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Abstract

The composite overlapping grid method is applied to compute periodic gravity
waves on water of finite constant depth. We make one component grid follow the
free surface and let the remaining components be independent of the location
of the surface. A pseudo-arclength continuation method is used to compute the
solution as function of the phase velocity of the wave. The type of equation
associated with some grid points and the number of equations in the discretized
problem will change when the surface moves. We expound a stable way of
switching composite grid during the continuation procedure which works close
to limit points. An adaptive technique is also developed to efficiently resclve
the solution where sharp gradients develop.

‘We present numerical examples that show very good agreement with existing
results.

AMS Subject classifications: 65N50, T6B13.

Keywords: Adaptive grid, Cornposite overlapping grid, Pseudo-arclength con-
tinuation, Water wave.



1 Intreoduction

We consider two-dimensional irrotational gravity waves moving with constant
phase velocity on water of finite constant depth. Both the infinitely deep case [2,
9] and the present case [4, 12] have previously been studied extensively. The
aim of the research described here is to develop an accurate method that easily
can be extended to compute the flow around an underwater obstacle, where
we feel that the existing methods [8] still need improvement. This paper can
therefore be seen as next step from [10] towards the solution of that problem.
We prefer to first develop the method for the periodic case to be able to make
comparisons with existing results.

We apply the composite overlapping grid method [3]. The basic idea is to
‘make one component grid follow the free surface and let the remaining compo-
nents be independent of the location of the surface. To resolve sharp gradients
in the solution we also develop an adaptive technique. The adaptation is done
locally on each component grid by changing the number of grid points and the
stretching function. We would like to point out that the adaptive, moving grid
approach developed here is general to problems where the shape of the domain
is a function of the solution and/or the solution develops sharp gradients.

We use a pseudo-arclength continuation technique [7] to compute the solu-
tion as function of the phase velocity, When the surface moves, the type of
equation associated with some grid points and the number of equations in the
discretized problem change. The basic method therefore needs to be modified
to allow for changes in the composite grid during the continuation procedure.
A stable way of doing this which works close to limit points is devised.

The remainder of the paper is organized as follows. In §2 we scale the prob-
lem and present the governing equations. We discuss how to construct the

composite overlapping grid in §3 and the problem is discretized in §4. There-
after, in §5, we present the continuation method and in §6 we elaborate on the
parts of the Jacobian matrix which are special for a moving composite grid.
A stable way of switching composite grid is presented in § 7. Here, we also
describe how the resolution of the grid is adapted to the solution. In $8 we
discuss some implementational issues and we make numerical comparisons with
existing results in §9. Very good agreement is found.

2 The governing equation

We describe the motion in Cartesian coordinates in a frame of reference fixed
with respect to the wave, where the z-axis points opposite to the forward ve-
locity and the z-axis is directed vertically upwards. We assume the motion
to be steady in this coordinate system. Let the phase velocity be I/ and the
wavelength be A, which is defined as the shortest period of the wave, We scale
the physical quantities by the length A/27 and the velocity /gA/2x, where



g is the acceleration of gravity. In the scaled variables, z = —d corresponds
to the bottom and z = 0 to the undisturbed free surface. We split the total
velocity potential into a free stream potential plus a perturbation potential:
®(z, z) = pe + ¢z, z), where p = U/\/gA/27 is the scaled phase velocity. The
perturbation potential is governed by, ¢f. Whitham [13],

Ap=10, ~d <z < 5(z), ~c0o <z < o0, ()

where 7(z) is the elevation of the free surface. The perturbation potential is
subject to the boundary condition

¢:(z,~d) =0, —c0 < & < . @

Furthermore, at the free surface we require both the Bernoulli equation and the
kinematic condition to be satisfied,

n¢m+%(¢§+¢§)+n= 0, —oc <z < o0, 2 =nlx), 3
(8 + do)tio ~ ¢ = 0, —00 < z < 00, z = 1(x). (4)

"The choice of constant in the right hand side of Eq.(3) fixes the origin in z to the
level of the free surface where the velocity, /(i + ¢z)? + 62, equals the phase
velocity, u.

The problem is to find the perturbation potential, ¢, and the surface ele-
vation, %, as functions of the phase velocity, u. We are interested in solutions
that are [-periodic in the z-direction, with I = 27k, k = 1,2,.... The surface
elevation will be studied in the interval 0 < z < I and the perturbation potential
in the domain (2,2) €, Q: 0 <z <!, =d < 2 < n(z). A convenient measure
of a solution is its wave height, which is defined as the vertical distance between
the highest crest and the deepest through of the wave.

A solution of Eqs.(1-4) at a fixed u is not isolated. This is due to the
Galilean invariance in the z-direction and the fact that ¢ is only determined
up to a constant. Denote a solution (¢, %) by ¥ and let £[¢, ] be the operator
described by Egs.(1-4). Expanding £ around a solution ¢(%) yields

LD + 9, p) = LI, 4] + Loy [, ply’ + O ). (5)

The two degrees of freedom correspond to two zero eigenvalues of Ly. It is
easy to see that the eigenfunction connected to the undetermined constant is
¢' = const., ' = 0. The eigenfunction corresponding to the Galilean invariance
is the z-derivative of the present solution, i.e. ¢ = ¢5,0), = ,(DD) .

