UCLA
COMPUTATIONAL AND APPLIED MATHEMATICS

Comparison of Finite Difference and the Pseudo-Spectral
Approximations for Hyperbolic Equations and
Implementation Analysis on Paralliel Computer CM-2

Yu-Chung Chang

January 1992
CAM Report 92-02

Department of Mathematics
University of California, Los Angeles
Los Angeles, CA, 90024-1555

UNIVERSITY OF CALIFORNIA

Los Angeles

Comparison of Finite Difference and the Pseudo-Spectral
Approximations for Hyperbolic Equations and

Immplementation Analysis on Parallel Computer CM-2

A dissertation submitted in partial satisfaction of the
requirements for the degree Doctor of Philosophy

in Mathematics

by

Yu-Chung Chang

1991

TABLE OF CONTE

=
Z
+=
0

1 Introductionto Part L. 2
2 The 1-D Linear Hyperbolic Equation. 9
2.1 Convergence properties of these schemes i3
2.2 Leading error constants: L o0 oL 13

3 Numerical result for 1-D model problem 21
3.1 Inviscld CaSES. . . v . v v e e e e e e e e e 23
311 a=12,=01,e=00 23

312 a=1.0,8=01,e=00 31

313 a=08,=01e=00 34

3.2 VISCOUS CASES. . « v v v v v v v v e v e e e e e 38
321 a=128=01e=0015......... ST 39

322 a= l.b,ﬂ =01Le=0015 0. 42

323 a=08=0Le=0015 45

4 Asymptotic Error Analysis 49
4.1 Method of characteristics 56
4.1.1 Explicit Solution for Linear Equations 56

v

6 2-D implementation on Parallel Computer CM-2:. 72
7 Introductionto Part II. 76
7.1 Introductionto CM-2.. 82
7.2 Two execution models: Paris (Fieldwise) model/ Slicewise model . 84
7.3 Virtual Processing oo 85
7.4 Principles of optimizing the performance of CM-2. . ., 86
7.5 VP geometries o o v v i i i e e 87

8 Analysis of floating point operation and grid communication model

88

8.1 Fieldwise model versus slicewisemodel. 88
8.2 Performance Analysis of Floating Point Operation for Slicewise CM-2 92
8.3 Grid Communication Analysis for Slicewise CM-2 100
8.3.1 Data mappings on higher dimensional data structures . . . 108

8.3.2 Decomposition of NEWS grid communications 108

8.4 Model for Internal Communication 111
8.5 Model for External Communication 113
8.6 Combine Internal and External Communication Together 114
8.7 Accuracy of the NEWS Communication Model 116
9 Applications L 120

9.1 Predicted Performance of Difference Methods Using the Current

..................................

9.2 Performance Analysis for Possible Improved Machine Parameters .

9.21

9.2.2

9.2.3

9.2.4

9.2.5

Predicted Performance of Improved Communication Starfup
Overhead Timeon CM-2
Predicted Performance of Improved External Communica-
tion Time e

Predicted Performance of Improved Internal Communication

Predicted Performance of Improved Floating Point Opera-

tionn TiIME . & o o o o e e e e e e e e e e e e e e e e e

9.3 Asymptotic Behaviour for Various Improved Timing Parameters .

9.4 Concluding Remarks

Bibliography

..................................

vi

120

122

123

124

125

127

131

ACKNOWLEDGEMENTS

My deepest gratitude goes to Prof. H.-O. Kreiss for his excellent guidance, his
encouragement and his support, without which this work would not have been
possible. His invaluable insight and overview on sciences have always inspired my
work and led me to a deeper appreciation of the beauty of mathematics.

I also would like to express my deep appreciation to Prof. Tony Chan for his
guidance and and his support, especially for the work on parallel computations.
His enthusiasm about research has been a constant energy for my work.

Tom Y. Hou deserves my special acknowledgement. His spiritual support has
accompanied with me to the very last stage of graduate study. His insight into
mathematics has made complicated problems become comprehensible.

Thanks also go to Profs. C. Anderdon, R. Caflisch, A. Chang, S.Y. Cheng,
B. Engquist, J. Garnett, C. Lange, K. C. Ii, and S. Osher for their helps and
encouragement through the years of my graduate study at UCLA.

[wish to thank Drs. M. Bromley, S. Duggirala, A. Greenburg and K. Mathur
from the Thinking Machine Corporation and ¥. Hedman at K. T.H. for many valu-
able discussions on the machine features and architectures of the connection ma-
chine CM-2.

It deserves to mention my fellow students: June Donato, Erding Luo, Tachun
Wang, Tien-Lun Tsoong, and Lixin Wu, and Sunny Wu whose kind and happy

characters have made my graduate study more enjoyable.

vii

I especially thank my parents for their love, their understanding and financial
support throughout the years of my graduate study at UCLA.

Through my graduate study, | was generously suppoﬂ:ed by some grants, which
include the Office of Naval Research under contracts N-00014-83-K-0422 and N0Q014-
90-J-1695, the Department of Energy under contract DE-FG03-87TER25037, the
National Science Foundation under contracts DMS-8312264, ASC 9003002 and

BBS-87-14206, the Army Research Office under contract DAAL03-91-G-0150.

viil

October 26, 1958

1981

1986

1985-1988

1988-1991

VITA

Born, Taipei, Taiwan, R.O.C.
B.A., Mathematics

Fu-Jen University

Taipei, Taiwan, R.O.C.

M. S., Mathematics
UCLA

Teaching Assistant
UCLA

Research Assistant

UCLA

ix

ABSTRACT OF THE DISSERTATION

Comparison of Finite Difference and the Pseudo-Spectral
Approximations for Hyperbolic Equations and

Implementation Analysis on Parallel Computer CM-2

by

Yu-Chung Chang
Doctor of Philosophy in Mathematics
University of California, Los Angeles, 1991

Professor Heinz Kreiss and Tony Chan, Chair

A detailed comparison between symmetric high order finite difference approxi-
mations and the pseudo spectral approximation is given for both linear and nonlin-
ear hyperbolic equations. The problem of interest is the question which method is
more efficient in achieving a given error tolerance. The understanding of this ques-
tion could help to improve the practical performance of these methods, especially
for problems where the physical solution is nearly singular.

We divide the thesis into two parts. The first part is concerned with comparison
between finite difference approximations and the pseudo spectral approximation
for hyperbolic equations. Emphasis is put on the error analysis, direct comparson

of performance of these methods for some model problems on sequential machines.

The second part is devoted to studying the performance of high order difference
methods on a parallel connection machine, CM-2. A timing model is established
to analyze the performance of high order difference methods by estimating the
arithmetic operation time and the communication time on a SIMD kind of machine.

In practice, the success of a spectral computation depends on whether or not
the high frequency components of the physical solution can be well represented by
the numerical Fourier modes. This criteria becomes difficult to fulfil when the so-
lution contains many small scale features. Examples of this kind are computations
for turbulent flow and flow of strong shear. Typically, small scale features of the
physical solution are generated as time evolves and it is very difficult to accurately
resolve them on computational grid due to the limited computer power. Then the
natural question is what is the minimal numerical resolution needed in order to
achieve a given error tolerance. This is a question which the traditional numerical
analysis has difficulty to answer. One of our major findings is that the fourth order
centered difference method is superior to the pseudo spectral method in the sense
that the difference method could achieve the same accuracy more efficiently than
the spectral method in the case where the solution is nearly singular. Extensive
numerical experiments and some partial analysis are given for a 1-D model prob-
lems to support this conclusion. A 2-D nonlinear viscous Burger system is also
considered. Qur theoretical and computational results indicate that the 4th or
6th difference method could achieve a given error tolerance more efficiently than

spectral methods.

x1

It is very important to compare the performances of these high order methods
in a massively parallel super computer since most of the large scale simulations are
carried out by super computers. It is also crucial to investigate how the machine
architecture may affect the performance of an individual numerical method. For
this purpose, we have performed many experiments on the connection machine.
The question is still the same: are the high order difference schemes still more
efficient than the spectral method on the connection machine? In our experiments,
we have taken into account the existing architecture for FF'I' and the interprocessor
communication in the connection machine. Unlike sequential machines in which
the operation count dominates the computing time, connection machines spend
a lot of time in communication among different processors. 'To obtain a better
understanding in the communication process, we have designed a timing model
to analyze the relationship between the inter-processor communication time and
the order of the difference scheme. We then use the timing model to predict the
performance of the difference methods by varying different machine performance
parameters, such as the communication time, the floating point operation time
and the machine overhead time. We observe the performance of these difference
methods are qualitatively insensitive to the perturbation of these performance
parameters. From our analysis and numerical implementations, we have observed
that the fourth order finite difference method is still the best. In general the high
order difference methods are more preferable than the spectral method in sense

that they achieve the given error tolerance more efficiently.

xil

Part I. Comparison of Finite Difference and
the Pseudo Spectral Approximations
for Hyperbolic Equations

CHAPTER 1

Introduction to Part L.

