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ABSTRACT.

For semi-discrete approximations to the initial boundary value problems of
the parabolic equations we prove that the Kreiss condition is necessary and
sufficient for the stability in the generalized sense. Moreover, we prove that the
stability in the generalized sense is equivalent to the stability in the semigroup
sense. Also, we show that the stability of totally discretized approximations
generated from the locelly steble methods of line follows from the stability of
the semi-discrete problem,

1. CONTINUOUS PROBLEMS

We consider the numerical solution of the following second order parabolic equa-
tion

(1) w = Avg, + Buy, + Cu+F = Pu+F, z>0,t>0,

where ufz,1), F are vector functions with n components, and 4 and B are n x
n constant matrices. Without loss of generality, A is assumed to be a constant
diagonal matrix,

A= . , @ > 6> 0.
. .
The solution of (1) is uniquely determined if we prescribe initial values
(2) u{z, 0) = f(=), 2> 0,
and boundary conditions
{3) Liu{0,1) + Lyu,(0,¢) = g, t>0,
where L;, 1= 1,2 are n X n matrices and Rank(Ly, Ls) = n.
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Around the stability issues of the difference approximations for parabolic initial
boundary value problem, there are only a handful of publications[4][5] [1]. Overall
speaking, people’s interests on the stability of parabolic problems seern to be much
less than their interests on that of the hyperbolic problems. This situation could be
because of the better behaviors of the solutions of parabolic problems. However, if
in addition to the stability we require the solutions to be dissipative, then we must
be more cautious in choosing boundary conditions, In fact, the well-posedness of
the parabolic initial boundary value problems also requires the estimates of first
order derivatives in terms of data[2]. This is a major difference between the well-
posedness of parabolic problems and hyperbolic problems. In his pioneer work[5]
on the stability of totally discretized approximations of parabolic IBV problems,
Osher discovered a sufficient condition for the estimates of solution and its first
order derivative with maximum norm. But his estimates have the disadvantage
that they are time dependent, which is weaker than the estimates we expect. For
a model semi-discrete problem, Kreiss obtained a necessary and sufficient stability
condition which achieved complete parallelism to the continuous problem{l]. His
results are going to be generalized in this paper.

Throughout this paper we assume the existence of the solutions for the continu-
ous parabolic problems. There are two definitions of stability for problem (1,2,3).
The most usual one is the stability in the semigroup sense.

Definition 1.1. The parabolic problem (1,2,3) is stable if there exist ng, K such
thal when F =0, g = {, the solulion satisfies

(4) IEu(t)||2+fﬂ lle™C= g [idr < KeHju(0))*,

Here 5o and K are universal constants,

Note that || - || is the usual L? norm in the half space. For the solutions of inho-
mogeneous equations, the estimates can be obtained by Duhamel’s principle. If the
Cauchy problem has energy estimates and the boundary condition is of Frederich’s
type, then the estimate (4) for the IBV problem can be easily derived from en-
ergy estimates. For more general boundary conditions, the next definition is more
convenient for analysis.

Definition 1.2. The parabolic problem (1,2,3) is stable if there exisis o > 0 such
that when f= 0,9 = 0, the solulion satisfies

® [ lemdra [ lerwlpa < k) [ e Epa

0 0

forn>mng. Here K{(n) =0 asn— 0.

Note that the homogeneity in initial condition can always be achieved by intro-
ducing new variable u +-a -~ e7*f.

There will be no difficulties to show that semigroup stability implies Definition
1.2, thus Definition 1.2 is called the definition of stability in the generalized sense.
Both stability definitions have the property that they are stable against lower order
perturbations. For the semigroup definition, this property follows from the use of
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Duhamel’s principle and Grondwall inequality[6]. For the stability in the gener-
alized sense we will give a proof of the property as follows. With the Parseval’s
equality, (5) is equivalent to

(6) (1)l -+ Faell < K(IE,

where ﬁ,f‘ are the Laplace transforms of u, F. Suppose that there are lower order
perturbations to P, which are denoted by Blf,),—az + C', then by {(5) the solution of
the perturbed equation satisfies

)+ Il < K@) (Buie + Cra+Fl)
< ep KUl + fall) + K()liF

For sufficiently large 5}, we will have ¢, K(n) < 3,7 > 1j, hence we obtain

14l + e || < 2K )IEY, 7> 7.