3 The composite overlapping grid

‘The composite overlapping grid method is a general tool for solving PDEs on
complex domains, cf. {3]. The basic idea is to divide the complex domain into



simple overlapping sub-domains, the union of which completely covers the region
of interest. Each sub-domain is covered by a structured component grid and
the set of component grids taken together is called the composite grid.

There are three different kinds of grid points in the composite grid: dis-
cretization, interpolation and unused grid points. The discrete version of the
differential equation or the boundary condition operator ie applied at a dis-
cretization point. The interpolation points are situated at an interior boundary
where the sub-domains overlap. Here, the solution is interpolated from an over-
lapping component grid. The unused points are, as the name indicates, not used
in the discretization of the differential equation. Henceforth, the discretization
plus the interpolation points will be called the grid points used in the composite
grid. :

From previous investigations of the present problem it is known that the
spatial scales of the solution can be very small close to the surface. The scales
are also known to grow rapidly with the distance from the surface. To resolve
the solution without wasting grid points, we will use a coarse component grid
close to the bottom, a fine component grid close to the surface, and component
grids of intermediate grid sizes in between. _

The component grid that includes the surface will be called the surface grid,
To make the discretization of the boundary conditions Eqs.(3,4) straightforward
and aceurate, we locate the uppermost grid line of the surface grid at the position
of the surface, 5{x). In order to keep the dependence on # close to the surface
and simplify the discretization, we choose the remaining component grids to be
Cartesian and independent of 7.

Let there be @ component grids and denote by £, the sub-domain in the
(z, z)-plane that corresponds to grid number ¢. The component grids are num-
bered beginning at the bottom and increasing towards the surface, see Fig. 1.
The grid number equals the priority of that component in the composite grid.
The composite grid will primarily use grid points from the component with the
highest priority, secondarily from the grid with the second highest priority, and
S0 on.

3.1 The mapping functions

For each sub-domain, we will design a one-to-one mapping function that trans-
forms the unit square in the (r,s)-plane onto €,. These mapping functions
are used to construct the component grids by transforming the grid points in
a Cartesian grid in the (r, s)-plane onto the (z, z)-plane. In the following, the
(», s)-plane will also be called the parameter space,

For the Cartesian component grids, the mapping functions are simply

z¥(r) = Ir, (6)
29(r, 8) = ag(1 — 5) + bys, (7N

where a; and b, are constants; ¢ is the grid number, 1 < ¢ < Q — 1.
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Figure 1: The numbering of the component grids. In this case, Q = 4,

To make the dependence of 7 in the transformed Laplace equation reasonably
simple we choose the mapping function for the surface grid to be

z%(r) = lq(r), (8)
29(r,s) = n(ltg(r)) — bo(1 — ug(s)). 9

Here, bg is the constant vertical thickness of the grid. The function tg(r)
clusters grid points in a layer around the crest of the wave and the function
ug(s) is used to concentrate grid points in a layer close to the surface. For
example, 2g(r) = R™1(r) where R(t) = (¢ + Up(t) — Up(0))/(1 + Up(1) — Up(0))

and

o0

Upt)= S Ult+v), Ult) = "‘7 tanh B, (t — ;). (10)
P=—00

The stretching is concentrated around ¢ = v, and the parameter 8, determines
the ratio between the smallest and the largest grid size. The constant a, gov-
erns the width of the layer, i.e. the number of grid points that will be in the
layer compared to the number outside it. The derivatives of the function ug(s)
are not required to be periodic. Therefore, the function U replaces U, in the

corresponding expression.
The grid points of grid ¢ are given by z} = xq(r}) and z}"k = 24(rf, s]),
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where

rl=(-Dhi,ji=12...,N, (11)
s = (k—Dhlk=1,2,...,M,, (12)

with A = 1/(N, — 1) and kY = 1/{M, — 1); N, > 1 and M, > 1 are natural
numbers.

4 Discretizing the equations

In this section, we will describe how the Laplace equation and the boundary
conditions are discretized by a second order accurate scheme on a composite
grid. We adopt the mapping method which uses the previously constructed
mapping functions to form the discrete set of equations on each component
grid. The component grid problems are coupled to each other by interpolation
relations at the interior boundaries where the sub-domains overlap.