It is well known that the pseudo spectral method has spectral accuracy and it
can be implemented efficiently by use of the Fast Fourier Transform (FFT). For
this reason, it has been widely used in industrial and engineering applications (see
references in Gottlieb and Orszag [5]). In practice, the success of a spectral com-
putation depends on whether or not the high frequency components of the physical
solution can be well represented by the numerical Fourier modes. Whenever we can
afford to accurately resolve the small scales in the physical solution, the pseudo-
spectral method gives a very accurate approximation (see, e.g., {10, 5, 3, 18]). This
criteria becomes difficult to fulfil when the solution contains many small scale fea-
tures. Examples of this kind are computations for turbulent flow and flow of strong
shear. Typically, small scale features of the physical solution are generated as time
evolves and it is very difficult to accurately resolve them on computational grid due
to the limited computer power. Then the natural question is what is the minimal
numerical resolution needed in order to achieve a given error tolerance. This is a
question which the traditional numerical analysis has difficulty to answer. Also,
the global coupling nature of the pseudo spectral method tends to introduce the

numerical oscillations everywhere when the high frequency components are under

resolved. Finite difference methods, on the other hand, have a more local cou-
pling of stencil. Thus it is reasonable to speculate that high order finite difference
method may have a chance to out perform the spectral method since it has the
advantages of being high order accurate and localized. Indeed, our study shows
that the sixth order difference method produces less numerical oscillations and is
more efficient than the spectral method in the case where the solution is nearly
singular.

Another advantage of using finite difference methods is that the operation count
is smaller than that of the spectral method. In the 1-D pseudo spectral method, it
usually takes (5NlogN — 4N) operations for the convection term calculation per
time step by using FFT (& is the number of grid points). In comparison, a sixth
order finite difference method takes only 9V operations for the convection term
calculation per time step. The difference of these two operation counts becomes
more noticeable for large N. In our study, we observe that when the solution
becomes nearly singular the accuracy of a spectral calculation with N grid points
is comparable to that of a sixth order difference method with 2N grid points.
Therefore, it would be more efficient to use a sixth order finite difference method
in this case. This is also confirmed by our direct comparisons of the CPU times
needed for these calculations.

Two model problems are considered in this paper. One is a linear hyperbolic
equation with variable coefficient. When the coefficient changes signs from a pos-

itive to a negative one, it is well known that the solution develops an internal

layer whose thickness decreases to zero exponentially in time. Thus it becomes
more and more difficult to accurately resolve this internal layer for large times. To
study convergence of the spectral method and finite difference methods, we refine
our numerical computations successively until the internal layer is well represented
by the computational grid. The interesting question is to see which method can
achieve the given accuracy uniformly with the least computation effort. We ob-
serve that when the solution is smooth (true for short times or for one sign velocity
coefficient), the spectral method out performs the second, fourth and sixth ofder
finite difference methods. However, when the solution becomes more singular for
large times, the spectral method tends to introduce more numerical oscillations
which spread over the entire domain. The fourth or sixth order finite difference
methods seem to do a better job. The numerical oscillations are confined to a
small region containing the internal layer. As the number of grid points increases,
the amplitude of the numerical oscillations for both the difference methods and
the spectral method decay to zero. There will be eventually a time when we are
no longer able to resolve the solution numerically. Beyond that time, all numerical
methods considered here fail to converge.

It is interesting to n&te that there appears to be no noticeable numerical in-
stability in our pseudo spectral computations for the variable coefficient which
changes sign. It has been a long open question as for whether or not the pseudo
spectral method could develop numerical instability [6, 4]. Our numerical study

tends to indicate that the pseudo spectral method converges to the correct solution

as the mesh size goes to zero. The numerical oscillations are due to the lack of
numerical resolution, as is the case for the finite methods.

The second problem we consider is the 2-D viscous Burger system. In the
inviscid case, the Burger’s equation will develop a shock discontinuity at later
times even if we start with smooth initial conditions. In the presence of viscosity,
the shock is smoothed out. But there is still a viscous shock profile whose thickness
is proportional to the viscosity. We ask the same questions for this 2-D viscous
Burger system as before. Qur numerical result indicates that before the time when
a shock forms the observations we made for the 1-D model problem still hold for
the 2-D problem. The observations for the 1-D case continues to hold even after
the time when a shock forms. In this case, we need to have O(1) grid points
to resolve the shock profile. Since the thickness of the shock profile remains to
be of order O() for all times, the number of grid points needed for achieving
a given error tolerance does not increase with time. This is confirmed by our
numerical experiments. A sixth order central difference calculation with N = 256
approximately achieves the given error tolerance 0.01 at ¢ = 1.5 in the case when
viscosity equals to 0.015. The same calculation still achieves the error tolerance
0.01 at ¢+ = 2.0 and £ = 2.5. This observation is also early confirmed by the 1-D
calculation with viscosity 0.015 and N = 128 in the case @ = 1.2 and § = 0.1.
In future, I plan to perform a similar test for random initial data. The goal is to
see how much of the observation we made here for the smooth data applies to the

random data. This may shed some light into computations of high Mach number

flow. (see, e.g. [11, 12}).

It is difficult to calculate the numerical errors because there is no explicit solu-
tion available for these equations. In the 1-D calculations, we use a pseudo spectral
calculation with 2048 grid points as our accurate” solution. Then we compare
the coarser grid solutions with this accurate solution. This provides us with an
error table. When the solution is smooth, the error decays at the rate predicted
by the order of the method. As time increases, the error deteriorates rapidly. As a
consequence, the rate of convergence is lost very fast. 1t is not clear a priori if this
is due to the loss of accuracy in our numerical "exact solution”. An independent
check is required to verify the numerical errors.

Two approaches are proposed to verify our numerical errors. In order to per-
form an asymptotic error analysis, we first derive a partial differential equation for
the leading order error . Although this error equation can be derived in a formal
manmner, it is not obvious that this equation indeed characterizes the leading order
error. We show that this is the case by using an argument due to Richardson.
The idea is to compare the numerical solution with a smooth error expansion of
the exact solution. The advantage of this argument is that we not only obtain
a convergence proof for the numerical method, we also establish the precise error
expansion for the numerical solution. Once the error equation is obtained, what
is left to do is to estimate the growth rate of the error constant. Since the error
equation contains high order derivatives of the exact solution as a forcing term,

it is essential to obtain a priori estimate for the derivatives of the exact solution,

One way to achieve this is to replace the original eqﬁa.‘tion by a simpler one which
can be solved analytically. This is our first approach. This approach works well
for moderate times. But for high order methods (like fourth or sixth order) better
approximations for the velocity coeficient are required to obtain an accurate ap-
proximation for the high order derivatives. It is not difficult to imagine that this is
a very difficult task in general since the high order derivatives become even more
singular when the solution itself becomes nearly singular.

