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RESISTIVE INSTABILITIES IN RAPIDLY ROTATING FLUIDS:
LINEAR THEORY OF THE CONVECTIVE MODES
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This paper analyzes the linear stability of a rapidly-rotating, stratified sheet pinch in a
gravitational field, g, perpendicular to the sheet. The sheet pinch is a layer (0 <z < d)
of inviscid, Boussinesq fluid of electrical conductivity o, magnetic permeability y, and
almost uniform density po; z is height. The prevailing magnetic field, By(z), is horizontal
at each z level, but varies in direction with z. The angular velocity, £ is vertical and
large (0 > Va/d, where V4 = By/+/(1po) is the Alfvén velocity). The Elsasser number,
A = 0B} /2Qp, measures 0. A (modified) Rayleigh number, R = g8d? /po V2, measures
the buoyancy force, where 8 is the imposed density gradient, antiparallel to g. A Prandt]
number, p, = pok, measures the diffusivity, », of density differences.

The case R = 0 was studied in Part 1 of this series. It was shown that “resistive in-
stabilities”, known as “tearing modes”, exist when A is large enough, when the horizontal
wavenumber, k, of the instability is small enough, and when at least one “critical level”
exists within the layer, i.e. a value of z at which B is perpendicular to the horizontal
wavevector, k. In Part 2, gravitational modes (“g—modes”) were studied under the as-
sumption of zero density diffusion (px = 0). Instability occurs for any k provided R is
sufliciently large; critical layers need not exist; k need not be small, The growth rate of the
most rapidly growing disturbance, the “fast g-mode” for kd = O(A!/?), is independent of
o. The structure of “g-modes” is quite different from that of tearing modes; e.g., when a
single critical layer is centrally placed, the velocity disturbance is almost symmetric about
it but for the tearing modes it is nearly antisymmetric. In conditions in which tearing is
possible for R = 0, the marginal g—mode require a top-heavy density distribution to
stabilize it (R,, < 0), and is overstable,

It is shown here that, when p, # 0, the stability characteristics are very different.
Again, the layer can be stabilized in the tearing range only by a negative R, but the
corresponding mode, which is of tearing type, appears to be invariably direct. When
tearing cannot occur, the marginal state is of g-mode type, but its R,, is positive and
increases with k for fixed A, but to zero for fixed k and A — 0. The marginal mode is
direct if p, is small, but may be overstable otherwise.

The main example studied here is a sheet pinch in which B is of constant strength but
turns uniformly in direction with height; it is force-free. The numerical integrations were
checked by asymptotic methods when practicable. The corresponding problem for the
non-rotating layer is considered briefly in an appendix.

KEY WORDS: resistive instability, tearing mode, rotating magnetohydrodynamics.



1. INTRODUCTION
This is the third paper of a series devoted to resistive instabilities of sheared magnetic
fields in rapidly rotating fluid systems of high electrical conductivity. As such, the series
represents a generalization of the better-known magnetohydrodynamic (“MHD”) studies
of non-rotating systems (e.g. Furth et al, 1963), studies that have aimed at a better under-
standing of the nature of instabilities to which a magnetically confined laboratory plasma
may be prone. Because they do not inciude Corioljs forces, these “classical” investigations
are usually irrelevant to systems of cosmic scale, although there are some significant simi-
larities. In this series, we reopen the study of the instability mechanisms, with the crucial,
“non-classical” difference that the Coriolis forces provide the dominant part of the inertial
forces in the equation of filuid motion.

The simplest system to exhibit resistive instabilities is the sheared pinch in which the
prevailing field is horizontal and turns continuously in direction with height, z, i.e.

Bg = BGz(Z))A{ + Bgy(Z)y, (1.1)

where (z,y,z) are Cartesian coordinates and % and ¥ are the unit vectors parallel to
Oz and Oy. The fluid is in solid body rotation about the vertical with angular velocity
2 = Q3%, and this defines the reference frame used in the development of the theory. In
this series of papers, we concentrate on a particularly simple example of (1.1), namely the
force-free field,

Bo = By[x cos(¢z/d) + ¥ sin(qz/d)], (1.2)
(where ¢ and By are copstants) in a layer confined by two impermeable walls, z = 0 and
z = d. For convenience, these walls are supposed to be perfect electrical conductors.

The simplest type of instability to which (1.1) is prone is the so-called “tearing mode”.
This draws its energy from the magnetic field by reconnecting the field lines of (1.1). Since
reconnection (or “tearing”) can take place only in a fluid of nonzero resistivity n = 1 /oo
(where g is the permeability of free space and ¢ is the electrical conductivity, both in SI
units) tearing does not occur unless the Elsasser number

oB2 V3

A= Moo 207’

(1.3)

is finite; here Vy = B,/ V(#opo) is the Alfvén velocity, and pg is the fluid density, assumed
constant, as are o and 7. The Elsasser number is the ratio, 7,/7,, of the diffusive timescale
Ty = d?/n and the dynamic timescale, which (in the case of the rapidly rotating systems
studied here, in which @ > V,/d) is the so-called “slow MHD timescale”, r, = 2Qd?/V2,
The nature of the instability is most readily comprehended in the limit A — oo. Tearing
occurs only within “critical layers”, of thickness § = O(A™1/44), surrounding “critical

levels” defined by the zeros of
F = k-B,, (1.4)

where k is the horizontal wavevector of the perturbation. In a tearing perturbation, the

field lines in the neighborhood of critical levels are essentially “interchanged”, with little
bending.



Kuang and Roberts (1990) — hereafter referred to as “Part 173— showed that tearing
instability cannot occur unless the rate at which By turns with height is sufficiently great;
for fleld (1.2) it is necessary (but not sufficient) for tearing that ¢ > #. In the discussion
of this Section, we focus attention on the case 7 < g < 2w in which there is at least
one, but at most two, critical levels; usually we suppose that there is just one, situated at
z = z.

It was shown in Part 1 that tearing cccurs for disturbances of all sufficiently long wave-
length (k < g¢) provided that the magnetic diffusivity is sufficiently weak {A > A (k)).
In addition to determining numerically the linear stability of modes at finite values of A,
an asymptotic analysis of the limit A — oo was presented. It was shown that the growth
rate, s, of these modes is 0(7:1/47;3/4), which is slow on the ideal timescale 7,, so allow-
ing reconnection adequate time to occur, but rapid on the diffusion timescale 7, so that
the ohmic evolution of the basic state ( 1.1) can be ignored.