We begin with some definitions. We define a component grid function on grid
g by g, = g(ei, z] ;) and a surface grid function on grid @ by f; = f(z?) The
forward, backward, and central divided difference operators in the r-direction
on grid g are defined as

q q
. a? - 231k 3.k
Deifip = g
T —_ ..
D.jg; = Diigi 10

1
Dojgf s = 5 (D4j + D=3) g 1

A corresponding notation is used in the s-direction.
On the Cartesian grids, we discretize Eq.(1) by

(F*DyjD_j + (by — a))"*Dia Dt ) ¢, = 0. (13)

This stencil is applied to the discretization points with indices in the range
1<j<N;~1,2< k £ M;—1. The periodicity in the z-direction implies
periodicity in the r-direction for all component grid functions. It is enforced by
b4 = i, —1,; and d):{rq, = ¢} ;- We discretize the boundary condition at the
bottom, Eq.(2), by the secornd order accurate one-sided formula

- h!
(b1 — 1) (Dyr — "ziD+kD+k)¢,1-,k =0, (14)

fork=land1<j< N -1
To discretize the Laplace equation on the surface grid, we transform it to
the parameter space and replace the derivatives of ¢ in the resulting expression



by second order accurate divided differences. This yields

(Aj D4 Doj + Bj e DojDox + Cj x Dy Dy,
+D;,Doj + &5 Do) 65 = 0, (15)

for the discretization pointsin 1 < j < Ng—1,2 € k < Mqg—1. The coefficients
are, cf. [11],

A= (2P +(r2), B=20rTs2 +18s7), € = (s9)2 + (s9)?,  (16)

and
D=rf.i,+rg, 8=s$z+s?z. (17

Here, r9 and s9 are the inverses of the mapping functions 9 and z9, respec-
tively, evaluated at the grid point in question. The subscripts on the metric
quantities denotes partial differentiation, i.e. r¥ = 679 /0z etc.

The boundary conditions at the free surface are discretized by the same
technique as the Laplace equation, This yields

1 2
W9 Doy + 53 D)3, + 3 (9 Doy + 59 Duu)eF)

1 2
+3 (("?DOJ"I"SEDH)‘#?,&) +n; =0, (18)

(,u + (T'S.ng + S:?le)qﬁ_ﬁk) r:?Dg,-q,' - (r‘?ng + s?le) ¢fk = 0. (19)

In these formulae we used Dy = D_j + hy,D_; D_; /2, which is a second order
accurate approximation of the s-derivative. We apply Egs.(18,19) to k = Mg
and 1 <j< Ng~1.

The component grid functions are coupled by interpolation relations. Cur
difference scheme is a second order accurate approximation of a second order
equation and the component grids have an overlap which is proportional to the
grid size. To get second order accuracy for the total solution, it is necessary
to use (at least) third-order accurate interpolation, cf. [3]. For example, let
#n,m e an interpolation point with interpolation location (j, k, b). This means
that ¢7 ., will be interpolated from ¢}+p,k+q# —1 £ p,¢ £ 1. Let (7, §) satisfy
z = £b(F) and z3 m = z°(F,5). The biquadratic interpolation yields

1 1
¢$1,m - Z Z aP(F)ﬂq(§)¢,$+p,k+q = 0! (20)

p=~1g=-1

where oy and .ﬁq are quadratic polynomial base-functions.



5 Continuation in g

We will use a psendo-arclength continuation method to calculate (¢, 1) as func-
tion of the phase velocity p2. The basic method described in [7] can not be used
directly due to the two degrees of freedom that make the linearized operator
singular. The method also needs to be modified because the number of used
grid points in the composite grid depends on the surface elevation. However,
the discussion of that aspect will be postponed to § 7.

To handle the two degrees of freedom, one can add two new degrees of
freedom and two extra equations such that the Jacobian of the extended problem
becomes non-singular [6]. However, it is possible to avoid adding extra unknowns
and equations by instead enforcing the increments in the Newton iteration to
be orthogonal to the nullspace connected to the two zero eigenvalues. This is
equivalent to solving Egs.(1--4) in the subspace orthogonal to the nullspace. The
part of the solution in the nullspace is of no interest, since it only corresponds
to adding a constant to the perturbation potential and shifting the solution in
the z-direction.

To enforce the orthogonality of the increments in the Newtfon iteration, we
also need the nullspace of the adjoint operator. Unfortunately, it is difficult
to numerically compute accurate approximations of these nullspaces. To over-
come this difficulty, we modify the boundary condition at the bottom to fix the
constant part of the solution. Instead of Eq.(2), we use

¢ (z,—d)+ ¢(0,—d)=0, 0 < <. (21)

The discrete boundary condition, Eq.(14), is modified in a corresponding way.
The idea is that a solution with ¢(0,—d) = 0 satisfies the original bound-
ary condition without introducing an undetermined constant. The linearized
modified operator will therefore only have one zero eigenvalue. This makes
an accurate computation of the corresponding nullspace much easier. Due to
non-conservation, we cannot expect ¢{0, —d) to be zero in the discrete approxi-
mation. Instead it will get a small value that indicates how well the contimious
conservation property is satisfied. We regard this value as a measure of the
accuracy of the discrete solution.