The second approach is to derive a first order system to approximate the high
order derivatives. Then try to approximate these equations together with the error
equation numerically. We use a fourth order finite difference method and a particle
method respectively to approximate this system. The result agrees very well with
our numerical errors. For large times, the finite difference approximation converges
slowly due to the increasing singular nature of the solution. The particle method
gives a better approximation in this case since the method is more self adaptive.

Part I of this thesis is organized as follows. In Chapter 2, we describe the 1-D
linear hyperbolic model problem. The finite difference and the pseudo spectral
approximations for this model are introduced. Convergence properties of these
methods and their numerical properties are discussed. In Chapter 3, we present
detailed numerical computations for the 1-D model using these two types of meth-
ods. Some observations on the efficiency of different methods are given, Chapter 4
gives error analysis for the numerical results presented in Chapter 3. This includes

the asymptotic error analysis and the direct approximation for the error equations.

The 2-D viscous Berger system is studied in Chapter 5. Many of our observations

for the 1-D model still apply here.

CHAPTER 2

The 1-D Linear Hyperbolic Equation.

In this chapter, we introduce the finite differences and the pseudo-spectral
method for a one-dimensional hyperbolic equation. This model equation is cho-
sen so that it mimics the singular shear layer structures in the two-dimensional
incompressible flow.

We consider the following one dimensional linear hyperbolic equation using

periodic boundary condition,

u, +a(z)u, =0 (2.1)

u(z,0) = sin(z). (2.2)

When a(z) changes sign from a positive one to a negative one, the solution of the
above equation experiences a linear compression. As a consequence, the solution
produces an internal layer whose thickness decays to zero exponentially in time.
In our study, we choose a(r) =1 — aexp(:gl—(sinz(%)), with parameters o and
to be determined later.

The case where o = 1.2 and 3 = 0.1 is especially inferesting, since it corre-
sponds to the case the compression is strong and localized near the region a(z) =0

and changes sign from positive to negative. The cases of @ = 1 and a = 0.8 are

also considered. The case of & = 1 corresponds to the case that a(z) vanishes only
at a single point. The case of & = 0.8 corresponds to the case when a(z) 2 0.2 > 0.
The solution is smooth for large times.

We consider two classes of numerical methods for this equation. The first is
the pseudo spectral method. The second is the high order centered finite difference
approximation. We test the second order, the fourth order and the sixth order finite
difference methods respectively. Then we compare the numerical results obtained
by the difference approximations to those obtained by the spectral method.

In order to describe the basic ideas we consider discretization in space only, this
approach is often called the method of lines. It yields a set of ordinary equations
for the grid values which can be solved numerically by a standard ODE-solver.

The second order centered difference scheme is simply

(Vi) + alz;)Dy(V;) = 0 (2.3)
V;(0) = sin{z;),

where x; = jh and D} is a centered differencing operator
D}(V;) = (Visa — Vio1)/(20).

Similarly, the fourth order or the sixth orde difference schemes are given respec-

tively by

(Vi)e + a(e;) D3(V;) = 0 (2.4)

10

V;(0) = sin(z;),
and

(V;)e + a(z;) DA(V;) = 0 (25)

VJ(O) = Sin(mj)%
where D! and D} are defined by

Dy(V;) = 4/3Di(V;) = 1/3D3M(V;)
Di(V;) = 16/15(4/3D3(V;) = 1/3D3(V)))

— 1/15(4/3D2k(V;) — 1/3D3M(V;)).

The pseudo spectral method is based on the discrete Fourier transform and the
related discrete Fourier series.

For any integer N > 0, consider the set of poinis

referred to as nodes or grid points or knots. The discrete Fourier coefficient of a

complex-valued function u in [27] with respect to these points are
1 = .
= 3 ula)ets -~ N2<k<Nj2-1 (2.6)

i=0

By the orthogonality relation
1 N1 1 #p=Nm,m=0,+£1,42,...

—) e =

N =

0 otherwise,

11

we have the inversion formula

N/2-1
u(z;)= 3, G j=0,.,N-1 (2.7)
km—Nj2
We can show that the polynomial

N/2
IntNu(cc)z:ﬁ > alk)e,
k=-N/2

is the unique trignometric interpolant of u, i.e.
u; = Intyu(z;), 3 =0,1,2,...,N.

This polynomial is also known as the discrete Fourier series of u.
The process of representing the sequence u(rcj)gi_l using the Fourier coeflicients

ﬁ(k)]fﬁ/';l, defined by (2.6) is called the discrete Fourier transform (DFT). The
two conventional forms are given by (2.6) and ({ 2.7), with the latter sometimes
referred to as the inverse DFT . They show that the discrete Fourier transform is
an orthogonal transformation in CV . It can be accomplished by the Fast Fourier
Transform algorithm (FFT) (see Cooley and Tukey [1]).

The simplest Fast Fourier Fourier Transform requires N to be a power of 2. If
the data are fully complex it requires 5Nlog, N — 6N real operations, where the ad-
dition and multiplication are counted as separate operations. In most applications,
u is real and @_; = ;. If the data are real, the operations will be halved.

To compute approximations of g% at the grid points z;, we first calculate the

trigonometric interpolant and then evaluating the derivative of this interpolant

12

in the points ;. Denote by w(z) the derivative of the interpolation polynomial

Intyu(z), te.

d 1 Njz-1 . .
w(z) = a—glntN(u(mj)) = 7= Z/ tkii(k)e*s.
k=—N/2

The pseudo spectral scheme is given by
(Vi)s + a(z;)S(V;) =0

where S(u(z)) = £Inty(ulz;)).

2.1 Convergence properties of these schemes

It is not difficult to prove convergence of those centered difference methods
due to their antisymmetriness of the discretization (see,e.g., [18]). But what we
really want to know is a precise asymptotic error expansion instead of a crude
upper bound for the error (like in most of the convergence proofs). We will use
the techniques of Richardson’s [16, 17] to derive partial differential equations for

the leading error constants.

2.2 Leading error constants:

Here, we again consider discretization in space only.
Substituting the true solution into the finite difference schemes (2.3), (2.4)
and (2.5) , we get the formulas for the local truncation errors of the second, the

fourth and the sixth order schemes respectively.

(usdet asDAus) = (ue-+ale;)u (o) + ae) 2= ne 4 o)

13

_ a(:cj)um%(D p2 4 O (2.8)

(et 6, DM) = (ug)e+ a(esua(ay) — ooy =28 s 4 o(hs)

30
- _a(mj)-‘ﬂgg}(fﬂhuowﬁ) (2.9)
(us)e + asDE(us) = (gl +aleus(ey) + afay) emmmzelBilo 4 oy
4: mx:cm:n:rx
= afz;) R) ke 1 ore). (2.10)

Using energy estimate we can show that V; — u; = O(h?). Let {,;h% = V; —u;,

where u; = u(t, ;). Subtracting (2.8) from (2.3), we get

(€2;)eh? + a(z;) D& R ~ a(z)Urm()h2 + O(h*) =0,

or,

(627): + ale;) Dita; — ale) 222 4 o(h) = 0,

which is a second order semidiscretized approximation for the following partial

differential equation,

Similarly, let {4;h4 = V; — u;, and g;h® = V; — u;, subtracting (2.9) from (2.4),

and subtracting (2.10) from (2.5), we get

(€0 + ale;)Enele) + aley) 2=z 4 o) =,
4y

(6o + a3 s (5) — afey) e8] oy =,

14

which are second order semidiscretized approximations for the following P.D.E.’s

respectively,
(B + 0(e)Buu() + (o) 22222 o, (212)
(B + (@) ey () - afo) 2zl g (213

Solve these error equations we can know the behavior of the errors between the
discrete solutions and the exact solutions.
The pseudo spectral method converges with the rate O(h?) where p is the

number of smooth derivatives of the solution (see ,e.g., [5]).
E,=C ulPlhP,

where ulP] stands for the pth derivative of u, C is a constant.