The eigenfunctions associated with tearing instabilities are almost symmetric about the
critical level in the sense that

b:(z ~ 20) = b,(z, — 2), (1.5)

for small {z — z|, where b = B — By is the perturbed magnetic field. When we meet
such a symmetry in this paper, we shall describe the instability as being “of tearing type”,
In contrast to the antisymmetry

ba(z = 2) = bu(2e) ™ by(z) — bulze — 2), (1.6)

characteristic of modes “of g-mode type”. Here g stands for “gravitational”, and refers to
the instabilities that can arise when the layer is stratified and top-heavy; later g will also
be used to denote the acceleration due to gravity. Following the precedent established by
Furth et al (1963), we shall also reserve the term g-mode for situations in which there is no
diffusion of density differences. In our model, in which stratification is provided by thermal
expansion, this is tantamount to setting the thermal diffusivity, «, to zero. It is the main
object of this paper to study the effect of density diffusion on gravitational instabilities in
the presence of a sheared magnetic field and, to distinguish these from the g-modes that
arise when & = 0, we shall call the instabilities that are present when « # 0 “convective
modes”, _

Kuang and Roberts (1991) — hereafter referred to as “Part 2" — investigated g-mode
instability by both numerical and analytic methods. Using a Rayleigh number

R =

1.7
poV3 (1.7)

3The following corrections should be made in Part 1. In (3.10) one of the two successive factors F—1 D
should be removed; in (A18), I‘(%) should be replaced by I"(i—); the right-hand sides of (A12), (A13),
(A20) and (A21) should be multiplied by the factor $1(2 = /2)]'/2; and, the phase factors in (A12),
(A13), (A290) and {A21) should be decreased by 7/8, e.g. —3x/16 in (A12) should be replaced by —~57/16.
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as the dimensionless measure of the upward density gradient, 3, they reached the following
conclusions:

1. f R > 0, a perturbation of any k is unstable, provided A is sufficiently great.
These modes have the g-mode symmetry (1.6); in fact v, has, for any fixed (z, y),
the same sign for all z, although that sign depends on the (z, y) chosen; in other
words, the convective streams pass from one boundary to the other and back;

2. Il k& > g, so that tearing cannot occur, and if R exceeds a certain k-independent
critical value, R., the instability is ideal, i.e. it is still present in the limit A — oo.
If, however, 0 < R < R, the modes are resistive, i.e. the growth rate, s, of such
a mode tends to zero as A — co. In both cases, the mode of instability is direct
(S(s) = 0);

3. Although bouyancy is the principal energy source of instability for & > ¢, the
magnetic field plays a significant role, for in its absence instabilities can exist only
for sufficiently large positive R; see §95 of Chandrasekhar (1963);

4. Ifk < gand A > A, the tearing instability would occur in the absence of buoyancy
(R = 0), and a bottom-heavy density stratification is required to stabilize the layer,
L.e. the mode amplifies whenever B > R.(k), where R.(k} is negative. The mode
is, however, overstable (¥(s) # 0) for Re(k) < R < R!(k), for some R.(k) < 0;

5. The most rapidly growing resistive modes for any R > 0 are modes of very small
wavelength, the so-called “fast g-modes”; their growth rates are of order 77}, which
is independent of 7,;

6. Although the growth rate of the tearing mode increases rapidly with the number of
critical levels within the layer, the growth rates of the g-modes are independent of
that number. :

The g-mode instability resembles Rayleigh-Taylor instability, to which it reduces in the
nonmagnetic case By = 0; see Chapter X of Chandrasekhar (1963). Conclusions similar to
1 and 5 hold and the formulations share the same basic shortcomings: not only are results
1 and 5 physically untenable, but also they betray an ill-posedness in the mathematical
basis. Such absurdities are easily removed by restoring density diffusion. The convective
instabilities that arise when & # 0 resemble those arising in the Bénard layer; see Chapter
III of Chandrasekhar (1963). In addition to invalidating results 1 and 5, the presence of
density diffusion profoundly affects the remaining conclusions. Introducing the (unnamed)
Prandtl number, p, and an alternative Rayleigh number, ﬁ, defined by

AR opd
P 2Qpok’

Pe = -E- R = (1.8, 1.9)

we contend below that

L Ifk > g, so that tearing instabilities cannot occur, direct modes of instability arise,
but only when R exceeds a positive critical value, ﬁc. If however p, is sufficiently
large, overstable modes may be preferred to direct modes, i.e. have a smaller value
of R, (see §4); ~

ILIfE < gand A > A, a tearing instability would exist for B = 0 and again a
bottom-heavy density stratification is required to stabilize the layer. In contrast to
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the case of the g-mode, however, the numerical evidence suggests that the instability
is invariably direct. For large enough A, the critical R, is more negative when there
1s one critical level than when there are two; this is a consequence of the greater
vertical scale and lesser diffusion associated with the convection pattern of the
former (see §5);

III. Modes of all sufficiently short or long wavelength are, for any given A, harder to
excite to instability than modes of intermediate wavelength, i.e. they are not the
“preferred”;

IV. When & > qgor A < A,, direct instabilities are of g-mode type. When A is large
enough, the marginal value R,, is again (for the reason adumbrated in II above)
larger when there are two critical layers than when there is only one. In either case
Bm x At as A o o

The plan of the present paper is as follows. After setting down the basic theory in §2,
we examine in §3 the direct modes of instability, using both numerical integration and
asymptotic analysis. There follows a short §4 in which the overstable modes mentioned
in I above are reported; the concluding §5 follows. Details of the structure of the critical

layer are presented in Appendix A, and similar ideas are developed in Appendix B for the
corresponding classical problem.

2. Basic EQUATIONS AND BOUNDARY CONDITIONS

As in Parts 1 and 2, we suppose that the rotation of the system is large, ie. Q > V4/d.
We therefore adopt the magnetostrophic approximation, in which the equation of motion
reduces to

2p0XV = —VP + IxB + p,Cg, (2.1)

where V is the fluid velocity, P is the reduced pressure (pressure divided by py and
including centrifugal forces), J (= u~'VxB) is the electric current density, and C =
Ap/pe measures the density excess, Ap, of the stratification. The remaining equations are

8B = Vx(VxB) + nV?B, (2.2)
0 + VWIC = xVC, (2.3)
VV=0, VB=o, (2.4, 2.5)

where « and 5 are the diffusivities of density differences and of magnetic field; 9; stands
for the Eulerian time derivative. The Boussinesq approximation has been adopted.
The basic state whose stability is studied is one of rest in the prevailing field (1.1),

Vo = 0, By = Bop.x + By,¥, Co = —Pz/py, . (2.6)
and its linear stability is decided from the equations obtained by writing

V=V0+V, B=B0+b, C-—-C’o-f-c, vy (27)
substituting into (2.1) - (2.5), and discarding all squares and products of the perturbed
variables, v, b, ¢, .... The resulting linear system is solved subject to appropriate bound-
ary conditions at z = O and z = d (see below),
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It transpires that the question of linear stability can be decided through a study of the
normal modes in which b has the form

b = b(z)expli(k.z + kyy) + st], (2.8)

and similarly for v, ¢,... f Rs > 0 for any such mode, the system is unstable; if Rs < 0
for all modes, it is lineariy stable. (The carat "~ on b and other perturbed quantities will
henceforward be omitted.)