The discrete set of equations can be written in abstract form as L{u, g} = 0,
where L : X x & — X. Here, X is an n-dimensional vectorspace and n is the
number of grid points used in the composite grid plus the number of grid points
along the surface. The vector u contains ¢ at every used grid point and 7 at
the grid points along the surface. We define a scalar product and a norm for

z,y€ X by .
(9 = 23z, lell = vz, (22)
i=1

The eigenvalue connected to the Galilean invariance will henceforth be called
the shift-eigenvalue. Let e, and e denote the right and left eigenvectors of



the Jacobian matrix, 8L/6u, corresponding to the shift-eigenvalue. Let the
eigenvectors be normalized to have |le,|| = I and {e;,e,} = 1. The projection P
maps X' onto the eigenspace according to Pf = {e;, fle,, f € X,

We will consider solving

(I - P[ua #])L{U, .u] =0, (23)

for the part of the solution in (I — P)X. The part in PX corresponds to the
phase of the solution and it will be determined during the solution procedure.
A point (u, p) that satisfies (I — P[u, u])L{u, u] = 0 will be called a solution
point and we will call a point non-singular if all eigenvalues of 3L/8u except
the shift-eigenvalue are bounded away from zero.

5.1 The non-singular case

Following [7], the solution (u, #} will be considered as a function of the pseudo-
arclength o, u = u(¢) and g = p(c). Assume that a non-singular solution
point (ug, zo) is known, and let it have pseudo-arclength og. We define the
psendo-arclength relative to that point by

o = oq+ (o, u — ug) + fro{pt — pto)- (24)
The tangent (i, fo) is the solution of
Ly Jua, poltio = — L [uo, polfso. (25)

Here we used the notation L [u, po] = (J = Pluo, po])Lufue, po]. Eq.(25) is
solved under the side-condition Pip = ( and the normalization Jjto||2+|te}2 = 1.
We also require the scalar product between the previous and the present tangent
to be positive.

To get the same number of equations as dependent variables, we augment
(I — Plu, p])L[u, p] = 0 by the arclength equation N[u, u;¢] = 0, where

Nlu, pi; o] = {tio, u — o) + fio(pt — p10) — (o — 70). (26)

We use the predictor (u?, 4%) = (uo + tigAe, po + jtoAe) as initial guess for the
solution at ¢ = ap + Ac. The predictor is corrected by Newton’s method on
the augmented system, where the improvements of the solution are found by

solving
R Y O R O A
Nulub, p¥]  N,[uF, g¥] Apt ) N[u, p#]
by the bordering algorithm, under the side-condition P[u*, u*]Au¥ = 0. The
solution is then updated according to
uFtl = yF o AuF, (28)
pAt = g g At (29)



We iterate until J[u¥+! — uF[| + |pf ! — ¥ < e.

If the iteration converges, we may repeat the procedure after the composite
grid has been updated. The number of iterations that was required to get
convergence is used to determine next step-size Ac, However, if the iteration
diverges, we halve the step-size and try again.

5.2 The singular case

The smallest eigenvalue, except for the shift-eigenvalue, is monitored along the
solution curve to detect singular points. The pseudo-arclength method easily
passes through limit points, but special care is necessary to switch branch at a
bifurcation point. One can proceed as in [7]. In that method, the tangent to
the solution curve on the other branch is computed by using second derivative
information of L. The continuation then proceeds in the direction of the new
tangent starting at the singular point. In the present work, we have instead
used a Lyapunov-Schmidt reduction technique that does not use the second
derivatives of L.

We only consider the situation when 8L/8u has exactly two small eigenval-
ues, of which one is the shift-eigenvalue. We further assume the eigenvectors of
the two small eigenvalues to be linearly independent. Our task is to find one
point on every solution curve (u,p) that satisfy (I — Plu, p])L{u, u] = 0, close
to the singular point.

Let ¢/ and e} be the right and left eigenvectors of the second small eigenvalue,
normalized to have |lel]| = 1 and (e}, e.}) = 1. Let P’ be the projection that
maps X onto the second eigenspace. It is defined by P'f = {¢f, flel, f€ X.

Let {ug, p19) be a solution point close to the singular point and set u = ug+2
and g = pp + 7. We split ¢ into three parts, z = =7 + ! + =/’ where
af = (I — P~ Pz, 2! = P'z, and z'!! = Pz. The part of z in P’ can also
be expressed as #/! = ael, o = (e}, ), and the part in P will be set to zero,

! = 0, since it only shifts the solution. We now split the problem according
to

(I - P')(I - P)Llu,p] = 0, (30)

P'(I - P)L[u,u} = 0. (31)

Let A = 8L/Bufug, po] denote the Jacobian matrix. We can solve the linear
system Az = b for b € (I — P — P)X uniquely in (I — P — P")X, where P
and P’ are evaluated at (ug, po). Therefore, Eq.(30) can be used to compute
z! = 2!(a,7) by iteration. First we choose some values of & and 7 that will
be fixed throughout the iteration. We take the initial guess to be z{ = 0 and
compute the subsequent iterates by solving

Lyfug, po)Azy = —(I — P — P} L[up + 21 + e, pio + 7], (32)
zf + (I — P~ PAz;. (33)

i

I
Tr41



We truncate the iteration when }jzf, , —#]]] < €. The iteration will converge for
sufficiently small a and 7 because, by assumption, 8L/0u has only two small
eigenvalues and the corresponding parts of the solution are kept constant by the
projections. The iteration only requires L, to be factored once; it is therefore
relatively inexpensive compared to the Newton iteration.
The second relation, Eq.(31), is equivalent to the scalar equation g(a,7) = 0,
where
g(e,7) = (e}, L{ug + 2 (o, 7) + acel, o + 7]). (34)

This equation can for instance be solved by the following two step technique.
We first approximately locate the zeros of g by evaluating it at a number of
points on the small circle a® + 72 = 2, r < 1. For each zero, we solve g = 0 by
bisection with the approximate location as initial guess.