Thus the bound of the solution of perturbed problem follows from that of the
unperturbed problem. Hence, we can always lay off the lower order terms of the
equations when we study the stability of the problems.

Next we will introduce some major results on the stability of continuous prob-
lems, which serve as guidance for our studies of discrete problems. We will speak
in terms of an eigenvalue problem

1 0 AN 5

@ wi-(7 9 )&
Llﬁ(O) + LQS%Q(O) = 0,

which is obtained by introducing a new variable z = 5”71, into the reduced ho-

mogeneous equation

B Er

(sl — AZ)a =,
L18(0) + L, (0) = 0.

Here is the definition of eigenvalues.

Definition 1.3. s is an eigenvalue if there exisis a nontrivial vector @ = (@, 2)7
such that (s,4) satisfies the following conditions:
L 0 A .

(1) (s31— ( I 0 ) Lyip=10, =20,

(2) Re(s) > 0,

(3) L1&(0) + Las¥3(0) = 0,

(4) when s # 0, ||i|jz < o0,
5 is a generalized eigenvelue if condition 1, 2 and 3 are salisfied, and condition 4
is replaced with

(4) when s = 0, ®(x,s) = lime_o @(z, s + €), where Re(e) > 0 and wlz,s+¢)

satisfies condition 1 with s replaced by 5 + €.

In the case of generalized eigenvalue, we have ||W|lo = co. We now can state[1].

Theorem 1.1 (Kreiss). The problem (1,2,3)} is well-posed if and only if there is
no eigenvalue or generalized eigenvalue 1o ils corresponding eigenvalue problem.
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‘The eigenvalue condition in above theorem is referred as the Kreiss' condition
{of parabolic version)}. With some techniques, including the ones developed in this
paper, one can show that the Kreiss’ condition is also sufficient for the semigroup
stability, thus there is

Theorem 1.2. For problem (1,2,3), the stability definition 1.1 is equivaleni lo
definition 1.2.

For the sake of the simplicity, this paper will be limited to one dimensional prob-
lems. Under some conditions, our results also apply to multidimensional problems.

2. SEMI-DISCRETE APPROXIMATIONS

We will solve (1,2,3} with The methods of line. The first step of the methods is
spatial discretizations, which result in consistent ordinary differential equations or
what are called the semi-discrete approximations, and the second step is the em-
ployment of standard numerical methods for solving ordinary differential equations.
In this section we will study the well-posedness of the semi-discrete approximations
only. For that purpose, we introduce a mesh with size h = Az > 0, and, with the
notation wu, () & u(rh,t), approximate the equations (1,2,3} by consistent semi-
discrete scheme of the form

LLHMOR (ADyD_(I + 1) + BRy Dy + C)u;(t) + Fy (2),
(8) w; (0) =1, i=1,2,...
L]_ll(O) - L2D+ll =8
where
P g
Ry= Y aE* Ry= Y bE* pxq, rxs,
H=-r H=rs
and L;,i = 1,2 now represent
q
Liug = ZB}")uj_,_l, i=1,2
i=1
and
1 2
RanI{(B§ ), e ,Bgl),BE ),... ,Bgz)) =n(r+1)
The solution space of the IBV problem (8) is {*"(1, 0o}, which is defined by
P(-M,N) = {u={u;}0y,u; € C" | |lufl-pr,¥ < o0}

where the norm comes from the associated inner product
N
TA
(0, v}y N = Zuj V;h,
—M

thus
”“llgM,N = (w,u)pmN.
For the sake of convenience, the indices of the norm and inner product of I*™{1, c0)
will be omitted. And we write I2(—M, N) for I21(—M, N).
As a basic assumption, we require the semi-discrete approximation (8) to inherit
the parabolicity of the continuous problems.
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Assumption 2.1. for any u € I*{—c0, 00),
Re(ts, Ry)-so0 < (1 = g0l oocer 0 <0< 1.