In (2.8) and what follows, we transform to dimensionless variables, as defined in Parts
1 and 2. We then have

i (1, .
= 1 _ — 2.
v, F{A(D E?) s}b,, (2.9)
. F 1 f1(1, 0
e — — P — — - — zy .10
Js = Fb FD[F{A(D k?) sHb (2.10)
_ 2 F_1 2 F—‘

2.11)
Dw. — 4[F(D* ~ ¥*) — D®Flb, + Rk% = 0, (2.12)
Perp? g2y - - -
[A (D2 — &2 s]c = —v,, (2.13)
wherew = Vxv is the vorticity, D = d/dz, k = V{ki + &2), and*
F'=kiBos+kyBoy,  F=kpJog + kyJoy = D(kyBoy — kzBoy) . (2.14)

The system (2.9) ~ (2.13) differs from that solved in Part 2 only by the presence of the
term proportional to px/A in (2.13), but that difference s crucial. It accounts for the
essentially dissimilar character of the convectjve modes from the g-modes, both physically
and mathematically. In Parts 1 and 2, the governing systems were of sixth order, but here
1t is of eighth order. To close the problem we apply:

v:=b,=Dj, = c = 0, at z2=0,1, (2.15)

corresponding to impermeable walls that are perfect electrical conductors and at which the
fluid density is the same irrespective of whether convection occurs or not. [For example,
when Ap is produced by thermal expansion, the last of (2.15) states that the walls are
maintained at constant temperature, e

Equations (2.9) ~ (2.15) define an eigenvalue system for the growth rate, s. For given A,
px and k, marginal states are given by those values (Rm) of R for which ®s = 0. Such
bifurcations may be direct (&s = 0) or oscillatory (¥s # 0). The.critical mode for given

*In Part 1, F was defined with the opposite sign.



A and p, is defined by that k (= k., say) for which R,, is smallest (and equal to K., say).
One objective of this paper to determine R,, and k, to explore their dependence on A and
Px, deciding in each case whether the bifurcation is direct or oscillatory. Another objective
is to develop an asymptotic theory of convective instabilities in the limit of large A.

By elimination between (2.9) and (2.13), we find that

/1 (1. . o 1 _fir (1 17
\Plria@ =#-of 52 5 {z 0" -4 -} ]
--}\—D {%— {29 (%) Db, + D? (;)b}] + F(D? - k*)b, — (DzF)bz>

—(D* -k - s}b, =0, (2.16)

together with the four very complicated boundary conditions on b, at each wall implied

by (2.15). Equation (2.16) is useful in studying limiting cases, such as A — oo and/or
Px — 0O, :
If we write

k; = —ksiné, ky = kcosé, (2.17)
we have, for the field (1.2),

F = -F/qg = ksing(z — z.), where z. = 8/q, (2.18)

and the first combination of terms on the right-hand side of {2.11) is absent, as are the
F terms in (2.16). The F term remaining in (2.10) nevertheless destroys, through the
third term of (2.15), the symmetry or antisymmetry of the eigenfunctions even when F is
symmetric about the mid-plane [F(z) = F(1 — z)]. This is particularly evident when Jz
is graphed; see the discussion in Part 1.

In what follows, as in Part 1, much hinges on the behavior of the solutions in the “critical
layers”, regions that are narrow when A is large, and which surround the “critical levels”
at which F vanishes. In Part 2 we distinguished four possibilities:

A. there are no critical levels; F' has no zero in <z <1

B. there is one critical level in 0 < 2 < 1, namely z = z;

C. there are two critical levels in 0 < z < l,namelyz = zjandz = z, + Tlq = z,
(say), at both of which k is orthogonal to By;

D. there are three or more critical levels.in 0 < z < 1.

Tearing instabilities cannot occur in case A, and also cannot arise in the other cases
unless k is small enough. Attention was therefore focussed in Part 1 on cases B and C;
case D was excluded because it added complications without enlightenment. In Part 2
instability always arose for positive R (and for negative R also in cases B and C, when
k and A are in the tearing range), and case A was therefore investigated. Convective
instabilities (p, # 0) of type A arise only if R is sufficiently positive; in fact, R, > 0
and R, -+ constant as A — oo, In this respect the instabilities resemble those that arise
when B is uniform (and k-By % 0). In cases B and C this instability is assisted by the
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presence of the critical layers, i.e. their R,, lies below that obtained in case A for the same
k. Case A is therefore irrelevant, and we shall not consider it in this paper. Of course,
tearing instabilities are governed by the present theory when R = 0, and instabilities very
similar to the tearing modes arise when R is sufficiently small. We shall, however, not go
over the same ground as that covered in Part 1. Once more, we shall not examine case D.

n Ar
3. DirEcT MODES

8.1 Numerical Results

In this Section we suppose that the principle of the exchange of stability holds, i.e. that
the marginal modes are direct: s = 0. Equations (2.9) - (2.15) then define an eigenvalue
problem for the marginal Reynolds number, R,,(k). The minimum of that function over k,
which is achieved fork = k. and R(k,) = R, (say), defines the critical mode. This is the
mode for which steady convection can first occur as R is gradually increased from a large .
negative value. In many convection problems it is the first mode for which convection can
occur as R is increased from zero, but we may recall (see Part 1) that the layer is unstable
to tearing modes (R = 0) for all sufficiently small & and all sufficiently large A. In such
situations, a top-heavy density distribution makes the mode even more unstable; the layer
must be bottom-heavy when the convection is marginal, i.e. R, < 0.

Figure 1 shows —R_/p, and k, for g = %w as a function of A for A < 3000. In this
range, the most unstable mode has, as in the case of the tearing mode considered in Part
1, two critical levels, and the location of one of these is also shown in Figure 1. Unlike
the case of the tearing mode, in which one ecritical level or the other appeared to move
systematically towards a boundary Jayer as A increased, the critical level for the convective
mode moves away, then briefly towards, then again away from the boundary before finally
moving systematically towards it. It seems probable that ultimately, as in the case R = 0,
this critical level eventually moves into the boundary layer. We have not established this
unequivocally, and it does not seem to us to be of great interest since, as A is increased
sufficiently, the preferred mode switches to one having a single critical layer; see below.

