J=3:_+1,T‘-|-2,...
W, =4, —9,, p=1,...,r
Its corresponding eigenvalue problem reads
(18) sy = Q‘!I)j, j=r+1,r+2,...,
(19) W, = 0, p=1,...,r

The characteristic equation of (18) is

)
{20) sh = Z ajk,

j==r

Its roots are the continuous functions of § = sh. Let ko = Kk4(s), 1 < o <1, whose
multiplicity are img = mqo{s) accordingly, be those roots of (20) lying inside the
unit circle when Re(5) > 0, then the general solution of (18) in I?(1, c0)is given by

I mg=1

W= 3 capPap(i),

a=1 A=0
--where-Pyg(j) are arbitrary polynomials-in-j with degree exactly equal to 8, and
cap are parameters determined by boundary conditions (19), which now read

I me—1

(D S0 capPapli)sh =0, p=1,...,r.

a=1 f=0
Note that the number of these roots is equal to the number of boundary conditions,

l.e,
m

E My =17,

ore=1



iy STABILITY OF DIFFERENCE SCHEMES 9

thus the number of the parameters cop is exactly the number of equations in (21).
We will show that there is only the trivial solution to (19) with a technique intro-
duced by Goldberg and Tadmor[2}.

Lemma 2.3. The eigenvalue problem (18} satisfies the Kreiss condition.

Proor: We make a special selection of FPup as

Pag(p) = 577 B! ( " ! ) .

Then (19) reads

I my—1
-1 —1-
Z ﬁr(#ﬂ )Kﬁlﬁcaﬁzof p=1...,7

ie,ifwelet v=p—1,
I ma—
ZZ caﬁ—O, yp=r—1r—2...,0
a=1 B=0 Q’

The coeflicient matrix of above system is

J = [B(k1,ma),. .., Blri, mi}],

where, for i=1,...,1,
- -1 -1
KL K} ) Ky )
K 9 K ami—1 K
Bks,mg) = l VR " by AT "
O : drmi~l
1 1 1 _
K=kKi
Let ¢ = {c1,¢3,...,¢-)7 be a vector such that
Je =1,

which means

&

{3 ousghtemm =0, 0<i<mi—1,  1Li<l,

w=0
1.e,

63' rel

= AD uhame =0, 0 <mi—1,  1<i<l

p=0

From the above relations we conclude that the polynomial

r—1
P{x) = Z curt
=0

has r roots, k;,1 < j <my— 1, 1 <i< j. As P(k) is of degree r — 1, this means
P(c)=0. So,cu =0,p=1,...,r — 1. Hence we know that the coefficient matrix
J must be nongingular, and the Kreiss condition is thus satisfied O
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According to Lemma 2.1, we can estimate the solution of (17) in terms of the
boundary data,

.
;] < const.d fd,l, j=r+lr42,..
n=t

Hence, for j=r+1,...,2r,

IA

|4i; |+ |91

< const.Z(['ﬁiif + |4;1).

i=%

|41

With Parseval equality, these inequalities lead us to the desired estimates
{(uj,uj) < c_.,-”u(O)Hz, Jj=r+1,...,2r
The approach used to derive the estimates of {u;, ﬁ_.;),j =r+1,...,2r, can be
used inductively to derive the estimates of all (u;,u;). Hence, we arrive at
Lemma 2.4. For scheme (13) with special boundary condition By we have
(w5, w) < s u(OIP, 521,
where c; depends on j only.

Now we can formulate our major result about the semigroup stability of {(13) in
terms of the eigenvalue problem:

{ sit; = Qiy, j>1,

(22) Big = 0.

Theovem 2.3. If @ is semi-bounded for the Cauchy problem and the eigenvalue
problem (22 ) satisfies the Kreiss condilion, then the IBV problem (13) is stable in
the semigroup sense.

Proor: Let v denote the solution of
du ;{1
248 = Quy(1),

(23) v (0) = J;
B‘Ug(t) = 0.

i=1,9...,

From Lemma 2.4 we have
A (w5, v5) < i), 52> 1.
Punction w = u — v satisfies

dw;(t) ’
+ - Qw-(t): .
(24) wjd((]):(]? ! i=1,2,...
Buy(t) = —Bug(t).

Laplace transform on the above equation gives us

Slbj = Qﬁ\";: .7 > 1}
(25) {ha=am
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The Kreiss condition implies that the solution at the boundary can be estimated
in terms of the data, i.e, for any integer p, there are consiants c;,, ¢p such that

r Iy P
[0)h, =D lwi|? < &, > (Bio)i P < ep 3 15517
j=1 je=1

i=1

Hence,

<0 oo T
/ €72 e(8)|}, df < cp/ g™ 200t z lo; ()] *dt < const.||u(0)]?.
0 P

i=1

Because
d(w, w)
dt

for some p, we therefore obtain

lw(@)* < const.e®*|lu(0)||?,

= 2(w, Qw) < 2no(w, w) + const.|w|h

and finally arrive at
el < (Ol + ()il <. const.e™|u(0)]|2.