For both semi-discrete and totally discretized approximations, we have the dis-
crete versions of the stabilily in the semigroup sense

Definition 2.1. The parabolic problem (8) is stable if there exist universal con-
slanis g and K > 0 such that when F =0, 9= 0, the solution salisfies

1
(@) llu(@)I? +]D [l Dy ulPdr < K™ ||u(O)}?.

And the stability in the generalized sense

Definition 2.2. The parabolic problem (8) is stable if there exisls ny such that
when f= 0,9 =0, the solulion satisfies

5 o0 [ee] oo
(10} / |§e"'”u|§2dt+/ lle™"' Dy u||?dt < K(n)/ {|e=" F||2dt
) G 0
forp = ng. Here K(n) — 0 as n-— co.

In terms of the Laplace transformed variables, (10) reads

(11) &I+ D48l < K (IR

Like their continuous counterparts, Definition 2.2 is implied by Definition 2.1
With the same arguments as for the continuous problems, we can show that these
two definitions are stable against lower order perturbations. Thus, we can throw
away lower order terms in the equaticns, and, consequently, manipulate with a
single scalar equation in the stability analysis.

2.1. Stability in the generalized sense. We now study the reduced problem of

(8)
i) o p. D_(T+ Ry ui(t) + Fs (1),

dl

i=1,2,...
(12) ?J.J(O) — fj: J 1> y '
Liug(t) = ¢!, LiTug(t) + LI Dyue(t) = ¢

Here,

i 0
Rank(( ij LéI )) - T'+1

Note that consistency requires

To discuss the stability in the semigroup sense we let f = 0,9 = 0. Then the
Laplace transform of {12) reads

sty = Dy D_(I+ Ry + F;, §=1,2,....
Lty =0, Lifig+ LY Dydio=0.

(13)
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The corresponding characteristic equation of (13) is

~_(K'_1)2 & I = 2
§="— (l-l—”;rapr; )y 5=sh*,

and its roots are characierized in the following lemma.
Lemma 2.1. For 5 # 0 and Re(3) > 0, the characteristic equation has ezactly r+1
rools, counied according to their mulliplicity, with |k] < 1. For § = 0, il kas exactly

r roeis inside the unit circle, and two roots on the unil eircle such thai k; = kg = 1.
- e N
Moreover, around 3 =0, k; and k3 are not analylic in 3, but in 52.

PRrRoOOF: Assume there is a root k = ¢, £ real. Then

= (eif—l)z z iEp .2 2 i€
(14) §= ——~—e—i.—£————(1+ Z auettH) = —4sin 5(1+ Z aye'tt),

pz=-—r He—r

From Assumption 2.1 we know that

Re{(1+ ZP: ae i)} > 0.

=T

When Re(§) > 0, (14) only hold for § = 0, thus k = 1, which is a double root. Note

that %L;:l = 0 but dj: lu=1 # 0, thus the double root £ = 1 are analytic in 5%

instead of 5. When § — o0, the first approximation of the characteristic is

§=a_,w "L

Hence, there are exactly » + 1 roots with |«| < 1 when 50 [

The corresponding eigenvalue problem of (13) is

{ s¢; =Dy D_(I+ Ri)¢;, 7=12,....

(15) Ligo =0, Lo+ LI D, do=0.

From Lemma 2.1 we have[l]

Lemma 2.2. The problem (13) is not stable in the generalized sense, if ils eigen-
value problem (15) has an eigenvelue so with Re(sg) > 0 for some h = hg.

ProoF: The general solution of the difference equation is

Mo—1

i
$i=2_ Y capPap(i)sd,

a=1 g=0

where my, is the multiplicity of 5o, 3 0w my = r+1, Pyg(g) is arbitrary polynomial
in j with degree exactly equal to 3, and cyp is the parameter determined by the
boundary conditions. Therefore s is an eigenvalue, if

Ligo=0, Li'¢o+ L§ Dydo=0.