3.2 The limit A — oo; general case

In this subsection we examine the structure of solutions in the limit A — oo and determine
the order of magnitude of the marginal R. Surrounding each critical level, there exists a
critical layer, of thickness § (say); abutting 2z = 0 and z = 1 there are boundary layers
of thickness A~1/2, Between these two types of “inner region” lie the “outer regions” in
which to leading order we may set A~! to zero in the governing equations., We then find
from (2.16) that b, obeys the fourth order equation

(D? — &%) [F(D? — k)b, — (D*F)b,] %(02 — k)b, = 0. - (8.1)

Provided we solve (3.1) subject to
b, = D%, = Q, at z =01, (3.2)
we may construct boundary layers at z = 0 and 1 that match to these outer solutions
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and also obey conditions (2.15). It is easily seen that, as the critical layer is approached,

5 At + BY(z — z) + Et(z — z)™ 4+ Gtz — z.)°2, z = z.+, (3.3)
: AT + B7(z — z) + E™(ze — 2)™ + G (2 - z)*, 2 2 Ze—, .
where A%, B* E* and G* are constants, as are
. . \1/2
@ =i+ (- ) @=3-G-mW)" e
and )
ro= ﬁli'z_a (35)
prF}

where F = F'(z.); we suppose that 7 < i
'To connect the outer solutions across the critical layer, it is necessary to solve (2.16) in

the inner, or “critical”, layer surrounding z = z.. The thickness of this critical layer is
O(6) where, as in Parts 1 and 2,

1

We therefore introduce the stretched coordinate ¢ by writing

(= a= I (3.7

and find from (2.16) that b, is governed to leading order in the critical layer by

{262 (29 + ] ) wo g0 )] o) <o

where now D = d/d¢. In what follows we shaII; for simplicity, suppose that o = 0, as
is indeed true for model (1.2).

It is easily seen from (3.8) that, as ( — oo,
b, ~C';" + C’;,”C + ng‘"l + C;*‘C“’
+ CF (T AV cos((2 )9\ /2) + CFCH2em I3V Gin(¢2 2, 2)
+ OF (328 MV  cos((2[24/2) + CF (=328 /2V2 sin((2 /2/2), (3.9)

for some constants CH,i=1-8. Similarly, for { — —co,

b: ~CF + C5¢ + C5 (=)™ + C(—~¢)*
+ G5 (~¢) 73267 /22 cos((2/20/2) + O (—¢) 32~ /212 sin(¢?/24/2)

+ O (=07 M cos((2/2/2) + CF (—¢) 268 /22 sin((?f2,2),
(3.10)



We are required to match (3.9) and (3.10) to (3.3), and it is at once clear that

Ccf =cF =0, (3.11)
CE = A%, Ci = B#*s,
CE = BXé™,  (cf = g*ém.

In view of (3.11), it is clearly convenient to find four fundamental solutions of (3.8) that
lack exponentially growing terms as |¢ | — oo, and are therefore algebraic, apart from
exponentially small terms. In fact, two such solutions are immediate and exact:

h(¢) = 1, 52(¢) = ¢. (3.12)

In Appendix A, two further solutions of (3.8) are derived, one odd in ¢ and one even. For
these

be(€) ~ KelC|™ + Le|¢|™2, I{] = oo, (3.13)
bo(C) ~ [KalCI™ + Lol¢|™*]sgn(¢), ¢ — oo (3.14)

(We have omitted exponentially small terms.) The ratios L./K, and L,/K, are known
functions of 7,, determined by the analysis of the critical layer (Appendix A). We now
seek to match (3.3) to

b = Ciby + Coby + F.b, + F,b,, _ (3.15)
and it is apparent from (3.13) and (3.14) that

Ci = A*, ¢, = B%s, (3.16)
F.K. £ F,K, = E*§*1, F, L, + F,[, = G*§o. (3.17)

These four conditions on A%, B%, E* and G¥ link the solution across the critical level
and close the eigenvalue problem.

3.3 The limit A — oo; g~type modes

It was shown in Part 2 that the g-modes of short wavelength are the most unstable.
“When p, # 0, the situation is quite different — the short wavelength modes of g-type
are more stable than those of tearing type that exist only at longer wavelengths; in fact,
R is positive and increases with k for fixed k/k and A. Nevertheless, the magnetic field
helps to promote the instability, in the sense that, when a critical level exists, R, -+ 0
as A — oo for fixed k.

Because of the totally different nature of the modes of g-type when p, # 0, we analyze
these further below. Anticipating the final result, we suppose that 7, = o(1)as A — oo;
we shall verify the self-consistency of this assumption e posteriors. By (3.4) we have

ay & 2 — 7y, ag &1+ T, (3.18)
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Thus, in the limit 7, — 0, the solution involving a, ceases to be independent of the
solution linear in z — z, near z = z,, and from their difference logarithmic terms arise in
b, both in the inner and outer expansions, as we shall see. Also, as is shown in Appendix

A,

Zonge QTSN L soesss,  F oo o, (3.10)

g ? rr
7=

m Doe

=1

‘o m

We may solve (3.17) to obtain
GT = -G = L\SEY ~ E) = \FK,/s (3.20)

This demonstrates that b, completely dominates be in (3.15) and that

by ~ C1 + 96—2(2 - z.) + F,K, [(z—zc)2 + ;;6iz—zc|1+?m} sgn(z — z.), (3.21)

which, in terms of new constants, can be written as

Ao
by ~ C1 + Ca(z—2) + G [F 6(2 —2Z)n |z — z.| + (z—2)%sgn(z - zc)} . {3.22)
In particular, this implies that
bi{z,+) = b.(zc=~) = b,., say, (3.23)
d*b, Aod
= 9
72 Cy [?m(z —— + 2] , for z - 2z.%, (3.24)

from which it follows that

2 Ze+
&b, A, [dﬂbz] | (5.25)

lim :I:(z = z) dz?  AF, | d2?

Z = Za To—
The fact that (2 — 2.)d?h, /dz? tends to a common Lmit as z — z. from either side means
that the right-hand side of (3.25) is properly defined.

It is easy to apply (3.25) in cases where, as for model (1.2), D?F vanishes with F at
z = z,. Suppose that there is only one critical level within the layer. Since, by assumption,
[Fm| < 1, we may find the outer solutions to leading order by neglecting the final term
in (3.1) and obtain, using also (3.2),

+ o1 - <
F(D? - ¥}, — (D*F)b, = Ci sinh k(1 — 2z), for 2z, < 2z < 1, (3.26)
Cy sinh kz, for 0 £ 2 < 2.
Applying (3.25), we now obtain, with the help also of (3.6) and (3.19),
~ . 0.1784455 ksinh k A=A A > oo (3.27)

" [FE|1/2 sinh kz,sinh k(1 — z,)
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According to (3.28), the minimum 7, as a function of z, occurs when ze = 1, ie. when
the critical level is central. Then

. 0.3568910 1.\ 1/ .
Tm =& W (k COth Ek) A . (3..8)

Recalling that F) is proportional to k, we see that, as a function of k, 7, has a single
minimum for & == 2.177319. This leads to

e~ TEanE AT A oo (3.29)

It may be noted that 7, = O(k1/2A~1/4) = oo for k — 00, and Frp = O(k12A-1/4)
oo for k — 0.
It is straightforward in principle to extend the argument just given to the case of two

critical levels, z = zyand z = 2z, = z, + 7/q, and it is found that, in place of (3.27),
we have 0.1784455

P~ 00 ~1/4

Tm VRE EX A , A — o0, (3.30)

where X is the smaller of the two positive roots of

x _ (smhkzz smhku-—zl)) simhkembrr/le  _ 0. (3an)

sinh k2, sinh k(1 — z,) sinh kz; sinh k(1 — z;)