By using the Richardson error expansion, can estimate the numerical error
mose easily. The key idea is to compare the numerical solution to a perturbed
smooth function which satisfies the discrete equation up to higher order accuracy.

Lemma. Let 4 be a function
i(z,t) = u(z,t) + Cy(z, 1)h? 4+ Cy(z, t)h4, (2.14)
where C, and () satisfy

u.‘L‘EZ‘
Cuules) + a(2) 22 + a(2,)Ca, =,

Urrprs
C4t($j5 t) + a’(mj‘)T + a(:cj)Csz‘m + a(mj)cfi:c = 0.

Then 4 satisfies

»

’ . — u._
az;,1) + a(mj)”fiz-h—-f—l = O(kS).

15

Moreover, we can bound the errorwej(t) = 4(z;,t) — V(z;,t) by
lleflooVh < KRS

where K is a constant,

proof: First, we would like to construct a solution of the form
i(z,1) = u(z,t) + Cylz, t)h? + Cy(z, 1)R4, (2.15)

so that when we substitute this function into the difference equation, it satisfies the
difference equation up to high order accuracy. Then we will compare the numerical
solution V; with this constructed function instead of the original solution u. The
advantage of this approach is that by by taking the extra correction terms in
the error expansion (2.15), we can make perturbation to the difference scheme
(2.3) arbitrarily small. This is needed when we have to switch from the L, to the
maximum norm in estimating the error.

Plug 4;(t) (2.15) into the scheme (2.3), we get

Yit1 — Yj

2h
= uy(z;, 1) + Coplz;,)% + Cplz;,) +

i(z;,t) + a(z;)

a(mj)(”(mj-uat) + Cz($j+1>t)h2 + 04(93j+1’t)h4) -
(w1,) + Colz;1, 0% + Colzjq,)0%) /20

= ut(“'gjat) + C2t(mja t)h2 + C4t($:i’ t)h4 +

Yooz o 4w, 30R4 + O(RS)) +

a(z;)(ug + 6

16

C C
a(wj)hg(czw'i‘ .'2:r::ca:h2+ Zzzmxmh4+o(h6))+

6 30
C
(o W(Cay + D222 4 sz 0(he))

by the Taylor expansion . Consider the coefficients of different order of h ,

order one : u(z;)+ a(z;)u, = 0,from the original equation
If we set the coeflicients of the term of order of h? and h* to be zero for all x, i.e.

order of k2 : Cy,(z,t) + a(a':)-’E"'—"g':—m + a(z)Cy, = 0, (2.16)

order of k4 : Cly(z,t) + a(m)ﬁ”fgb“ﬂ + a(2)Cayay + a(2;)Cap = 0, (2.17)

where Cy{z,0) = 0,C,(z,0) = 0, then by the theory from ordinary equations,
there exists smooth solutions C, and C, uniquely. Therefore we have constructed

a smooth function 4
A(t) = u(z,t) + Cyz, t}h2 + Cy(z, 1)h?,
where Cy and Cj satisfy (2.16) and { 2.17), such that

iz, 1) + a(mj)w = O(hS).

Now we compare this function @; (instead of u) with the finite difference approxi-

mation V; . Let ¢;{t) = @(z;,t) — V(z;, 1), then we obtain

ey)+ afey) L2l _ o) (218)

17

To prove the approximated i; converge to ii; we do the energy estimate. Mul-

tiplying both sides of equation (2.18) by he;, and then summing them up, we

get
Nf2-1 1) — e o (t Nf2-1
et X hage, il — el _ 75 o).
j=—N/2 j=—N/j2

By periodicity of e and summation by parts, we get

1 Nj2-1 Nf2—1 Nj2-1
el = —h(S aeemn— X aea)/E)+ 3 heO(H)
j:—N{'2 J=—N/2 _',‘---N/2
N/2-1 Nf2-1 N/j2-1
= —h{(Y ajejen— 3. aeiein)/(2h)+ Y he;O(R)
j=—N/2 j=—N/J2 j=—N/2
Nf2-1 1) — a.(t Nf2-1
— E hej i1 .?+1(;h .?() + Z heJO(hG)
J"‘“—Nf2 j:—N/2
Nj2—1 N/2-1
= Y hejein ”“‘Qh + S he;O(R®)
J=—N/2 j==N/[2
Nf2-1 l a'm |00
< X hlesejprl =5+ llella CRoV2m
j==-Nj2
Nj2-1 2 BT
S Z h|e.7{ +le,?+1] |a.‘1’: !oo_i'lleuhohﬁ\/i}-
T))
2
Nf2-1 2'0' I
< Y ke 5= +lelllChév2r
j=—N/2 2

< lellflieslloo/2 + flellnC RV 2.
Therefore,

lell: < llelln | az loo /2 4+ CROV2,

18

and by Gronwall’s inequality, we get

N/2-1
lele VR < (30 ejeh)?

j=-Nj2

= |lell
i

< expzleslt || e(0) || -l—f expslesleoli=2) Ch8ds
0

= KhS,

where K is a constant. So, V; converge to 4;, and

def

Vi(t) = a(z;) —e; = ulz;,t) + Cyla;, t)h2 + Cylz;,)R + Khot:

2

Therefore, if we can solve for the system of ordinary equations (2.16) and (2.17),
which are called the error equations corresponding to the central difference scheme
(2.3), then (2.3} gives a second order central difference scheme. Similarly, we
can derive the error equations for the fourth and the sixth order central difference

schemes as

U

Cylz,t) + a(z)Cy, — a(m)w%ﬁ =0, (2.19)
4
Cerlas1) + a(2)Ce, + ale) —222252 = 0, (2.20)

Remark: For the pseudo spectral method, when a(x) is positive or negative,
the convergence proof has been obtained (see, e.g., [5, 18]). But there is no conver-
gence result for general variable coefficient a(z) when a(x) changes sign. Actually

the method has some mild instability [6, 4]. So it is interesting to see whether

19

or not this instability indeed exists in a computation and how it affects the con-
vergence. Our calculations seem to indicate that there is no noticeable numerical
instability. The spectral method converges as long as we have enough grid points

to resolve the large gradient of the solution.

20

CHAPTER 3

Numerical result for 1-D model problem

We present a series of direct numerical simulations using the difference meth-
ods and the pseudo-spectral method for the 1-D linear hyperbolic equations. We
then try to determine which method is computationally more efficient in terms
of achieving an given error tolerance. Different shapes of the velocity coefficient
are considered which corresponds to different degree of smoothness of the physical
solution. We also include the viscosity effect.

We use the solution from the pseudo spectral method with 2048 grid points as
our “accurate” solution, then compare it with those from the second, fourth, and
sixth order central difference methods at different times. We present three cases
of implementation with @ = 0.8, = 1.0, and a = 1.2 respectively, and § = 0.1.
These three cases correspond to different degrees of smoothness of the solution.
The case of @ = 1.2 is the most singular case where the coeflicient changes signs
at two points. The case of a = 0.8 gives rise a smoother solution in all times since
it has a definite sign. The case of @ = 1 is in between these two cases since it is
equal to zero at exactly one point. See Figure 3.1 for the shapes of a(z) in these

three cases.

21

a(x)

0.8

0.6

0.4

0.2

Variable Coclficient a(x)=1-alpha*cxp(-1/beta * (sin{(x-pi)/2))**2)

T /‘____._.,«.—-——— B
alpha=0.8, beta=0.1
alpha=1.0, beta=0.1
alpha=1.2, beta=0.1

¢ 1 2 3 4 5 6 7

x
Figure 3.1

. Solution at t=1.5 using the pseudo spectral method

0.8 -
t{x,0) =35nxX

0.6¢+
04l W {x, t=15)
02

o>

0.2t

04

Q.6¢ .