‘These conditions are linear for the coefficients cqp, and its determinant is a function
of § = sh®. Any eigenvalue sq with Re(so) > 0 for some mesh of size ho will generate
eigenvalue s = sgh?/h? for the mesh of size h, whose real part becomes arbitrarily
large for A — 0. Thus problem (13) is unstable O
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Paralle] o the definition of eigenvalue for the continuous problem, we will use

3%45,- = D_(I+ Ry,
(16) 53 = Dy, z
Ligo=0, Lilgg+ Lilsiyo=0

i=1,2,...

for the definition of eigenvalue or generalized eigenvalue of {13}. Note that any
eigenvalue or generalized eigenvalue § to (16) is also an eigenvalue or generalized
eigenvalue to (15), but the converse is not true. The Kreiss condition is defined in
the say way as in the continuous problems. Now we come to our first major result.

Lemma 2.3. A difference approzimation (12) is stable if the Hreiss condilion s
satisfied for (16).

We will prove this lemma by solving (13), which can be rewritten as an one-step

scheme. Introducing 7 = s7/2D 4, we write (13) as
s424, = Dydt,, A
() 124, = D_(1+ R)s, +s~\/2F,
Hag=0, L{Tao+ 2L 5 =0,

;’1’:1}2!"'!

or
-~ o ~1 .
Uy = Uy +572,,

(18) Zuyp = E;:l_l @2 + 5EPG, + YRIET R,
Lo =0, hL{Tg+§3L5 3 =0,

=12 ..

For adequately large |s], the terrn AL{ 4y can be treated as an O(h) perturbation to
the boundary condition and hence can be ignored in the discussions. We introduce
vectors

Y= ('&m %ﬂ+P”132#+P"21 S Eu—r—l)T=
g,u. - (0)7F}1’0:' o ’O)T,

then (18) becomes
(19) Vup1 = (Mo + 55 M)y, + R 3g,, pu=12,..,

here Mg and M7 are constant matrices. With the help of the above equations,
boundary conditions in (18) become an underdetermined linear system

(20) D@Eh)y; = h¥55g, |9l < Kllgll
Here, D(3%) is an (r + 1) x n matrix, analytic in §% for Re(§) > 0, and

Rank(D(5% )) = r+ 1. The eigenvalues of My + §% M, are the roots of the charac-
teristic equation given in Lemma 2.1, Moreover, M, has the form

1 0
w=(o )

Therefore the next Lemma follows directly.
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Lemma 2.4. There ezisls e transformation T = T(ﬁ), analytic in 55, such that
- AL M
T 1(M0+seMl)T:( 1 My )

here My is of order v + 1 and has eigenvalues |k;] < 1 and Moy is of order p+ 1
and has eigenvalues |k;| > 1. Moreover, given any § > 0, there are € > 0 such that
the block matrices have the following properties:

(I). When |55 > 6

MﬁMll <1—e¢, M§2M222 14e.
(I}, When |57 < 6,
MMy <1~ €|53], MMy > 1+ €l33].
For the new variables

¢ =Ty, , v=12,...,

we have the diagonalized one-step scheme

My 0 B
ey ¢"“:< 0 My )¢”+”23 T, v=L2,.,

and the boundary conditions of (21) is rewritten as
(22) Di(3%)¢] = W35~ 29+ Dy(5%)¢,

where D;(5%) and Dq(5%) are analytic in 52, The general solution ¢, with ljé[l <
oo 18 given by

bf = W53 0 M AT g+ MIT

23 oy gt i>2
%) f‘r = k2§73 Zfﬁ:; My T )Y,
With discrete Minkowski inequality we can prove
Lemma 2.5. The solulions of {21) satisfy the estimates
t.hls 3 h
Iy o EOT8 =1\ 1725 4T
”é %E = 1_I§M11! “( g) “+(1"”M111|2) 24"1}!
const.hls™ ) [MZH| oy v1x
'l < - [V A) | P
1= M|
h|s—% "
61’1 < 7@ Il