The result is hence proved [
The corresponding result for system of schemes follows.

Theorem 2.4. If ¢} is semi-bounded for Cauchy problem, then the IBV problem
(5,6,7) is stable in the semigroup sense if the Kreiss condition is satisfied.

The previous results ean be generalized to symmetric mulfi-dimensional hyper-
bolic equations. It is not hard to see, with the availability of the GKS theory for
the difference approximations of multi-dimensional hyperbolic problems by Michal-
son{10], the derivation of the similar results can be proceeded parallelly, in no need
of extra efforts,

3. Two-sTEP TOTALLY IISCRETIZED APPROXIMATIONS

3.1. Prerequisite. Now we consider the stability of the totally discretized ap-
proximations of the initial boundary value problems (1,2,3). Beside the space mesh
with size h = Az > 0, we define time step & = At > 0, and, with the notation
u} =~ u{vh,nk), approximate the equations by a consistent two-step scheme of the
form

(26} wt Qe £ 4F, v=1,2,...,
P
Qo= Y, AE, Bu,=u,y,
=

where the n X n matrices A; are polynomials in A and k(' and the n-vector f‘,,(t)
1s a smooth function of F and its derivatives. For later reference we call (26) a basic
scheme for the totally discretized approximation. To solve it uniquely in the half
space, we must specify the initial values

(27) u?':i?f7 'V=112)"'J
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and boundary conditions
(28) uz: #u?+gﬁ! ’JIWT—}-I,—T—FQ,...;U,
where .
j=0
It is natural to require that all schemes considered here be stable in the semigroup

sense for pure Cauchy problems, i.e, we need

Assumption 3.1, For any two-level scheme (26), there is a CFL number Ao > 0
such that when 0 < X < Ay, the solution of the corresponding Cauchy problem with

F =0 satisfies
(29) (8%, 47) —oo,c0 < €770 (1, 1) 00
for some real number no.

Remark: The solutions of a multistep scheme, which is stable in any sense, in
general does not satisfy.{29). This is why our discussion is limited on two-step
methods. :

Still, the semigroup stability is the definition of stability for the totally discretized
schemes.

Definition 3.1. The discrete problems (26,27,28) is stable if, with homogenized
equations (F = 0) and the homogenized boundary conditions (g = 0), the solution
satisfies an energy eslimale

"Il < Be™loll],  t=nk
where Ny, K are universal constants.

When the problem (26,27,28) is stable, the solution of the inhomogeneous equa-
tion can be estimated with Dubamel’s principle

™} < e (Ul + 30 I 1), ¢ = nk.
: iZo
Again we need to introduce an eigenvalue problem, which is obtained by taking
the Laplace transform on the homogenized equations of (26,27,28):
(30) zi, :QDﬁ,,, z=e% p=12. ..
(31) Gy, = Sy, p=—r+1,-r+2...,0
The eigenvalues and general eigenvalues are defined as

Definition 3.2. Let C = 0. z is an eigenvalue if il salisfies the following condi-
trons:

(1) (30,31) are satisfied,

(2 12|21,

(3) when |z| > 1, |lull2 < .
z i3 a generalized eigenvalue if condition 1 and 2 are satisfied, and condition 3 is
replaced with
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(3) when |z] =1, %, (z) = limy 2 jui>1 G (w), where u,(w) salisfies (30) with
z replaced by w.
With the integration now representing the summation of the form
oo oo
/ w(t)dt = Z w(nk)k,
0 n=0
Definition 2.2, the definition of stability in strong sense, can also be used for the

totally discretized schemes. For the strong stability we have[3]

Theorem 3.1 (Gustafsson, Kreiss and Sundstrém). The approzimation
(26,27,28} 1s steble according to Definttion 2.2 if and only if eigenvalue problem
(30,31) has no eigenvalues nor generalized eigenvalues for [z| > 1.

With boundary norms (9}, the above theorem can be restated as[3]

Lemma 3.1 (Gustafsson, Kreiss and Sundstrém). For discrete approzimations,
Kreiss condition is equivalent {0 that, if F=0,f=0,

(32) ol < Klgls.

As in the semi-discrete case, certain assumptions have to be made, even we have
found no exception to these assumptions.