An investigation of this case shows that, in contrast to the behavior of both the tearing-
type modes and the g-modes (in which the growth rate is independent of the number of
critical levels, provided there is at least one), it is harder to excite convective modes that
have two critical levels than to excite a mode having only one. This is brought out in
Figure 2 which shows R,,/p. as a function of ky/k for fixed k = 4,/2and k, > 0; here

g = %7&' and A = 10%. The minimum value of R,, occurs for k, = ky = 4 (one
centrally placed critical mode), and the maximum for k, = —ky, = 4 (the case of two
symmetrically—placed critical modes, at z; = é— and zp = g—) The ratio of maximum to

minimum is approximately 1.144; the asymptotic results (3.28) and (3.30) give 1.148.5

The situation is further illustrated in Figure 3, in which the cases of one and two critical
levels are shown for the same value of k. The asymptote (Rm/pe ~ 8.74418A7Y/4) given
by (3.28) is also drawn, but the asymptote for the corresponding case of two critical levels
(Bm/pe ~ 10.04112A~Y/4) is omitted for clarity. The corresponding eigenfunctions are
shown in Figure 4. These should be contrasted with those shown for the tearing-type mode
in Iigure 7 below.

Another case in which tearing is impossible arises when the basic field turns in direction
too slowly with height z (see Part 1), Again?,, — 0as A — oo and the theory developed
here applies. This is illustrated in Figure 5.

®As in Part 1, the correction terms to (3.28) and (3.30) are positive and of order A~Y/% times smaller
than the leading terms evaluated above. As a result, the values 0.276515 and 0.317527 of Al/ o given
by (3.28) and (3.30) for the extrema are too small (by 7-8% for A = 10%),

12



5.4 The limit A — oo; Tearing-type modes

When tearing-type modes become possible, they are also preferred over the g-type
modes, and the situation is quite different from that described in §3.3 above. Now R/p,
tends to a finite limit as A —» co. The theory of the critical level developed in §3.2
applies as before, and the matching is again to an outer solution-that obeys the fourth
order equation (3.1) and (3.2). Now however 7, = O(1), and (3.1) is no longer degenerate
and easily soluble. The difficulty of obtaining the asymptotic answer is scarcely less than
that of obtaining a full numerical solution at large A; we therefore only investigated the
case numerically. In Figure 6 we show —R,, /P as a function of A both for the case of one
centrally-placed critical level and for the case of two symmetrically placed critical levels
when ¢ = %ﬂ'. It will be seen that, for sufficiently large A, the modes with two critjcal
levels require a smaller negative R, to stabilize them, i.e. the modes having one critical
level are again the more unstable. The corresponding eigenfunctions are shown in Figure 7.
These should be contrasted with those shown in Figure 4. The totally different structures
of g-type and tearing-type modes is obvious. '

3.5 The limit A — oo; Summary
The salient facts that have emerged from this analysis are

(1) When the marginal value of ¥ tends to zero as A — oo, that marginal value is
positive, i.e. it refers to a g-type mode and not to a tearing-type mode;

(2) Consistent with this conclusion, the solution in the neighborhood of the critical
level is nearly odd, i.e. v, (2 — z,) = -v{z, — z);

(3) Small wavelength instabilities are quenched by the presence of thermal diffusion,
and are not maximally unstable, as was the case for the g-modes studied in Part 2;

(4) Since the marginal 7 is negative for tearing-type modes, such marginal ¥ cannot
tend to zero as A - oo, and (as the numerical results indicate) they in fact tend
to finite (negative) values in that limit;

(5) The mode with one critical layer is always more unstable than the mode with two
critical layers. This conclusion holds irrespective of whether the mode is of tearing
type or g—type. (For small A, this conclusion is reversed; see §3.1.)

4. OVERSTABLE MODES

It was shown in Part 2 that, when tearing can occur, the marginal mode is overstable. It
appears that this conclusion holds true only when p, = 0. In all cases we integrated
for p. # 0, the marginal mode is direct in the tearing range. Curiously, however, in
conditions under which tearing can not occur, and for which we found the g-modes of Part
2 to be invariably direct, overstable convective modes may exist when p, is sufficiently
large, when A is neither too small nor too large, and when only one critical level exists.
This stands in sharp contrast to the behavior of systems having no critical layers for which
F(z) is nowhere zero, and for which overstability occurs (when p, is large enough} for all
sufficiently large A; see §5. Numerical evidence for an upper limit, A*(p,), for overstability
is presented in Figures 8§ and 9, in which p, = 5 and 10, respectively, and in both cases
ks = ky = dand g = 2. For these examples

A*(5) = 129.99, A*(10) ~ 3888.3. (4.1)
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It seems very probable that A*(p,) increases indefinitely with p,.

Overstable modes do not exist once the Rayleigh number, R, exceeds that of a second
branch of the dispersion relationship, which is shown by the dashed and dotted curve in
Figures 9 and 10. The numerical evidence is strong that this branch terminates precisely
on the marginal curve for steady convection. At this codimension-2 point, the frequency,
J(s), of the overstable mode is zero. Many hydrodynamical systems exhibit analogous
bifurcation structures. As in our case, the preference for a steady bifurcation (a direct
mode) over a Hopf bifurcation (overstability), or the reverse, is decided by an external
control parameter, such as the separation ratio in thermohaline convection (Brand and
Sternberg, 1983) or such as the Prandt] number Px in magnetoconvection (Chandrasekhar,
1961; Proctor and Weiss, 1982). In some of these cases, the instabilities have been analyzed
at finite amplitude, and the behavior of solutions near the codimension-2 point has been
elucidated. For example, Knobloch and Weiss (1981) showed by singular perturbation
methods that, if the direct mode branch is subcritical, the overstable branch terminates on
it, and that the period of the oscillatory solutions tends to infinity as it did so ((s) = 0).
In this case, the overstable mode is represented by a heteroclinic orbit that connects the
two unstable steady branches, corresponding to positive and negative amplitudes. We
presume that weakly nonlinear disturbances would behave analogously in our system, but
we have not verified this.

The fact that (s} — 0 on the overstable branch as the codimension-2 point is ap-
proached is a consequence of chosing the wave vector (here k; = k, = 4) to be the same
for both the direct and overstable modes., In systems usually considered, the wavevec-
tors are chosen to minimize R,, separately for the direct and overstable modes, and the
resulting k are different at the codimension-2 point where the two values of R, coincide:
consequently (s) on the overstable branch is nonzero at that point. In such cases, inter-
esting questions arise concerning the spatial modulation of disturbances (e.g. Zimmermann
et al, 1988). In our system, R, lies in the tearing range where no overstability occurs, and
it seems pointless to examine such questions.

5. CONCLUSIONS

As in Part 2, we have found that the presence of critical layers has a strong effect on the
convective stability of the sheet pinch. We have shown that the critical layer of a tearing-
type mode is not drastically modified by the presence of buoyancy, and in particular
possesses the same symmetry (1.5). The inherent instability of a tearing mode can be

neutralized only by a bottom heavy distribution, requiring that R,, be negative, as we
have confirmed.