(h(1 = lIMz]
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With boundary condition (22), we have for ¢

his~ 7] 1T const.his~ 2| | DT} SPEINY:
¢ € ———II(T ") || + - gy,
hls—%HiMz_zl“ 1 NI
"] € —— =222 (T ).
- MM
Transforming back to @,, z, we have
) N const D_IH .
i+ 121 < <UD ey

ls

Hence, if | D7} < K for all 57 with Re(5) > 0, the solution is bounded by the
data in the desired way and Lemma 2.3 follows. In addition, we have

Lemma 2.6. For sufficiently large |§|, we have the boundary estimates
Kih%

5]

(24) ¢ < WE, §=12,...,

where K; depends on j only.
Next, with different formulation, we will prove

Lemma 2.7. Kreiss condition holds for (16) if the approzimation (12) is stable.
Instead of z, we use @' = hD, 4 as a new variable. Then {13) is rewritten as

PR N
Yy = Upgl — Up,

25 hsa, = D_(I+ R)i, + hE,, *
H H [
g =0, hLTag+ L340 =0,

:112!"')

or, after dropping the O(h) terms in the boundary conditions,

U = ”1%’ - p=1,2

{28) Wp = D0y it + 8Pi, + YR F,, P
Hay=0, Lila)=0.
Similarly, by introducing the vectors

Yu= (ﬂy:ff;;‘{-p—l:- e :ﬂL—r'—l)T:
g,u:({):'YFyaO:-" ;O)T:

we end up with an one-step scheme

yp+1:Myp+h2gp: ”:1)2:"'7

where
1 0 0 )3 0 G
ﬁls Cp—1 ... (24 an o_q o_r_1
0 1 0 0
M= 90 o0 1 0 0
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The boundary conditions become
D(3)y, = h3g, |g| < const.|jg]|.
Matrix M has the following properties:
Lemma 2.8. There is a transformation matriz T = T(8), analylic in §, satisfying

(1). When |3 > 6,
-1 _{ My 0
T MT__( ot )

where My is of order v + 1, Mas is of erder p+ 1, and
l‘ffl*lﬂdllﬁl—f, ﬂ/f;;gﬁﬂrzzz 1+£

Moreover, for any integer N, there is constant K(N) > 0 such thatl for j =
1,2,...,N

(M) My 2 K(N)(1 =Y, (M) My 2 K(N)(1 = o).
(II). When |5] < §,
My
T-IMT = My ,
Ma,
where M1y is of order r, Maa is of order p, and
MMy <1—¢€, MpMy>1+e
There is a constant K(N) dependent on N only such that for j =1,2,...,N
(W) By 2 K(NY(L— ¢, (W3 B 2 KV)(L - €Y.

Mg = ( k1 1+ o5 )’

Moreover,

K2

where a(§) is analytic in § and «(0) = 0. £:(0) = k2(0) =1 and
Riki < 1— €33, Romg > 14 €53,

The partition of 7! MT for | 3] < & follows from the fact that, in a neighborhood
of 5= 0, Ky and «y are analytic in 5%, instead of 5.

We will prove Lemma 2.7 by the method of contradiction. We begin with the
assumption that § = 0 is a generalized eigenvalue. Introduce

¢.U = T_IY;“
Gf-‘ = Tglg‘u)
then the equation for ¢ is
ity
(27) Put1 = My bu+R*Gy, p=1,2,...,
Moz

D1(5)¢! = B¥?g + Dy(5)e11.
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We will show that we can choose a vector function G such that the solution of
(26) does not satisfy the estimate (11) for some particular ¥'. Note that for any
function G, we can reduce (27) to (26) with some F' such that

171 < KiGl.
For our purpose, we consider the special forcing function of the form

GlL=0, p=12,...,00,
G”"O p=1,2,...,s

(which also makes the boundary condition homogeneous). Then the solution of
(27) is given by

— pri-1g
¢J Mu i) 1’ 1 1
- j— J‘— =1.1f
¢J r+1 - jli1 ¢1 O o + 21 1 J 1.2
— 2 J w=1 411 T Ay dy
¢J 1™ —h E =j Ky G,u,lx

¢;I _ht E_u JMJ H= IG{‘I,

(28)

where ¢/, @' are defined according to the partition of My; and Mag,and ¢, ¢1f
are defined according to the partition of My,, respectively.
If the boundary condition is independent of the scheme, then we must have

Rank(Dy, D) =r+ 1.