08} .

7
-1 T + L L. g =
0. 2 3 4 5 6

alpha=1.2, beta=0.1, viscosity ={.

Figure 3.2

22

Before presenting any numerical result, I would like to give an estimate of the

operation counts for these numerical methods.

N grid points | 2nd order | 4th order | 6th order | pseudo spectral
(3N) (6N) (9N) (5Nlog, N — 4N)

32 96 192 288 672

64 192 384 576 1664

128 384 768 1152 3968

256 768 1536 2304 9216

512 1536 3072 4608 20992

Table 3.1 The operation count for the convection term au,

3.1 Inviscid cases.

We consider three cases: o = 1.2, @ = 1 and o = 0.8. In all these three cases,

we take f = 0.1.

3.1.1 a=12,=01e¢=0.0

In the case of @ = 1.2, there are two places where the characteristic % =
a{z) = 0 . The solution will steepen up at the place where a(z) changes sign
from positive to negative when time increases. We can easily see this by locally
approximating a{z) by —rz,(r > 0) at the point where a(z) changes signs from

positive to negative, and using sin(z) as the initial data. We obtain an approximate

solution near the point when a(z) = 0: u{z,t) ~ sin(ze™). This shows that

23

the slope of the solution tends to infinity exponentially as time increases. This
phenomena is confirmed by our numerical calculation in Figure 3.2 which clearly
indicates the formation of an internal layer as time increases.

In Table 3.2, we measure the errors of the second, the fourth, and the sixth
order difference methods at times ranging from 0 to 3.0. The errors are obtained
by comparing the numerical solutions with the “accurate” solution obtained by
using the pseudo-spectral method with 2048 grid points, see Figure 3.3. We also
give the errors for the pseudo-spectral method for a comparison. As we can see, the
errors deteriorate very fast in times for all the methods being considered here. The
larger the time is, the more spatial resolution is needed. In all these calculations, we
have used the fourth order Runge-Kutta method to discretize the time integration.

The time step size is taken to be so small that the discretization error in time is

negligible.
N grid points | 2nd order | 4th order | 6th order | pseudo spectral
32 0.00762 0.00475 0.00388 0.000928
64 0.00219 0.000366 | 0.000238 | 8.94e-06
128 0.000561 | 2.85e-05 | 5.8e-06 7.77e-10
256 0.00014 1.84e-06 | 1.19e-07 | 4.52e-12
512 3.51e-05 | 1.18e-07 | 2.02e-09 | 2.8e-13

Table 3.2-1 a=1.2,e = 0, time = .5

24

N grid points | 2nd order | 4th order | 6th order | pseudo spectral
32 0.0667 0.0337 0.0259 0.0217
64 0.0203 0.00536 | 0.00345 | 0.0021
128 0.00449 0.000867 | 0.000529 | 2.36e-05
256 0.00113 6.15e-05 | 1.54e-05 | 5.02¢-09
512 0.0003 3.85e-06 | 2.99e-07 | 5.7e-13
Table 3.2-2 a=1.2,e=0,time=1
N grid points | 2nd order | 4th order | 6th order | pseudo spectral
32 142 0.0418 0.0464 134
64 0.0559 0.0552 0.0509 0.0238
128 0.0272 0.00685 | 0.00658 | 0.00217
256 0.00622 0.0012 0.000525 | 3.03e-05
512 0.0016 7.86e-05 | 1.8e-05 1.01e-08
Table 3.2-3 a = 1.2,¢ = 0,ftme = 1.5
N grid points | 2nd order | 4th order | 6th order Jpseudo spectral
32 206 255 .26 395
64 235 163 142 0.0871
128 0.0866 0.0587 0.0489 0.0244
256 0.0228 0.0122 0.00885 | 0.0037
512 0.00683 0.00131 | 0.000661 | 3.5e-05

Table 3.2-4 a =1.2,e = 0,ftme =2

25

N grid points | 2nd order | 4th order | 6th order | pseudo spectral
32 0.577 0.592 0.59 0.769

64 0.403 0.231 0.2 0.271

128 0.222 0.102 0.0831 0.186

256 0.0908 0.0238 0.0201 0.0464

512 0.0256 0.012 0.00917 0.00349

Table 3.2-5 a =1.2,e = 0,ttme = 2.5

Ngrid points | 2nd order | 4th order | 6th order | pseudo spectral
32 0.99 0.944 0.932 1.27

64 0.43 0.374 0.367 0.714

128 0.241 0.206 0.211 0.555

256 0.146 0.157 0.153 0.142

512 0.0933 0.0277 0.0196 0.0491

Table 3.2-6 = 1.2,e =0, {zme = 3.0

We are interested to know how many grid points are needed to achieve a given
error tolerance, say, 0.01, for these methods. Since the thickness of the internal
layer decreases to zero exponentially in times, it requires more and more points to
resolve the solution for large times.

The following table gives the least number of grid points for each method in-

achieving 1% error tolerance.

26

time | 2nd order | 4th order | 6th order | pseudo spectral
0.5 |32 32 32 32

1.0 | 128 64 64 64

1.5 | 256 128 128 128

2.0 |512 256 256 128

2.5 | 512 512 256 256

3.0 | more more 512 512

Table 3.3 The least N to achieve the error tol. 0.01 (¢ =1.2,¢ = 0)

As we expected, all methods tequire more grid points to achieve the given
error tolerance for large times when the solution steepens up. And up to t = 3.0,
a fourth order and a sixth order calculation with 2N grid points are comparable
with a pseudo spectral calculation with N grid points in the sense that they achieve
the given error tolerance and using less operation counts. We also can see from
Figure 3.4 that when the solution develops an internal layer at later times, a pseudo
spectral calculation tends to introduce numerical oscilla,tioﬁs. which spread over the
entire domain due to its global coupling nature, while finite difference calculation
with local coupling stencil confine the numerical oscillations to a smaller region

(see Figure 3.5).

27

g ae= .3, alpha= 1.2 ,viscgsity: 0 [att= 1|, alpha= '1.2 ,viscqsity: 0

05}k = 0.5k
0F , o
05F / . -0.5F
oy e Yy

uat{= 2|, alpha=]1 2 ,viso:?sity= 0

1 uatt= ?{, alpha= ll .2 viscosity=0

o
n
T

Figure 3.3 “Accurate” Sol. by Pseudo Spectral Method w/ N=2048

28

5?00128 att=.9, aIpilmaﬂ 1.2 ,\.:iscosityz 0 sP00128 at t= 1, alpp'g= 1.2 ,vliscosity= 0

05} - 0.5} .
oF - oF .
05 / - 0.5F .
o 2 4 6 8 1 2 4 g 3

Figure 3.4 Sol. by Pseudo Spectral Method w/ N=128

29

six0128 att=.5, alp§a= 1.2 ,viscosity= 0

05 .
o -
0.5+ / -

-1] 1 i
0 2 4 6 8

sii(0128 at= 1.5, alp1ha= 1.2 ,Yiscosity= 0

0.5

0

-0.5

1 g’xOlZB att= 2, alphla= 1.2 ;viscosity= 0

1

slix0128 at }z 1, alph‘a= 1.2 lvéscositym 0

L L _/
6

o

0.5

0

-0.5

1si§0128 att= 2.5, alpiha= 1.2 ,Yiscosity= 0

1
0.5
0
05
-1

L

30

0.5 .
0 N -
05} i

_1\] i 1

Figure 3.5 Sol. by 6th Order Difference Method w/ N=128

3.1.2 a=1.0,8=01,e=0.0

In the case of & = 1.0, & = 7 is only the point at which a(z) = 0. The solution

will still steepen up in time and form an internal layer around z = w. But the

thickness of the layer decreases to zero only algebraicly as time increases.