We can proceed with the non-singular continuation approach starting from
a solution point sufficiently far away from the singularity in the (a, 7)-plane.
We trace out all solution curves that connect at the singular point by doing this
for one point on each branch.

6 The Jacobian matrix

‘The continuation method requires the knowledge of the Jacobian matrix 8L/8u
and the derivative 8L/0u. Only the boundary conditions at the surface, Eqs.(18,
19), depend explicitly on p. Hence, 8L/8u will only be non-zero along the
surface. The Jacobian matrix is most naturally split into the two parts 8L/8¢
and 8L/8n. L depends non-linearly on ¢ only in Eqs.(18,19), so 8L/8¢ is very
straight-forward to form. However, the part 8L/87 is somewhat involved to
set up and that motivates a more detailed description. The dependence of 7 is
located to the surface boundary conditions, the Laplace equation on the surface
grid, and to the interpolation relations which involve the surface grid function.

The Laplace equation on the surface grid, Eqs.(15-17), and the boundary
conditions at the surface, Eqs.(18,19), contain metric properties that are func-
tions of the position of the surface. In order to find how they depend on 7
we express them in terms of the r and s-derivatives of the mapping function,
Eqgs.(8,9), by inverting its Jacobian, This yields,

Zp 1
Pg = ==, 8p = — s Te=0, 5, = —. (35)
&y Tpzs PR
The second derivatives are r,; = 0, 5,; = —25,/23, rzy = —2,, /2 and

2 2 2
LypZp &y — ZrpLpZi — Zpy Ly
3.3 .
2ix?

Spx =

(36)

By inspecting the mapping function for the surface grid, we see that z2 and
22 depend on 5 and 5"". We approximate the derivatives of 1 with second order

19



accurate divided differences, z8(r;, s:) &~ Dojn; and z8.(rj, s) & Dy D_jn;.
This makes the corresponding parts of the Jacobian matrix sparse, since the
dependence of 5 will be local to the grid point in question.

The interpolation relations which involve grid points in the surface grid
depend on 5 through § in Eq.(20). The first case occurs for the interpolation
points in the surface grid. The surface grid is always overlapped by grid @ — 1.
Let Eq.(20) applied to the interpolation point (n,m) in grid @ be denoted
Lﬁm = 0, where

Lg,m z E ap(")ﬂq(s(ﬂn))ﬁfsﬁp k+g (87)
p=—1g=-1

The mapping function for grid @ — 1, Eq.(7), yields d§/dn, = (bg-1 —ag-1)~*

whence o )
LR
mo_ E Z bap(f‘)ﬁq(s) ¢J+p,k+q (38)

nn, pom1 oty be-1—eg-1

The second case takes place at those interpolation points in grid @@ — 1 that
are overlapped by the surface grid. Let Eq.(20) applied to the interpolation
point (n,m) in grid @ — 1 be LY} = 0, where

101
LS,;E = 453;“1 - z Z oy ()5, (§)¢?+p,k+q' (39)

p=—lg=-1

In principle, & depends globally on n, but we will only introduce third order
errors in {7, &) if we locally approximate the mapping function for the surface
grid, Eqs.(8,9), with the biquadratic mapping,

1

95 = > ap(®zdy, (40)

FF,5) = Z _Z: NGIAGE N (41)

The coordinates (¥, §) in Eq.(39) are the solution of 39(F) = 2§71, 59(#,5) =
z35 and the grid points in the surface grid have zjqk = n; — bo(1 — ug(sk)).
Therefore, § depends only locally on 5, which implies,a, sparse Jacobian matrix.
Differentiating Eq.(39) gives

8189-1
—Ii-- P> (48O + DD g ) eppnse @)

p=a1 gm-1

1



In order to make #9(F,5) = z3;;! and #9(F,5) = 25! when 5, is varied, we
must have d29/dn, = 0 and d29/dy, = 0. We get 97/0n, and 35/8n, by
differentiating Eqs.(40,41) and solving the linear system

i 0 A7/ Ony 8z9 /8,
= - . (43)
3@ 3@ 05/0m, 039 /81,
Now, 8%9/8n, = 0 and 829/0n, # 0 for v = j — 1,4,i + 1, so 35/0ny =
—879 /8y, /22 and 87/0y, = 0.

7 Changing composite grid

When the surface moves during the continuation procedure, the amount of over-
lap between the sub-domains g and Q-1 will change. Component grid @ has
the highest priority so all its grid points will always be used in the composite
grid. The situation is different for grid @ — 1. After the surface has moved, some
grid points that previously were used might no longer be needed, while some
formerly unused grid points might be required in the composite grid. Therefore,
the type of equation associated with a grid point and the number of used grid
points in grid @ — 1 will depend on the location of the surface. Furthermore,
even if the type of equation remains unchanged for all grid points, the inter-
polation locations might be different for some interpolation points. For these
reasons, the continuation method must be modified to allow for changes in the
composite grid.