Because § = 0 is an generalized eigenvalue, D]' has a pole at § == 0. Thus for some
Lml1<i<r+ 1,1 <m<p+1,thereis

|¢ 1|"|s ||¢51m

To construct a special forcing function, we denote

&
Mzzz( : M:zz)’

G” (14 o) *Mispem, |[Ma22]] €1+ €,

and select €p such that

where e, is the m‘* column of the identity matrix Jp11)x(p+1), then
NGH1E = Z| (14 o) ™* M pem|®h < K1 p%h,

and

(647l = B3 M (1 o) Mgl 2 2 > const 136
p=l
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As the result,

K
o Ir
|¢l,f| = ]g_gollqsl,m
const. 3
2 eyl
const.
> mHGiL

We have to treat two cases | = 1 and ! # 1 separately.
(I). 1 £ r+ 1. We have

I 12 = 1At ei1h
Jj=1

N
> KN (1- 0= Dg{*h
i=1
const.
> — 2.
> ol

(II). I = 7 + 1. According to Lemma 2.8, we have

Ll 2 x»~ etk A e
1 const. h?
2 (1_ g)é T “ II“_ 1 i”GJ””
a]*” R¥|s — ol (1—[k1])3(|ra| — 1)%
const.
> e,
|5 — ag|

Correspondingly, y will have the lower bounds

sl If v,
Il 29 Spenste pay, 1= rt1

hﬂls £ !
Hence there must be

_const.
~ h.s sol “G”? l:,é'f'-f—l,
]|D+uH 2 { consit. —

h—m ”G“ { r+ 1.

Thus, the problem is unstable if § = 0 is an eigenvalue.
Next we consider the case that Dy () has a pole at 5 with [§o] > 8. This case

1s stmpler because matrix M can be diagonalized into two diagonal blocks in the
neighborhood of §5. Again we are able to find a forcing function & such that

const.

1Dl 2 7 Gl

The proof resembles the previous discussions for the case { # r+1. Thus far Lemma
2.7 is proved.
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The previous results can easily be generalized to system of equations (8). In
terms of the eigenvalue problem

s3®; = AD_(I + Ry)V¥;, j=12
L =1L2,...
(29) 82\11_1' = _D+‘-D3', .
L{@o =10, L{Iq)o-i-LgIS?\I’o =0,
we have

Theorem 2.1. The difference approzimation (8) is stable according to Definition
2.2 if and only if the Kreiss condition is satisfled for (29).

2.2. The semigroup stability. Now we consider stability of the problem

2 = Dy D_(1+ Ra)uy(8) = Quy(2),
(30) u; (0) = fi,
Dlug(t) = 0, LiTuo(t) 4+ LY Dyuglt) = 0

i=12..

in the semigroup sense. We will show that under Assumption 2.1 we can actu-
ally construct a set of special boundary conditions which lead to estimates of the
solutions at every line 2 = x;. For convenience we use an abstract representa-
tion Bug(t} = 0 for the boundary conditions in (30), where B is thus a boundary
operator. And we define a one-to-one mapping I : 1%(1, 00) — I3(—00, ) by

(rugy = {1 I= L2
710 j<0.
We now prove

Theorem 2.2. There exists boundary operator By such that for all v € 1*(1, c0)
satisfying Bouo(t) = 0 the following inequalily holds