In Table 3.4, we list the errors of the second, the fourth, the sixth order dif-
ference methods, and the pseudo-spectral method at times ranging from 0 to 3.0.

As we can see, the errors still deteriorate fast in times for all the methods being

considered here, although it is not as bad as the case of a = 1.2.

N grid points | 2nd order | 4th order | 6th order | pseudo spectral
32 0.00794 | 0.00343 | 0.00245 | 0.000417

64 0.00204 0.000286 | 0.00013 | 2.07e-06

128 0.000589 | 1.91e-05 | 3.39¢-06 | 1.13e-10

256 0.000148 | 1.25¢-06 | 6.09e-08 | 4.08e-12

512 3.74e-05 | 7.98e-08 | 1.01e-09 | 2.6e-13

Table 3.4-1 a =1,e = 0,{tme = .5'

31

N grid points | 2nd order | 4th order | 6th order | pseudo spectral
32 0.0432 10.0113 0.0124 0.00907

64 0.013 0.00478 | 0.00323 | 0.000303

128 0.00373 0.000375 | 0.000152 | 1.07e-06

256 0.000988 | 2.81e-05 | 3.99e-06 | 2.24e-11

512 0.000254 | 1.83e-06 | 7.5e-08 5.1e-13

Table 3.4-2 a=1,e=0,time=1

N grid points | 2nd order | 4th order | 6th order | pseudo spectral
32 0.0996 0.0976 0.0907 0.044
64 0.0476 0.0146 0.014 0.6049
128 0.0123 0.00303 0.0014 0.000104
256 0.00366 0.000258 | 7.51e-05 | 8.45e-08
512 0.000998 | 1.87e-05 | 1.91e-06 | 8.3e-13
Table 3.4-3 o = 1,e = 0,ttme = 1.5

N grid points | 2nd order | 4th order | 6th order | pseudo spectral
32 0.292 0.203 0.178 0.0971

64 0.11 0.071 0.058 0.0209

128 0.0307 0.0142 0.00945 0.00112

256 0.0111 0.00152 0.000686 | 1.19e-05

512 0.00302 0.000119 : 2.27e-05 | 1.34e-09

Table 3.4-4 a=1,¢ = 0,time = 2

32

N grid points | 2nd order | 4th order | 6th order | pseudo spectral
32 0.431 0.253 0.218 0.204
64 0.219 0.094 0.0742 0.0446
128 0.0759 0.0296 0.0265 0.00716
256 0.0253 0.00555 0.00323 0.000211
512 0.6074 0.000532 | 0.000159 | 3e-07
Table 3.4-5 a = 1,e = 0,ttme = 2.5
N grid points | 2nd order | 4th order | 6th order | pseudo spectral
32 0.434 0.244 0.215 0.215
64 0.204 0.12 0.118 0.088
128 0.148 0.0734 0.0564 0.0193
256 0.0483 0.0125 0.00821 0.0012
512 0.0149 0.00196 0.000854 | 9.22e-06

Table 3.4-6 = 1,¢ = 0,ttme =3

We again ask the same question: how many grid points are required for these

methods to achieve the given error tolerance 0.01.

33

time | 2nd order | 4th order | 6th order | pseudo spectral
05 {32 32 32 32

1.0 | 128 64 64 32

1.5 256 128 128 64

2.0 | 512 256 256 128

2.5 | 512 256 256 128

3.0 |/ 512 256 256

Table 3.5 The least N to achieve the error tol. 0.01 (@ =1.0,¢= 0)
Although the solution for a = 1.0 is not as singular as the one for o = 1.2,
the observation we made for the case o = 1.2 still applies to this case. More grid
points are needed to achieve the given error tolerance at later times. Again, we
observe that up to t = 3.0, a fourth order and a sixth order calculation with 2V
grid points are comparable with a pseudo spectral calculation with N grid points.

Moreover, the numerical oscillations introduced by the pseudo-spectral method are

more spread out than those introduced by the finite methods.

3.1.3 a=08,=01,¢=00

In the case of @ = 0.8, the variable coefficient a(z) has only one sign. The
solutions are relatively smooth, and do not form an internal layer. In Table 3.6,

we list the errors of the second, the fourth, the sixth order difference methods and

the pseudo-spectral method at times ranging from 0 to 3.0.

34

N grid points | 2nd order | 4th order | 6th order | pseudo spectral
32 0.00635 0.00215 | 0.00127 | 0.00019

64 0.00225 0.000174 | 5.75e-05 | 2.59e-07

128 0.000569 | 1.49e-05 | 1.8%e-06 | 5.73e-11

256 0.000146 | 9.64e-07 | 3.46e-08 | 3.61e-12

512 3.65e-05 | 6.08e-08 | 5.65e-10 | 2.3e-13

Table 3.6-1 a = .8,¢ = 0,tzme = .D

N grid points | 2nd order | 4th order | 6th order | pseudo spectral
32 0.0365 0.0165 0.0143 0.00334

64 0.0111 0.00185 0.0011 4.36e-05

128 0.00293 0.000172 | 4.22e-05 | 1.23e-08

256 0.000766 | 1.19e-05 | 9.53e-07 | 7.22e-12

512 0.000194 | 7.74e-07 | 1.72e-08 | 4.5e-13

Table 3.6-2 o = .8, e =0,ttme =1

N grid points | 2nd order | 4th order | 6th order 'plseudo spectral
32 0.0919 0.0439 0.0348 0.0127

64 0.0292 0.00748 | 0.00468 | 0.000289

128 0.00829 0.000734 | 0.000255 | 5.73e-07

256 0.0022 5.9¢-05 7.72¢-06 | 1.4e-11

512 0.000553 | 3.82e-06 | 1.42¢-07 | 6.7e-13

Table 3.6-3 a = .8,e = 0,teme = 1.5

35

N grid points | 2nd order | 4th order | 6th order | pseudo spectral
32 0.132 0.0492 0.039 0.0113

64 0.0503 0.0159 0.00987 | 0.000899

128 0.0162 0.00192 | 0.000767 | 3.4e-06

256 0.00438 0.000152 | 2.46e-05 | 7.85e-11

512 0.0011 9.8e-06 4.65e-07 | 9.1e-13

Table 3.6-4 o = .8, = 0,ttme =2

N grid points | 2nd order | 4th order | 6th order | pseudo spectral
32 0.187 0.122 0.101 0.036
64 0.0664 0.0261 0.0179 0.00133
128 0.0235 0.00258 | 0.001 2.23e-06
256 0.00663 0.000231 | 3.48e-05 | 3.73e-11
512 0.0017 1.54e-05 | 7.16e-07 | 1.13e-12
Table 3.6-5 o = .8,e = 0,ttme = 2.5
N prid points | 2nd order | 4th order | 6th order | pseudo spectral
32 0.318 0.155 0.13 0.0484
64 0.114 0.0243 0.0158 0.00107
128 0.0308 0.00316 | 0.00111 | 2.13e-06
256 0.00853 0.000266 | 3.8e-05 3.76e-11
512 0.00215 1.69e-05 | 6.92e-07 | 1.35e-12

Table 3.6-6 o = .8,e = 0,tzme = 3

36

As we can see, the errors increase more slowly in times compared with the case
of o > 1,

The pseudo spectral method clearly provides an more accurate approximation
than any finite difference method considered here. However, if we ask the question:
how many grid points are needed to achieve the 1% error tolerance, we still find
that the fourth order or the sixth order difference method can achieve the same
accuracy with twice a,s'rna.ny grid points as required by the spectral method. Of
course, in the case when the solution is very smooth, the gain of using a difference
method instead of a spectral method is not as significant as the case when the
solution is singular. But how to approximate a nearly singular solution efficiently

is our primary concern in this study.

time | 2nd order | 4th order | 6th order | pseudo spectral
0.5 |32 32 32 32

1.0 | 128 64 64 32

1.5 ;128 64 64 64

20 | 256 128 64 64

2.5 | 256 128 128 64

3.0 | 256 128 128 64

Table 3.7 The least N in achieving the error tol. 0.01 (o = 0.8,e = 0)

37

3.2 Viscous cases.

For the inviscid case, the larger the o is, the faster the solution steepens up.
There will be eventually a time at which all the numerical methods fail to converge
due to the lack of numerical resolution. In practice, however, there is always some
physical viscosity present. This prevents the solution from getting more and more
singular in time. In this case, the question is how many grid points are needed
to resolve the viscous layer in order to achieve a given error tolerance. Since the
thickness of the viscous layer is proportional to the viscosity, the number of grid
points should be proportional to the inverse of the viscosity.