When p, # 0, the critical layer of g-type has been found to have quite a different
structure from the one analyzed in Part 2, for which Px = 0, although its antisymmetry
(1.6) is preserved. Two consequences of the altered structure are these: (i) the rapidly
growing fast g-modes of Part 2 are completely absent, and (ii} R, (which is now positive)
increases rapidly with wavenumber % for fixed A, Nevertheless (jii) R,,, considered as a
function of A for fixed &, tends to zero as A — oo. Another striking difference from Part
2 1s that, when p, = 0, critical layers do not interact, i.e. the growth rate of the g—mode
is almost the same for one critical layer as for many. When p, # 0, this is no longer
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true; the critical layers “interact”. These dramatic reversals of the conclusions of Part 2
has motivated us to pay particular attention in this paper to the fate of g-modes when
P« ¥ 0 and to confirm the statements just made.

Concerning the decrease of R,, with increasing A for fixed k just mentioned, we should
point out that, when no critical layer is present, the system behaves in much the same
way as does a layer with a constant horizontal By, assuming of course that k is not

U, SRS

perpendicular to it; in fact, supposing for simplicity that k and By are parallel, we find In
the case of the direct modes that

Rm 2 2 ,".2 (7!‘2 + k2)2 ’

which obviously tends to a constant as A — co.
The overstable modes provide another illustration of the importance of critical levels.
In the case of constant B, just considered, it is easily shown that

R, 2B2 9 2 272 (px + 1) (7% 4 k2)2
= k 5.2
Px px(pn + 1)(7r * ) + Bg Px kA2 ’ ( )
2 spalpe — 1) (1 + &%) (v + k?)?
= - .3
w k* B FRE) vV (5.3)
where w = $(s) is the oscillation frequency. Again, R,, does not tend to zero as A — oo,

but unstable modes exist whenever p, > 1 for all sufficiently large A; there is no upper
bound A*(p,), such as we located in §4 for a system having a critical level.

Finally, a striking reversal of one of the conclusions of Part 1 deserves comment, namely
the fact that (for large enough A) the convective mode is more stable when there are two
critical layers than when there is only one, whereas for the tearing mode the opposite is
true. Figures 10 throws some light on this phenomenon. These show the isolines of the
non-dimensional density perturbation, ¢, for the tearing-type perturbations both (a) when
there is a central critical level and (b) when there are two symmetrically-placed critical
levels. Only the £z—section is shown where { is the horizontal coordinate parallel to k, and
z is the vertical height. It will be seen that the variation in density is on a smaller vertical
scale in (b) than in (a), corresponding to the fact that in (b) there are three circulating
cells in the vertical whereas in (a) there are only two. Shorter length scales® are associated
with higher diffusion rates of ¢ and b, and larger values of R,, result. Similar conclusions
may be drawn from Figures 11, which show corresponding results for convective modes of

g—type. Figures 10 and 11 also well exemplify, for ¢ rather than &,, the symmetries (1.5)
and (1.6) mentioned in §1.

Acknowledgements We are grateful to the National Science Foundation for support under
grant EAR-8846267.

S Although the central cell in (b) is larger than either cell in {a), this cell has to drive into motion the two
small cells above and below it, and overcome their diffusive drag.
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Appendix A. Analysis of the Critical Layer for a = 0
The critical layer is governed by the eighth order equation (3.8) which (for & = 0)is

p? [.D (ép) (¢*D) (-C%D> + ch GD%) + F GD%) 0. (A1)

Here D = d/d(. We at first suppose that 0 < 7, < 1. It is easily seen that (Al) admits
solutions that are even or odd in ¢, the simplest being
b =1, ba = (. (A2)

As explained in §3.2, we require two further solutions that contain no exponentially large
terms in the limit { — oco. We shall generate two such solutions, one (,) odd in ¢ and
the other (b.) even in ¢, with the property that, apart from exponentially small terms,

bo ~ (Ko|C|™ + Lol¢I® + M,|¢]) sgn ¢, ¢ — oo, (A3)
be ~ K.|C|® + L|¢|* + M., { — o0, (A4)

where a; and ¢, are defined in (3.4). Matching to the outer solution requires knowledge

of Ko/L, and K./L.. It is the principal objective of this Appendix to evaluate these
constants.

It is a simple matter to find six solutions of (A1) of the form

3 (2" 5a) d(—ay) (¢/2%/2)meton (45)

I O OEOEGE G
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where 1 = 3 — 8§ and

the second of which is employed frequently in this Appendix. Note that, according to (A2),
(A5) and (AS),

. (AT)

bi(—C) = (), for t=1,5,6,8.

To determine the dominant behavior of b; as ¢ — +0o we may proceed as in Appendix

A of Part 1, replacing (A5) by a contour integral and distorting the contour to pass over
saddles situated near 1 ¢2e%#"/* in a complex s-plane. We obtain (t=3-8)

bi(—C) = —b;(¢),  for ¢m2,3,4,7,}

1 8\%* . ¢? 3\ 7
PR (*/22 = _ T R
bi VIEE (Cz) e cos [2\/2 (m, + 2) SJ , ¢ — +oo. (A8)
This shows that we should introduce
1 1 1 1
o == by — — — b7, e = —bs — b — by, A
b, = by \/2b4+\/257 b 75 bs 6+\/28 (A9)

since these contain no exponentially large terms in their asymptotic expansions. Solutions
(A9) are more expeditiously written as

bo=R(B,), b =R(B.), (AL0)
where
B = e-5it i 72m+1 = a)y(2m + 1 - ay) (%-Czeﬂ""‘”/‘*)m"'l/2
’ mmr Y@M = 1)y(2m + 3)y(2m + 4)v(2m + 6)7(2m + 8)7(2m + 9) ’(AH)
B - i 7(2m — o )y(2m — ayp) (%C2e3i1r/4)m+1/2 A
L Cm = 27m £ 2 Em T 39(2m T B em F T Em T 8] 2

The method we use to evaluate Ko, L,, K. and L, from (A11) and (A12) parallels that

employed in Appendix A of Part 1. Since @3 >ay >1for 7, > 0, (A3) and (A4) imply
that '

K, = Ltg.._._i.ooC_a‘in , p=o,e, (A13)
and since, by (All) and (A12), (“"‘15p — 0 for ( — 0, we have

Ky, = R(ky,), where k, = ]:0 &%((""’IBP)CZC. (Al4)
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The evaluation of L, follows similar lines, but is more complicated since the largest (K)
terms must first be removed from (A11) and (A12) by differentiation. In this context it
may be noted that the K and L terms shown are only the dominant terms of asymptotic
expansions. For example, the K,(® term in (Al1l) is the first term of an asymptotic
expansion for ( — oo the next term of which is O(¢ *1~8)  Such terms may not be removed
by the differentiation in (A15) below but they make no contribution to the limit