Re(u, Qu} < —g(Dyu, Dyu) — K(Z [Druil® + Z |Dyu)),
i=0 3=0

r
lus) < RK; Y |Dyusl, i=1,...,741,
3=0

[ul] < hEK; Z |D+u$|, i=—r...,0
i=0
Proor: We interpret the boundary conditions into a single vector u® € I*(—o0, co):

ul(t), for—r<j<0,
CROVE { OJ( ) others, =7

with u?(t),j = —7,...,1, not yet determined. Then we have

(v, Qu) (T, Q(Iut + ")) —co,00
(IU: QIu)moo,oo -+ (IU; Qub)-—oo,oo
(T, QT4) 0,00 — (D J1t, (I + R)D40) o co.-

il
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After taking the real parts of each term,
Re(u,Qu) < —g(Dyu, D)oo o — Re(DyTu, (I 4+ R)D4ub) oo 00
(31) = —g(Dytt, Dyt)—oo,m0 — Re(Dyu, (I + RYDsub)o r
= —q(Diu, Dyt)—oo,00 = Re{U*QlUb}:
where

U= (D+u01D+u1) st }D+ur)T)
Ub = (D_puf_,., D+U§_r+2, ey D.{..UB)T,

and @ is a nonsingular triangular matrix

Gy CO_r41 Q_p42 PP a_1 ap

0 ad_r C_rp1 Q542 N a_si

Ql — 0 0 ad_yp d_p41 e ad_9
0 e 0 a.,

Hence if we choose
(32) Ut = Q1Y

then we will get

Re(u, Qu)1 oo < —g(Dytt, Dytt) 0,00 — Z 1Dy ugf?.

j=0
The remaining results follow from the relations
uj+1:uj+hD+uj: i=1..0m
up = hDyug,
and , ,
W=l —~hDyuly, F=1,00
'ug - -—hD..}_Ug.

We call the boundary operator corresponding to (32) By [
For the special boundary operator By we can get the energy estimate

llﬂ(t)l12+9/ J D u(r)|*dr < [|u(0)|®
0

and the estimates on the boundary
fo'e) T
[ Y Ipsusa = o)l

o]
[ il < K@), —r<i st
0
If we introduce notation
(wu) = [ )

then we can show for the special operator By there are estimates for any u;.
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Lemma 2.9. For scheme (12} with special boundary condition By we have

(Dyug, Dyus) < K(u,u) Ly
(uj,Uj) < thz(uo,uo) R

where ¢; depends on j only.

The proof of above Lemma requires the following interpretation of the Kreiss’
condition, which in turn can be obtained through similar arguments as those in the
proof of Lemma 2.3.

Lemma 2.10. For semi-discrete approzimations (12), the Kreiss condition implies
thet, if F =0, f =19,

(33) litls < Klgls-

This lemma follows from the expression (23) or (28) of the solution of (12).
Now we can formulate one of our main results.

Theorem 2.3. If (12) satisfies Kreiss condilion, then it is siable in the semigroup
sense.

Proor: Let v denote the solution of

i) = Qu;(t),

i=1,9...
(34) v (0) = f,
B’Ug(i) = 0.
Function w = u — v satisfies
d .
_‘U%Q:ij(t)’ i=1,2,.

(35) w;(0) = 0,
B'H)(](t) = —B’b‘[] (t)

Laplace transform on the above equation gives us

(36) { sw; = Quy, j2>1,

B’UA)(] = _B'i:'().

The Kreiss condition requires that the solution at the boundary can be estimated
in terms of the data, i.e, for any integer p, there are constants ¢, ¢, such that

P r P
|D4@lh, =Y 1D4* < o Y [(BoDydo)il” <ep  [Dyts %

Jj=1 i=1 j=t
Hence,
[=s} oo T
| 1ot de < e [ 1000 < const )
Fe=1
Because

d{w, w)

b 2Re(w, Qu) < —g(Dyw, Dyw) + const.§D+w|%p
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for some p, we therefore obtain

@Il + g ] Dy ()Pt < const.[u(O)]?,

and finally arrive at

u@)? + g ] Dy u(®)|Pd < const.[u(0)]|.

T};is proves the theorem [
For the more general problem (8), we have

Theorem 2.4. If {8) satisfies Kreiss condition, then il is slable in the semigroup
SENSE.