Consider the following viscous linear equation:

u(2,8) + a(@)uy(2,1) = cte. (3.1)

In our implementation, we choose € = 0.015. To resolve the viscous layer, we
require about O(1/¢) number of grid points. This is confirmed by our numerical
experiments. The calculations with N = 64 provide us with fairly accurate ap-
proximations. The numerical errors for the pseudo spectral and the sixth order
difference methods are below 0.01 using different values of o ranging from 0.8 to 1.2.
The numerical calculations N = 32, on the other hand, can not accurately resolve
the solution. Numerical oscillations are created in all these numerical methods.
We again compare the performance of the three finite difference methods with

the pseudo-spectral method for o = 1.2,1.0, 0.8 respectively.

38

3.2.1

We list the numerical errors for the three finite difference methods and the
pseudo-spectral method in Table 3.8. Although the corresponding inviscid problem
is quite singular, the viscosity smooths out the internal layer to some extent and

limits the smallest scale in time. As a result, the numerical methods give more

a=13208=0.1¢c=0.015

accurate approximations.

N grid points | 2nd order | 4th order | 6th order | pseudo spectral
32 0.0056 0.00322 | 0.00248 | 0.000431

64 0.00147 0.000247 | 0.000101 | 4.44e-07

128 0.000357 | 1.77e-05 | 2.52¢-06 | 1.2e-13

256 8.86e-05 | 1.13e-06 | 4.44e-08 | le-14

512 2.22¢-05 | 7.1e-08 7.16e-10 10

Table 3.8-1 @ = 1.2,€ = 0.015,t2zme = .5

N grid points | 2nd order | 4th order | 6th order | pseudo spectral
32 0.0056 0.00322 | 0.00248 |'0.000431

64 0.00147 0.000247 | 0.000101 | 4.44e-07

128 0.000357 | 1.77e-05 | 2.52e-06 | 1.2e-13

256 8.86e-05 | 1.13e-06 | 4.44e-08 | le-14

512 2.22e-05 | 7.1e-08 7.16e-10 | 0

Table 3.8-2 a = 1.2, € = 0.015, tzme = 1

39

N grid points | 2nd order | 4th order | 6th order | pseudo spectral
32 0.0946 0.0281 0.0224 0.0204
64 0.0248 0.00401 | 0.00235 | 8.91e-05
128 0.00567 0.000378 | 8.11e-05 | 8.2e-11
256 0.00142 2.54e-05 | 1.68e-06 | le-14
512 0.000355 | 1.62e-06 | 2.85e-08 |0
Table 3.8-3 o = 1.2,e = 0.015,time = 1.5
N grid points | 2nd order | 4th order | 6th order | pseudo spectral
32 0.102 0.0566 0.0475 0.0476
64 0.0341 0.00822 | 0.00464 | 0.000161
128 0.00932 .00062 0.000145 | 2.34e-10
256 0.00228 4.11e-05 | 2.87e-06 | le-14
512 0.000573 | 2.61e-06 | 4.78-08 |0

Table 3.8-4 o = 1.2, ¢ = 0.015, timne = 2

N grid points | 2nd order | 4th order | 6th order | pseudo spectral
32 0.177 0.0948 0.0781 0.0774

64 0.0502 0.0106 0.00581 | 0.000182

128 0.0119 0.000757 | 0.000167 | 3.44e-10

256 0.00292 5.04e-05 | 3.63e-06 | 2e-14

512 0.000728 | 3.25e-06 | 6.08e-08 |0

Table 3.8-5 @ = 1.2,e = 0.015,{tme = 2.5

40

N grid points | 2nd order | 4th order | 6th order | pseudo spectral
32 0.243 0.116 0.0944 0.0988

64 0.0563 0.0103 0.0054 0.000157

128 0.0128 0.000782 | 0.000186 | 4.26e-10

256 0.00318 5.35e-05 | 3.75e-06 | 2e-14

512 0.000792 | 3.43e-06 | 6.47e-08 |0

Table 3.8-6 « = 1.2,¢ = 0.015,time = 3

For viscosity e = 0.015, we require about O(1/¢) many grid points to resolve the
viscous layer. From our computational results, we clearly see that the fourth order
or the sixth order achieves the error tolerance with N = 64. And the numerical
errors tend to be unchanged at later times. This is to be expected since the
thickness of the viscous layer remains fixed in times. Again we observe that with
twice as many grid points, i.e. N = 128, the fourth order and the sixth order
difference methods are comparable to the spectral method using N = 64 grid
points. For N larger than 128, the physical solution is well resolved by all the
methods considered. It is no surprise that higher order methods converge much
faster. The spectral method is a clear winner in that case.

In the following table, we list the least number of grid points needed to achieve
1% error tolerance for the three difference methods and the pseudo-spectral method.
Although the pseudo-spectral method can provide much more accurate approxi-

mations in the viscous case, the fourth and the sixth order difference methods can

41

still achieve the 1% error tolerance with at most twice as many grid points as
needed for the pseudo-spectral method. Of course, if we set the error tolerance to

be excessively small, like 10(— 5) for example, the answer could be different.

time | 2nd order | 4th order | 6th order | pseudo spectral
0.5 |32 32 32 32
1.0 |32 32 32 32
1.5 1128 64 64 64
2.0 {128 64 64 64
2.5 256 128 64 64
3.0 | 256 128 64 64

Table 3.9 The least N in achieving the error tol. 0.01 (@ =1.2,¢= 0.015)

3.22 a=10,=01,e=0.015

In Table 3.10, we list the errors for the case of @ = 1, # = 0.1 and viscosity
¢ = 0.015. Again, although the corresponding inviscid problem can develop an
singular internal layer, the viscosity smooths out the internal layer to some extent
and limits the smallest scale in time. As a result, the numerical methods give more

accurate approximations.

42

9nd order | 4th order | 6th order | pseudo spectral
0.00582 0.00245 0.00168 0.000199
0.00157 0.000163 | 6.87e-05 | 1.29e-07
0.000406 | 1.19e-05 | 1.42¢-06 | 9e-14

0.000104 | 7.7e-07 2.61e-08 | le-14

2.50e-05 | 4.84e-08 | 4.18e-10 |0

Table 3.10-1 o = 1,e = 0.015,tzme = .5

ond order | 4th order | 6th order | pseudo spectral
0.0304 0.00856 0.00589 0.00196
0.00667 0.000983 | 0.000518 | 2.67e-06
0.00159 8.13e-05 | 1.39e-05 | 7.3e-13
0.000394 | 5.35e-06 | 2.56e-07 | le-14

9.84e-05 | 3.38e-07 | 4.18e-09 |0

Table 3.10-2 @ = 1,e = 0.015,tzme =1

ond order | 4th order | 6th order | pseudo spectral
0.0495 0.0284 0.0231 0.00614

0.015 0.00293 0.00128 1.38e-05
0.00378 0.000189 | 3.62e-05 | 3.3e-12
0.000943 | 1.3e-05 6.84e-07 | le-14