Assumption 3.2. The basic scheme (26) is either dissipative or nondissipative,
t.e, the roots of the characieristic equation

: . : o
(33) det| 21— Y Qalit)s™" |=0, Qo (i) = > Ajpet
. =0 j=-r

satisfy either
|z(£)|<11 0<§E|Sﬂ-s

or

|2l=1, [l<n.

For the same reasons as in the continuous and semi- discrete problems we realize
that we only need to discuss with scalar problems without lower order terms. The
same results for systems of equations with lower order terms will follow accordingly.
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3.2. Kreiss’ Condition and the Semigroup Stability. Consider the following
totally discrete scheme

2 3 1<7<c0
(34) ud = fj, =7
Buf =10
where _ :
1 & A
Qo=1I+kQ, -Q:HZa,-EJ, a_r #£0,a, # 0
j=-r

and a; are the polynomialsof A = k/h. B is a boundary operator which represents
a set of functions

g
up= Y Pujui, —reb1<p <0
j=p-tl
According to Assumption 3.1 the solution of the corresponding Cauchy problem
of (34) satisfies, for § < A < Ao,

(un’ un)—oo,oo S eZnnnk(uG, uo)—oo,oo-

Similar to the semi-discrete problem, we define

oo

(uj,u5) = 3 721 |y (nk)| k.

n=l1

In addition we define a projection operator P : I*(—00, 00) — {Z(-~00, 00) by
(Pu)j — Uj j‘:x 1,2,...,
6 F<0
There exists the analogue of Theorem 2.2 for totally discrete schemes.

Theoremn 3.2. There exists a special boundary operator By such that when B =
By, the solution of (34) on the boundary satisfy

(35) (g, ) < cp{u’,u®), —r4+1<pu<l
o Uy u

PROOF: we again interpret the boundary conditions as a vector uf € I?(—o0, co):

my [ (@), —r+1£5<0,
() “{ 0, others.

Then energy estimate proceeds as

(w0 *) = (Qou™, Qo)
= (PQo(Iv +uP), PQo(Tt™ 4 u3))—co,00
= (PQolu", PQoIu™)_co,c0 + 2Re(PQo ", PQou} ) —oo 00 + { PQou}, PQot}) - co 00
< e2ok(yn u) + 2Re(QoIu™, Qoul )1, + (Qoul, Qoul)1,r

Note that
(Qolu™); = (u"*! — Qoup);, 1<j<r.
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So we finally end up with an inequality

(un+1’un+1) S Egﬂuk(uﬂ,uﬂ)+2R€(uﬁ+1,QOU?)1’r

(36) = 2™F(y” y") 4 2k Re(unt, Qui -
If we choose the following special boundary conditions
) u? = {} —r b 2< <0
'u ) —_ iy ¥
37 U2r+1 = _“:11-“’11“,

which amounts to solving for w”, ; from

1+ Ma_rul, gy = ~(Qolu™),
then we get inequality
(un-{-l;un-}l) + Ea—ruir+1§2k < e21’,:ok(un} un)

or

e—2n0(n+1)k(un+l,yn+1) + e—2n°(n+i)kla—1‘uﬁr+112k < e—2nunk(un,un).

That means
(B pteppt, @ topr) = {ug, 1y} < (0¥, u®).
Naturally,
{(up,ue) =0, —r+2<p<0.
We name the set of boundary conditions (37} by an operator By O

Remark: There are more than one way to choose a special boundary operator.
However, the above boundary operator has the advantage that

{(Qoup);, (Qou)i), F=1,...,7

are bounded independently of A, which is used in a separated paper for discussing
the estimates when A — (.

Boundary operator By gives us the estimate of u;, and allows us to proceed to
the estimates of u; for j > 2. Consider the following problem

7 n+l _ n
wt=Qouf, 0<ngoeo 44

u” = fq, .
ul =, —r4+2<v<l.
We split v}, j > 2 as
(38) -y =] 4 (uf — o), F=2,3...
where v, j > 2 is the solution of

v;-’"'l =Qov}, 0<n<oo .
0 _ r. 322?3:"':
v = f;,

Byo? =0, —r+2<v<l.
As it is already shown in Theorem 3.2 that
(U#IUP‘)SCF(RU:UUL —r+2<p <2
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The Jast term of (38), which is denoted as w} := uf — v}(j > 2) for simplicity,

3
satisfies
witl = Qq w;-‘

3 L
w?:o, 1_233?"'1
wy =ug—vy, —r+2<p<l

The above equation can be solved by Laplace transform. Denoting the Laplace
transforms of the step functions u;,v; and w; as 4, 9; and W;, respectively, we
have for w;

Z@j:Qoﬁ?j, j:2,3,...
(39) {@ﬂzaﬁ_@#, —r+2<p<l,

where z = ¢**. By the same arguments as those used in Lemma 2.3 we can prove

Lemma 3.2. The corresponding eigenvelue problem of (39} satisfies Kreiss condi-
tion. '

Thus by Lemma 3.1 we get
1
(wj’wj) S const. Z ((u#=u#) + (v,u,v,,")) S CO"St'(uO:uD): J 2 2:
-2
and therefore

{12, uz} < const.({va,vs) + {wa, w1)) < const.(u’, u®).