The basic idea is to fix the interpolation locations and the type of equation
associated with each grid point during the Newton iteration and only update
the mapping function for the surface grid. This means that for instance the
discretization points are prevented from changing to interpolation points or
unused points. For stability reasons, the amount the surface is allowed to move
between two solution points is restricted by the amount of overlap, i.e. we do
not allow for extrapolation in the interpolation relations. With the notation
of Eq.(20), extrapolation occurs if at least one of the following inequalities is
satisfied: 7 < r}_;, 8 <s}_|, v, < For 8341 < 8. If extrapolation should
occur in any interpolation relation, we stop the Newton iteration, decrease the
step size Ao and restart the continuation from the previous solution point.

Once the iteration has converged to a solution where there is no extrapolation
in the interpolation relations, we verify if the composite grid is consistent with
the position of the surface. This is done by checking if the interpolations are
sufficiently centered. The criterion

8 —0.6hY <7< rd+0.6h), st —0.6h% < &< sb +0.6R, (44)

has been found to work well in practise. We have a valid solution if all inter-
polation points satisfy Eq.(44); we may then proceed with the continuation.
Otherwise, the composite grid and the solution must first be corrected.

12



No solution on the corrected grid
for p>p=*

B

'_ Figure 2: The location of a limit point might depend slightly on the grid.

7.1 The correction step

‘We begin by constructing a corrected composite grid. We mention in passing
that this can be done at a much lower computational cost than would be in-
volved in constructing a completely new grid. Thereafter, we repeat the last
continuation step on the corrected grid. We get ug on the corrected grid by in-
terpolation from the previous grid. With this approach, it is possible to correct
the grid close to a limit point. The simpler idea to solve (I — Plu, p])Liu, ul = 0
on the corrected composite grid but fixing ¢ at the current value might fail close
to a limit point because its location depends slightly on the grid, see Fig. 2. The
correction step has been found to be very stable with the present restriction on
the movement of the surface,

The reason for allowing the interpolation points to be slightly non-centered
is to make sure that the corrected solution will satisfy Eq.(44) on the corrected
grid. The difficulty that otherwise might arise is illustrated in Fig. 8. Consider
the situation when 0.6 is replaced by 0.5 in Eq.{44). Let some interpolation point
have § = s¢ + 0.5h% + ¢, 0 < € € 1, before the correction step, The corrected
composite grid will use more grid points in grid b to make § = s}, —0.5h% +¢.
The problem is that the solution on the corrected grid might be slightly different
than the solution on the previous grid. In particular, the corrected location of
the surface can make § = 321-1 — 0.5k — & 0 < & « 1, which would call for
correcting the composite grid back to the initial state. This problem does not
occur if a less restrictive tolerance is used. Instead, both composite grids in
Fig. 3 would be valid. The history of the previous locations of the surface
determines which of the possible composite grids that will be used. This is
acceptable because we can expect the solutions on the different grids to be very
similar if the solution is well resolved,

13
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Figure 3: The oscillation between two very similar composite grids that can be
avoided by allowing for slightly non-centered interpolation points.

7.2 Adapting the grid to the solution

The solution becomes steeper as the wave height increases. In particular, the
derivative of the surface elevation tends to a discontinuity at the crest of the
wave, A very fine grid is therefore necessary to resolve the solution close to
that point, but it is difficult to a priori estimate how fine the grid needs to
be for a certain wave height. It is also very uneconomical to use the fine grid
all the way from the trivial solution. For these reasons, we have developed an
adaptive technique where we allow the resolution in each component grid and
the stretching in the surface grid to change during the continuation procedure.

Ideally, one would like to monitor the truncation error of the discrete solu-
tion, and increase the resolution when and where it is necessary. In the present
work, we have used a simpler approach, namely to monitor how well the solution
is resolved on the grid. In particular, for the perturbation potential we look at
the largest difference in each direction, i.e.

diff, ¢ := max |h{Dy; ] |, diff,¢? := max [A] D] |- (45)

For the surface elevation, we are concerned with resolving the sharp gradient
in 7z that develops when the wave height gets close to its limiting value, see
Fig. 4. We therefore monitor diff,7,.

At each valid solution point, we calculate diff,¢?, diff,¢? and diff,n,. The
idea is to keep these quantities in the predetermined ranges

Ag < diff,¢7, diff,¢? < By and A, < diff,n, < B, (46)

by changing the number of grid points and the parameters in the stretching
function. The constants A4, By, A, and B, will be called the resolution thresh-
olds,
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Figure 4: The a-derivative of the surface elevation close to the maximum wave
height.

Initially, the solution is trivial, and we can use a coarse grid to start the
continuation. During the continuation, some difference will eventually exceed its
limit and we then need to construct a grid with better resolution. For example,
let diff,¢? > By. We increase the number of grid points in the r-direction of
grid g by changing N, such that the solution on the new grid approximately
satisfies diff. ¢? = Ay.