L, = a7 — o Ltgoqoo (P Edz:“ (C—algp) . (A15)
We now have
Ly, = R(£,) where ¢, = = /wo LS {C“’“l_“z—d—- (C_‘“Bp)} d¢. (Al6)
@y~ Jo d d¢

To evaluate k,, 4,, k, and £, we follow the technique applied in Appendix A of Part 1.
For example, we substitute (A11) into (A14) to obtain

.3
ko =272 M (Py; }tay) (A17)
where M denotes the Mellin transform and
, 1
(Z)™y(2m + a1)y(2m + 8 + ay)eirm/izgm

Po.: ;7(2”‘ + Dy(@m + 5)v(2m + 6)y(2m + 8)y(2m + 10v(2m + 11)
(A18)

The method of Appendix A of Part 1 then gives

M(Py;s) = 4me™ cosecdms v(@1 —85) ¥(8 + ay — 8s)
0y2) = (1 — 8s)v(5 — 83) v(6 — 8s) v(8 — 8s) (10 — 8s) y(11 — 8s)

By (Al4) and (A17), we now have

(A19)

47 cos pra, cosecira, y(ay ~ ay)

K, = )
27% Y1 = a2)y(5 — a2)y(6 — a2)¥(8 — a2)7(10 ~ az)y(11 — @) (A20)
Lo=— 4m cos 1ray cosecyTay y(ag — ay) ’
229 4(1 = ay )v(5 — ay )y(6 — @1)7(8 ~ a1)7(10 — a; }¥(11 — ay) (A21)
K, = - 4 cos tray coseclmay y(ay — a) ,
277 (1 — a2) (5 — @2)7(6 — a2 )y(8 — ) y(10 — ag)y(11 — az)  (A22)
I=_ 4w cos Lra, coseciray v(ay — a;)

3., ’
227 (1 = a1)y(5 — a1 )v(6 — 1 )}v(8 — 01 )7(10 — ey ) (11 — y)  (A23)
the last three following by repetitions of the same argument. By (A20) - (A23) we have

L, L _ - |
£ =, (A24)

K,
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where

cos Ty sin ima,
= . 3
cos +way sin Tmoy

(A25)

Q = 23(ea=an YL =~ 22)7(5 — 02)7(6 ~ @2)¥(8 — a2 )7(10 — a2 )y(11 — ap)y(a; ~ as) .
Y(1 = e)y(5 = a1)y(6 ~ a1)7(8 — a1 )4(10 — @1 )7(11 — oy )y(a; — (3\)26)
We are particularly interested in these results for Tm € 1, when oy £2 -7, a, =

14 7im. Then, by (A25) and (A26),

. 95/4 0.4872476
T"m 7!'(1 + \/2) / Tm
420 (YT (L) (L 1.4649270
g = -H2L() (33)F () 1649270 (A28)
Tm D (5)T(3) T (3) Tm
and (A24) becomes
L, . 0.7137821 L. .
R TR g% 3006535, (A29)

When ¥ < 0, the terms of (A3) are no longer in descending order of magnitude for

(] — oo, since then |¢| > [¢|*?. The argument just presented can, however, be modified.
In place of (A15), we use

d .
L, gm0 2 e £ 5)] . )

dac ac

An analysis too similar to the one just presented to be repeated here again leads to (A21)
and (A23). In other words, (A20) - (A29) remain valid not just for 0 < Tm < % but for
Fml < 1.

Since (A2) are themselves solutions of the critical layer equation, we obtain two new
solutions b, and b, by subtracting M,¢ and M, from l;o and b, respectively. By (A3) and
(A4), these are such that

" {az (@ —ay)

bo ~ (K, [¢[** + Lo|¢|**) sgn ¢, ¢ — oo, (A31)
be ~ K[| + Le¢|™, ¢ — oo, (A32)

apart from exponentially small terms. It is these functions that we employ in §3.
Finally, we note that the constant appearing in the second of (A29) coincides with the

constant —A, used in Part 1 and derived there by a different asymptotic argument. To
establish the connection, we need to include the first correction to the inner solution &;:

by =1 + L{sA + k2)8°¢2 (A33)
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Within the critical layer, the tearing mode is dominantly even, so that (apart from an
inconsequential term proportional to be)

by ~ Ko(® + Le|¢| + bie[l + L(sA + k%)6%¢2, I¢] = oo, (A34)

which implies that the outer solution has the form

K,
by ~ b + Le|z — zo| + %(SA + kN, + T (z — z.)?, |z — z¢| = 0. (A35)
It follows that
(db./dz):.y = —(db.;/dz),.- = L./$, (A36)
(d*b:/d2%)c = (sA + k®)b,. + 2K,/6°. (A37)

Now according to (3.1), the outer solution obeys

d%b 9 1 d*F
z = A
= (B 22 (A38)
and it therefore follows from (A37) that
1 &F 2K,
[SA e EE:;?] bzc = - 52 (Agg)

From (A36) it is now clear that As = O(671) so that (A39) simplifies to
b.e = —2K,/8%As, (A39)

and by (A36) we finally obtain

1
A= [3: = A,6As, (A40)

which agrees with (3.19) in Part 1.

Appendix B. Asymptotics of steady convection in a non-rotating layer

The classic paper of Furth et ol (1963) describes very completely the tearing and g-
modes of a non-rotating plasma. The convective modes were less fully investigated, and
are studied here. The Lundquist number § , defined by

T d? d ‘ By
§ = 2 o= —, TH o= —, Vi = ——r, Bl
TH 7 7 77 v 4 V(0 p0) (BL)



plays a role analogous to the Elsasser number for the rotating layer. Equations (2.2) -
(2.5) hold as before, but (2.1) is replaced (in the Boussinesq approximation) by

po(Or + VVIV = — VP + IxB + pCg + povV?V, (B2)

where v is the kinematic viscosity.
We make the substitutions (2.6) - (2.8) and use dimensionless variables based on d as
unit of length and 75 as unit of time. Equations (2.9) - (2.13) are replaced by

e [l 2
= —{= - - B3
v, fa {S(D k) s}bz, (B3)
i (1, , ) . F
w. = 4L - - - = B4
Wz F {S(D k ) S}]z FUZ? ( )
= L{Pmipr _ oy _ F
Jz = F{ 5 (D k*) S}wz + =bs, (BS)
(D?-k?){%’i(m - k) - s} v, + i [F(D? - k*) — D*F| b, — Rk% = 0,
(BS)
v, = —{‘?‘S,—K-(D2 - k%) - s}c, | (BT)
where p,, = v/n is the magnetic Prandt] number. When Pm # 0, the boundary

conditions (2.15) must be supplemented by noslip or stress-free conditions; we select the
latter for definiteness, so obtaining

v, = D%, = b, = ¢ = 0, at z = 0,1, (BS)
Dw, = Dj, = 0, at z = 0, 1. (B9)