Through the same approach as that for the estimate of .ug we can get esfimates
for u;,7 > 3. Hence we obtain

Lemma 3.3. For equation (34) with special boundary operator By, we have
(40) {uj,u5) S cs(u,u®), 21
where ¢; depends on § only.
For (34) with general boundary conditions, we split its solution into
| uf = v} +(uf —~v7), i=12,...,

where o7, j > 1, is the solution of (34) with the special boundary condition Byvf =
0, thus

(41) (v5,0;) < (u%,0%), §=1,
and the last term of above equation, again denoted by w}, satisfies

w}""l =Qowi, 0<n<coo
w_,? =0
Buwp = ~Bug.

i=12,...,

Now we can prove

Theorem 3.3. Under Assumplion 3.1, the IBV problem (34} is stable in the sem:-
group sense if the Kreiss condition is satisfied.
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Proor: From (36) we have
e—Znu(n-i—l)k(wn—i-l’ wn-{—l),

6_2"°nk(wn, wn) + 28—2no(n+l)k(wn-§-l’ Qow?)l,r,

r
< e T (" ™) + const.e” otk Z(Iw;'+1|2 + |w;“|2)k
i=1

[FAN

If Kreiss condition holds, then by Lemma 3.1 and Lemma 3.3 there are constants
¢j, 7 =1,2, -.. such that

(wj, wi) < c;(u®,u°), j=> L
.Hence

(w", w"™) < const.e?™™ (40 40).
The bound for u”® comes from triangular inequality

™[} < Jlo™ i + [Jw” || < const.em*jul)].

This completes the proof [
For more general problems we have

Theorem 3.4. Under Assumption 3.1, the IBV problem (26,27,28 } is stable in the
semigroup sense if the Kreiss condilion is salisfied.

For the schemes obtained by applying the Runge-Kutta methods to the semi-
discrete approximations, the Kreiss condition is easier to be verified. A linear
semi-discrete problems can be written as

a A F
(42) By

where @ is a semi-infinite matrix which has taken into account of the boundary
conditions. For convenience we will omit ~ from now on. The Runge-Kutta type
of methods are of the form )

utl = LEQM" + kG,
uo = Uy,

(43)

where
q

L(kQ) = 3 SH(QY

i=0

is a polynomial in k@. If the method is accurate of order p, then
g =y = .=y =

The stability region of a Runge-Kuita method i‘s defined by
Q={peC||L(pi<1}.

Clearly Q2 is an open set. We will be interested in so-called the locally stable methods.
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FIGURE 1. Stability region of the 4** order Runge-Kutta method.

Definition 3.3. The method is called locally stable, if there is an By > 0 such that

the open half circle
L{8) = {p| || < Ry, Re(p) < 0}

is conlained in £2.

The 4** order Runge-Kutta method is an example of the locally stable method,
whose stability region contains a half circle (see Figure 1). Please see [8] for more
discussions on the algebraic properties of the Runge-Kutta methods.

‘We finish this paper with :

Theorem 3.5. Assume that the Runge-Kutia method is locally stable and that the
condition of Assumpilion 3.1 are satisfied. If the semi-discrele approzimation sai-
isfies the Kreiss condition, then the Runge-Kulte methods (43) are stable in the
semigroup sense as well, provided

(44) 1kQ|| < R < Ry.

Proor: We only need to verify that the Kreiss condition is satisfied under the
given conditions. We have the decomposition

2l — D(kQ) = (2] — kQ)(22] — kQ) .. . (2,1 — kQ).

For any z with |z > 1, at most one of the 2z;,i = 1,2, ..., p, could be located inside
the disk [2| < R. We assume |z;| < R, then according to the definition of stability
region there must be

Re(#) = 0.
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As it is claimed for the semidiscrete problem,

(7l —kQGu=10

can have only the trivial solution. It is also apparent that

(I —kQu=0, i=23,.

can also have only the trivial solution. Hence 21 — L{k Q) has no elgenvajue or gen-
eralized eigenvalue for |z| > 1, and the conclusion follows from the last theorem [
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