The following theorem on the relation between the two definitions is now appar-
ent.

Theorem 2.5. Under Assumplion 2.1, the stability definition 2.1 and 2.2 are
equivalent for the semi-discrete problem (8). :

The above theorem indicates that for semidiscrete parabolic problems there is
only one appropriate stability definition.
3. STABILITY OF the methods of line

We now consider the numerical solution of {(12) by standard methods for ordi-
nary differential equations. Using the boundary conditions to eliminate u;(f),j =

{), —1, ey — T, WE then obtain an infinite system of ordinary differential equations
du Q Uj (t) F; (t) —
7 g i=1,2,....
(3 { ) { (D) 0 J 1J )

The corresponding resolvent equation is
(sI—Q)a=F

We ignore the sign ~ thereafter for convenience. The Kreiss condition of the cor-
responding eigenvalue problem implies the estimate

(38) ) + Dyl < K ()] £])-

Consider solving (37) with Runge-Kutta methods

(39) v{t + k) = E—oa.v j!j”(t)‘i‘st a;=1, 0<j<p<q
#{0) =0,

and linear multistep methods

(40)  (I—kB_1Q)(t+ k) = E(aJI+kﬂJQ)v(tw3k)+kG(tm—rk),

=0
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where G is a smooth function of F and v(t), G() are step functions defined in the
following way

v(1) = v{vk), forvk <i<(v+ 1k,
(i) =10, for0<t<k,

The corresponding resolvent equations are

(41) (21~ LEQNE =kG, z=e* s=if+n,
and
(42) (Li(2)] — kL2f2)Q)o = kG, z=eF, s=if 4,

respectively. Here

r

Li(z) =2 =Y a2, Ly(z) =gt ) B

Stability of above schemes requires that the solution satisfy
(43) 91l + all D+ 81l < K@UGIL 7 2 70
Parallel to our results on the methods of line for hyperbolic problems[3], we have

Theorem 3.1. Assume thai the Runge-Kutla method is locally stable. If the the
semi-discrete approximalion is stable, then the totally discretized approzimation s
stable as well, if

(44)

kQ < R < Ry.

Proor: We have to prove that the resolvent equation (41) of the totally dis-
cretized equation satisfies the estimate (43). For every z with |z| > 1 we can write

(41) in the form
g

w21 - kQyo = 6.

i=1
The roots g; do not belong to Q. Let |pi(2)| = min; |g;{2)], then there must be

() = Ri, §=2,...,p.

Thus © satisfies
P - ~
(k)] = Q) = & T[(5(2)I — kQ) 26 1= k.
=2

Because of (44),
Gl < KliG|.

There are three possibihties.

(1) Jpa(2)} = R > 6,6 > 0 constant. From Lemma 2.3, Lemma 2.6 and energy
estimate we obtain (43).

(2) Re p;(z) > 62,62 > 0 constant. In this case (43) is directly resulted from
(38).
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(3} Re p;(z) > 0 but for k — 0 limz = €' limp;(2) = i, o0, ¢ real, || < R.
Let
2= ¢RI g ey real.

By the Lemma 2.4 of 3]
(45) pi(2) = i (i€ + 0) -+ vkn -+ O(K*(€ln + 7).
Therefore again by (38) we obtain (43).

Combining the above estimates and observing that for a given z = ¢'® there is
at most one root y;(z) = ia, la] < Ry, we obtain

1] + 112+ 8]
const. K(n)iG]|, if one of the roots has the form (37)
const.||G|], otherwise

This proves the theorem [J
The next theorem also follows from (38) in the similar approach as that in the
proof of Theorem 2.8 in [3].

Theorem 3.2, Assume that the linear multi-step method is locally slable. If the
semi-discreie approzimation is siable, then the tolally discretized approzimation s
stable as well, if

k@l < R < Ry.

These two theorems assure us that the locally siable methods are reliable for
solving the stable semidiscrete hyperbolic problems. We should point out here that
for totally discretized approximations, it is not clear whether the stability in the
generalized sense implies the stability in the semigroup sense.
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