We control the stretching by monitoring n:{z). To avoid wasting grid points,
the strength B, and the location 7, of the stretching function Eq.(10) are chosen
such that

max hiD.4gn:(z¥) & — min hID 447z (mf) (47)

When the number of grid points and the stretching have been properly ad-
justed, we perform a correction step (§ 7.1) to update the grid and get a valid
solution on the refined grid. To make the process stable and reliable, the solu-
tion must be reasonably well resolved on the grid before we try to change the
resolution. If it is not, we decrease the step size Ao and compute an interme-
diate, more well resolved, sclution before we change the resolution. Without
this precaution, the correction step might diverge. Another important rule is
to avoid changing the resolution too drastically. Practically, we found that the
correction step converges quickly if the number of grid points changes with less
than 20 percent in each direction on each component grid, and the stretching
strength B, changes with less than 5.0,

8 Implementation

In the present implementation we have used the software package CMPGRD,
cf. [1], to generate the composite grids. A composite grid is created by calling
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Figure 5: The band in the (r, s)-plane that is searched for the location of the
interpolation points in the corrected grid. The solid line indicates the position
of the interpolation points in the previous grid.

CMPGRD as a subroutine with an input consisting of the component grid-
transformations, the number of grid points in each direction on each grid, and
the priority between the component grids. On output, each grid point is labeled
according to how it will be used and the interpolation locations are also given
for the interpolation points.

When CMPGRD is called to correct an existing grid, the previous composite
grid and the corrected mapping function for the surface grid are given as input.
For the case when the resolution has been changed, the new number of grid
points is also supplied. The fast algorithm for correcting the composite grid
only works if the new interpolation points can be found at most one grid point
away from some previous interpolation point in the same component of the
previous composite grid, cf. Fig. 5. This restriction is consistent with the
aforementioned requirement to disallow for extrapolation in the interpolation
relations. However, we have encountered situations when the fast algorithm
fails after the stretching has been changed drastically. In those rare cases, a
new composite grid has to be constructed from scratch.

The information supplied by CMPGRD is sufficient to form the discrete
set of equations for a composite grid that is composed of an arbitrary num-
ber of component grids, each having an arbitrary number of grid points. The
only restriction on the component grids is that they must overlap sufficiently.
However, the implementation of a general solver in FORTRAN-77 requires a
dynamic memory allocator. For this purpose, we have used the DSK-package,
which is an autonomous part of CMPGRD,

The emerging linear systems of equations were solved by the YALE sparse
matrix package, ¢f. [b]. We found experimentally that the accuracy of the solu-
tion was improved when the equations corresponding to the boundary conditions
at the surface were inserted early in the system matrix. Actually, this trick was
necessary to make the Newton iteration converge properly for solutions with
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Ag | p=1.04247 | p=1.07029 | p = 1.09184
3.0 x 10~2 0.092107 |  0.117823 |  0.135427
2.0 x 10-2 0.092481 0.118119 |  0.136440
1.0 x 102 0.092278 0.117885 0.136362

[9] 0.091809 0.117572 {  0.136178

Table I h/I as function of the resolution for the depth d = 2#. The results
obtained by [9] for infinite depth are given at the bottom of the table.

wave heighis close to the limiting value. The reason for this behavior might
be that this package only pivots with respect to the structure of the non-zero
elements in the matrix. Our main motivation for using this package despite this
deficiency is that it is fast.

9 Numerical results

We begin by studying a single wave, i.e. { = 27, on deep water. We compare
our results with those reported by 2] and [9] for the infinitely deep case. To
investigate the effect of the finite depth in our computation, we performed two
sets of calculations with d = 27 and d = 4, respectively. To also investigate the
dependence of the grid size, we varied the resolution thresholds. For simplicity,
we used Ag = A, and By = B, = Ag + 5 x 1073, We used a composite grid
with 4 components and the mapping functions for the component grids had the
parameters a; = —d, by = —2.5, a3 = ~3.0, by = —=0.7, a3 = ~1.2, ba = 0.65
and b3 = 0.4. In the case | = d, we used the following number of grid points
in the start grid: Ny = 14, M; = 8, N; = 23, M; = 11, N3 = 39, My = 13,
Ny = 63 and M4 = 7. For the deeper case, we used M; = 20.

For the continnous problem, the bifurcation from the trivial solution occurs
at pg = vtanhd. With the present start grid, it was displaced by @(10~%).

Let h denote the wave height. In table I and II we present h/! as function of
the resolution thresholds. The three different g-values correspond to solutions
where the maximum slope of the surface is approximately 17.0, 22.4 and 27.8
degrees, respectively, For A4 = 1072, the relative difference between our results
and those reported by [9] are of the order O(10-2). We conclude that the
discrepancies are mainly caused by truncation errors and not by the finite depth.
Both the accuracy and the efficiency of the present methed would probably be
improved by using a higher order difference scheme.