The system (B3) ~ (B9) factorizes into two distinct subsystems. Equations (B3) and
(B6) — (B8) define an eigenvalue problem for s, v, b, and ¢. Once a nontrivial solution has
been found, (B4), (B5) and (B9) may, if desired, be solved to determine the corresponding
w; and j,. We shall ignore this aspect of the problem; we are interested primarily in
finding s, and shall therefore focus on (B3) and (B6) - (B8) alone. More precisely, we wish
to find conditions for the onset of steady convection, i.e. values of R for which s = 0 is
an eigenvalue. We are therefore interested in nontrivial solutions of

2
(D? - k%) {%’12‘-(02 - k2)2%(D2 - k) + F(D? - k?) - DZF} b + R"‘; (D* —k%)b, =0,
(B10)
subject to the boundary conditions (B8) which require that
b. = D%, =0, at z =01, (B11)

together with two further conditions at each boundary that involve higher derivatives of
b,. '
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In the limit § — oo, the solution of (B10) consists of outer regions in’ which (3.1) - (3.5)
hold as before, passive boundary layers at z = 0, and 1, which adjust the outer solutions
to the higher order conditions referred to below (B11), and critical layers surrounding
critical levels at which F = 0. To leading order, it is necessary only that the outer
solutions satisfy (B11).

The structure of the critical layers differs from that analyzed in Appendix A. Their
thickness is of order

pd®
8§ = W, (B12)
an equation that replaces (3.6). Using this § in the definition (3.7) of the stretched coor-
dinate ¢, we obtain in place of (3.8) the critical layer equation

[DX(D* + ¢ + 7] (%D’*’bz> = 0. (B13)

The analysis of (B13) is too similar to that set out in Appendix A to be repeated here,
Suffice it to say that solutions odd and even in ¢ again exist for which (3.13), (3.14) and
(A24) hold; (A25) and (A26) are replaced by

sin Yo

£ = —2 2 (B14)
sSin 5770[1
Q = 621 —an) T = @2)F(4 — a3)7(5 — 03)F(6 — v3)F(8 — a2 )5(9 — g )¥(0y — ay)
Y1 = a1)7(4 ~ a1)7(5 — 1)7(6 — a1)3(8 — a1 )59 — a1 )y(ay ~ ay)’

(B15)
where ¥(z) = T'(}z). When 7, < 1, these reduce to
2 0.6366107 (B16)
T otre P
4\V? 1 1.1006424

The argument given below (3.17) holds with minor modifications, and we again find that
in the marginal state, 7, = 0(6), i.e. 7, = O(5~1/3); cf. (3.19).
In place of (3.28), we now have

¥

) 0.2131384pL/° ksinh k 173
fm [F{H/3  sinh k2, sinh &(1 —zc)S ’ 5 = oo (B18)
The minimum 7, as a function of Z; occurs as before when z, = %, and the resulting 7,
has a single minimum at k¥ ~ 1.6221312 for which
. 0.8781305pY° .
o~ Eas S 5 - e (B19)
Figure 12, which shows R, (S)/p. for model (Bl) with pm = 1, ¢ = 327 and

kz = k, = 4, was obtained by integrating the full equations. The asymptote (B18) is
also shown. The agreement is very satisfactory.
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LEGENDS FOR FIGURES

Figure 1, The critical direct mode for g = %71’. In (a) ~R./p« is shown as a function of
A; (b) shows the corresponding value of k.; and (c) shows the location of one of the critical
levels z = 2;. (The other critical level is situated at z — 21 = oz — %)

Figure 2. Variation of R /e with ky/k for & = 4./2 and k, > 0 illustrating how
the direction of k affects the ease with which convection occurs; ¢ = &7 and A = 108,
The mode most easily excited (kz = ky = 4) has one critical layer situated centrally at
Zo = %; the hardest mode to excite (ke = —k, = 4) has two critical modes, situated

symmetrically at z; = ! and z, = 2.

Figure 3. Variation of R /pe with A for direct modes when &k = 4,/2. The dashed
curve shows the case k, = ky = 4 of one centrally placed critical layer; the full line
exhibits the corresponding asymptotic result (R, /p, ~ 8.74418A71/%) given by (3.28).
The dashed and dotted curve shows the case ky = —ky = 4 of two symmetrically placed
critical layers.

Figure 4. Eigenfunctions (a) vz5 (b) by; (c) e for A = 108 and ¢ = % and for the
marginal direct mode with k, = ky = 4 (a case of one critical level); (d), (e) and (f)
show the same functions for the corresponding case k, = ~k, = 4 of two critical levels.

Figure 5. Variation of R,, /px with A for ¢ = 7. The dashed curve shows the case ks =
~ky = % of one centrally placed critical layer; the full line exhibits the corresponding

asymptotic result (Rm/px ~ 1.74016A~1/%) given by (3.28).

Figure 6. Variation of —R,, /px with A for k = /2 and ¢ = &r. The solid curve shows
the case k; = k, = 1 of one centrally placed critical layer. The dashed curve shows the
case k; = —k, = 1 of two symmetrically placed critical layers.

Figure 7. Eigenfunctions (3) vz; (b) ba; (¢) cfor A = 105 and ¢ = 2n and for
kz = ky = 1 (a case of one critical level); (d), (e) and (f) show the same functions for
the corresponding case k: = =k, = 1 of two critical levels,

Figure 8. Overstable modes for Pr = Sand k; = ky = 4 withg = g-m In (a) the
marginal value of R, /p, is shown as function of A; the corresponding R, /p. for direct
modes is given by the solid curve. In (b) the frequency, $(s), is shown as a function of A.

Figure 9. Overstable modes for Px = 10and &k, = k, = 4withg = 27, In (a) the
marginal value of R, /p, is shown as function of A; the corresponding R,, /px for direct
modes is given by the solid curve. In (b) the frequency, ${s), is shown as a function of A,

Figure 10. Isolines of density perturbation, ¢, in tearing-type modes, shown across the
entire layer in the plane perpendicular to By at the critical level. One horizontal wavelength

is shown, for A = 10° and ¢ = ir. In(a) k, = ky = 1, so that there is one critical
layer at z = %; in (b), kb, = —ky = 1, so that there are two critical layer at z = é—
and z = 2,

6
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Figure 11. Isolines of density perturbation, ¢, in g-type modes, shown across the entire
layer in the plane perpendicular to By at the critical level. One horizontal wavelength is

shown, for A = 10% and ¢ = ir. In (a) k, = k, = 4, so that there is one critical
layer at z = %; in (b), kz = —ky = 4, so that there are two critical layer at 2z = (1—5
and z = L.

Figure 12, Direct modes in the classical (non-rotating) case for p,, = 1, q = 3m
‘The dashed line shows the value of R, /px obtained by numerical integration of (B3) and
(B6)-(B8) as a function of S for k, = ky = 4, a case in which there is one centrally-
located critical level; the full line is the corresponding asymptote R,,/p. = 18.051425~1/3
obtained from (B18). The dashed and dotted line is for kz = —ky = 4 in which there

are two critical levels.
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