The value of ¢(0, —d), which occurs in Eq.(21), indicates how well the con-
servation property of the continuous problem is satisfied. By starting from the
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Ay | 1 =1.04247 | p = 1.07029 | p = 1.09184
3.0 x 1072 0.092083 0.117908 0.135623
2.0 x 10~2 0.092557 0.118228 0.136455
1.0 x 10-2 0.092257 0.117877 0.136353

Table II: h/l as function of the resolution for the depth d = 4.

trivial solution, it is initially zero. For Ay = 1072 it was of the order @(10~%)
along the solution curve.

To demonstrate the result of the adaptation technique, we present the start
grid in Fig. 6 and the grid corresponding to Ay = 3 x 10~2, 4 = 1.09184 in
Fig. 7.

In Figs. 8 and 9, we plot h/l as function of the phase velocity for the depth
d = F and the resolution Ag = 1072, During the computation of this solution
curve, the step-size in the pseudo-arclength was chosen to make the Newton
iteration converge in approximately 4 steps. We calculated 43 solution points
and the resolution was changed 24 times. The composite grid was corrected
43 times due to non-centered interpolations; 6 of those were done after the
resolution had been changed. The fast algorithm for correcting the composite
grid did not fail during any correction step. This implies that the overhead
for changing the resolution corresponded to 30 out of totally 110 continuation
steps, i.e. approximately 27 %. To give an example of the amount of work
that was saved by using an adaptive grid, we report the number of equations
as function of &/l in Fig. 10. The sparse matrix solver requires of the order
O(n?) operations to perform one Newton step. This means that one Newton
iteration with 10* grid points requires the same effort as performing ((10%)
iterations with 10% grid points. These figures clearly shows the benefit of using
an adaptive grid.

Next, we investigate the subharmonic bifurcation reported by [2] for the
infinitely deep case. In this computation, we started with two waves in the
domain, [ = 47. The depth was d = 27 and the grid sizes for the start grid were
the same as in the single wave case. We used the resolution threshold Ap = 1072,
The smallest eigenvalue except for the shift-eigenvalue was monitored along the
solution curve to detect singular points. Initially, the solution has period /2
and it is identical to two adjacent single wave solutions. A solution with this
property will be called regular.

In close agreement with [2], we found a singular point in the vicinity of
p# = 1.08414, h/l = 0.06447. By applying the technique described in §5.2
we detected a bifurcating solution curve that connects to the regular solution
curve at the singular point. The eigenfunction corresponding to the second
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Figure 6: The start grid.
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Figure 8: h/l as function of the phase velocity for the case d = 27 and
Ay = 1072, The solid line represents the result reported by [9]; the dashed
line corresponds to the present work.
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Figure 9: The same case as in Fig. 8, close to the solution of maximum height.
Here, the solid line corresponds to the results of [2].
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Figure 10: The number of equations as function of A/ for the case d = 27 and
Ag = 1072, The first grid had 1,086 points and the last grid had 22,053 points.

small eigenvalue is given in Fig. 11. It has period ! in the g-direction, which
implies that the solution on the bifurcated curve also has period l, l.e. twice
the period of the regular solution. The bifurcated solution curve was traced out
with the non-singular continuation method starting on the bifurcated branch
close to the singular point, On the bifurcated solution curve, one of the crests
becomes sharp while the other stays rounded when the wave height increases,
see Fig. 12. Obviously, the two possible locations of the sharp crest correspond
to identical solutions shifted by 1/2; they are found by proceeding in opposite
directions along the solution curve. In Fig. 13, we give h/I as function of the
phase velocity for the bifurcated solution. The continuation was truncated when
the number of equations exceeded 25,000.

Unfortunately, a direct comparison with previous results for the shallow
water case [4, 12] was not possible because those results were obtained by keeping
the flux, pud, constant during the continuation. In the present method, we
instead keep the constant in the Bernoulli equation, Eq.(3) fixed, which implies
that the flux varies slightly along our solution curves. The average depth in
the two approaches will therefore be different at the same velocity for non-zero
wave heights.
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Figure 11: The surface component of the eigenfunction connected to the second
small eigenvalue, close to the bifurcation point.
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Figure 12: The surface elevation as function of z. ‘The solid line represents the
regular solution close to the bifurcation point (u = 1.08414, h/l = 0.06447)
and the dashed line corresponds to the bifurcated solution at u = 1.08132,
h/l=0.06786.
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Figure 13: h/l as function of the phase velocity for the bifurcated solution.
Here, d = 27 and A4 = 1072, The solid line represents the infinitely deep case
reported by {2] and the dashed line corresponds to the present work.

10 Conclusions

In this paper, it has been shown that composite overlapping grids together with
finite difference methods can be used to accurately calculate steep periodic water
waves, It has been indicated that an adaptive grid is necessary to achieve well
resolved solutions close to the wave of maximum height. We have shown that
the overhead connected to changing the resolution in the grid is small compared
to the cost involved in always using a fine grid.

An underwater obstacle could easily be introduced by adding a component
grid close to the obstacle and replacing the periodicity in the z-direction with
appropriate in and out-flow boundary conditions. The solution is only asymp-
totically periodic behind the obstacle, and it would be interesting to see if the
subharmonic bifurcation also appears here. This will be investigated in a future

paper.
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