0.000235 | 8.24e-07 | 1.12e-08 |0

Table 3.10-3 = 1,¢ = 0.015,ttme = 1.5

43

9nd order | 4th order | 6th order | pseudo spectral
112 0.0526 0.0403 0.00891

0.0265 0.0034 0.00169 | 2.4e-05

(.00595 0.000301 | 5.07e-05 | 6.65e-12
0.00151 1.97e-05 | 1.08e-06 | le-14

0.000375 | 1.26e-06 | 1.77e-08 | 0

Table 3.10-4 a = 1,e = 0.015,1tme = 2

2nd order | 4th order | 6th order | pseudo spectral
161 0.057 0.0496 0.0106
0.0309 0.0053 0.00252 | 3.64e-05
0.00781 0.000374 | 6.9e-05 1.34e-11
0.00196 2.44e-05 | 1.31e-06 | le-14
0.000487 | 1.55e-06 | 2.15¢-08 |0

Table 3.10-5 e = 1,e = 0.015,time = 2.5
2nd order | 4th order | 6th order | pseudo spectral
159 0.0588 0.0445 0.0188
0.0391 0.00551 | 0.00248 | 3.69e-05
0.00905 | 0.00038 | 6.81e-05 | 1.57e-11
0.00222 2.63e-05 | 1.39e-06 | le-14
0.000555 | 1.67e-06 | 2.29¢-08 |90

Table 3.10-6 @ = 1,¢ = 0.015,#¢me = 3

44

If we ask how many points are needed to achieve 1% error tolerance, it turns out
that the fourth order and the sixth order methods can achieve the error tolerance

using the number of grid point as the pseudo-spectral method.

time | 2nd order | 4th order | 6th order | pseudo spectral
0.5 |32 32 32 32
1.0 |64 32 32 32
1.5 | 128 64 64 32
2.0 128 64 64 32
2.5 128 64 64 64
3.0 | 128 64 64 64

The least N in achieving the error tol. 0.01 (« = 1.0, € = 0.015)

Table 3.11

3.23 a=08,8=0.1,e=0.015

The solution for the case of « = 0.8 is already very smooth without viscosity.
With the inclusion of viscosity, the solution becomes even smoother. In Table
3.12, we list the numerical errors for the three difference methods and the pseudo-
spectral meﬁhod. The numerical errors for all the methods considered are extremely

stitall.

45

9nd order | 4th order | 6th order | pseudo spectral
0.00589 | 0.00164 | 0.000963 | 7.61e-05
0.00176 | 0.000117 | 3.7e-05 1.54e-08
0.000454 | 8.71e-06 | 8.26e-07 | 8e-14
0.000114 | 5.57e-07 | 1.41e-08 |0
2.86e-05 | 3.52e-08 | 2.25e-10 ;0

Table 3.12-1 « = .8,¢ = 0.015,t2me = .5
2nd order | 4th order | 6th order | pseudo spectral
0.0231 0.00717 | 0.00571 | 0.000755
06.0059 0.000678 | 0.000239 | 4.1e-07
0.00155 4.36e-06 | 5.86e-06 | 1.3e-13
0.000388 | 2.79e-06 | 1.04e-07 | le-14
9,71e-05 | 1.77e-07 | 1.68e-09 | O

Table 3.12-2 oo = .8,¢ = 0.015,tame =1

2nd order | 4th order | 6th order | pseudo spectral
0.0466 0.0191 0.0129 0.00151

0.0104 0.00136 0.000551 | 1.19e-06
0.00261 9.13e-05 | 1.25e-05 | 1.6e-13
0.000654 | 5.88e-06 | 2.24e-07 | le-14

0.000164 | 3.73e-07 | 3.71e-09 | O

Table 3.12-3 a = .8,¢ = 0.015,teme = 1.5

46

2nd order | 4th order | 6th order | pseudo spectral
0.0778 0.0178 0.0136 0.00242
0.0164 0.00167 | 0.000515 | 1.67e-06
0.00376 0.000127 | 1.68e-05 | 2.2e-13
0.00092 8.14e-06 | 3e-07 le-14
0.000229 | 5.13e-07 | 4.97e-09 | O

Table 3.12-4 « = .8, e = 0.015, ttme = 2

9nd order | 4th order | 6th order | pseudo spectral
0.0674 0.023 0.0155 0.00193
0.0194 0.00215 0.000786 | 1.8e-06
0.00485 0.000144 | 1.85e-05 | 2.3e-13
0.0012 9.25e-06 | 3.32¢-07 | le-14
0.000299 | 5.83¢-07 | 5.3%-09 |0
Table 3.12-5 a = .8,e = 0.015,time = 2.5
2nd order | 4th order | 6th order | pseudo ’spectra,l
111 0.0306 0.0202 0.00273
0.0245 0.002 0.000679 | 2.26e-06
0.00564 0.00015 | 1.81e-05 | 2.1e-13
0.00142 9.61e-06 | 3.26e-07 | le-14
0.000353 | 6.09e-07 | 5.38e-09 |0

Table 3.12-6 a = .8, = 0.015,{tme = 3

47

The solution is so smooth in this case that the pseudo-spectral method requires
only 32 grid points to achieve 1% error tolerance. In comparison, the fourth order
and the sixth order difference methods requires 64 grid points to achieve the same

error tolerance. This is illustrated by the table below.

time | 2nd order | 4th order | 6th order | pseudo spectral
0.5 32 32 32 32
1.0 |64 32 32 32
1.5 | 128 64 64 32
2.0 |128 64 64 32
2.5 128 64 64 32
3.0 {128 64 64 32

Table 3.13 The least N in achieving the error tol. 0.01 (a = 0.8,¢ = 0.015)

48

CHAPTER 4

Asymptotic Error Analysis

In this section, we would like to estimate the numerical errors for the finite
difference methods by asymptotic error analysis. Once the error equation is ob-
tained, what is left to do is to estimate the growth rate of the error constant.
Since the error equation contains high order derivatives of the exact solution as a
forcing term, it is essential to obtain a priori estimate for the derivatives of the
exact solution. One way to achieve this is to replace the original equation by a
simpler one which can be solved analytically. This is our first approach. We will
begin with the simplest approximation to the velocity coefficient to estimate the
second derivative of the exact solution. As we will see later, we need a better
approximation for the velocity coefficient to obtain a useful approximation for the
fourth and the sixth order derivatives. This is due to the fact that higher order
derivatives grow very fast when the solution itself is nearly singular.

We approximate a{z) by —rz (r > 0) near the point where a(z) changes sign
from positive to negative. Using the method of characteristics, we can integrate

the approximated equation analytically. We obtain

u(z,t) ~ sin{ze™). (4.1)

49

We regard this solution as a second order approximation to the exact solution since
—rg approximates a(z) locally with second order accuracy. By direct differenti-
ations of the above approximate solution, we obtain approximations for its high

order derivatives as follows:

u, = cos(ze)em,
U, = -—sin{zet)e??,
Uppy = —cos{ze™)ed
Upepy = sin(zert)edr,
Uppoew = cos{zet)esT,
Upgozes = —sin(zem)et,
Upropene = —CoS(zE)ET

Now we substitute these approximations into the error equations. By Duhamel’s

principle and the error equation { 2.11) we get

Ey(,t) = S(t,to) Ea(z,0) + j{:S(t,g)“ e (4.2)

where S is the solution operator of the homogeneous problem
Eyy(a,t) + a(m)ﬁzx(m,t) =0
introduced by (2.11). Thus we obtain

Bie] < 180 ikl Bale, 01+ [150 Ol =20 g

50

< [150t

_ jot | ucos(zﬁefﬁ)e:"”f \de

4 637"5
< :
< [15l

And we can get the upper bound of the maximum of the leading coeflicient of the

error as following

1 exp®t—1

. <
ol Do < 5 20

(4.3)

Similarly, we can get the results for E4 and Eg. The upper bound of the maximum

errors are as follows,

1 expt —1
G P2 < ———h?
1 expiri—1
E() Pt < —=——ht
1 4(H)loo =30 Br
1 exp™t—1
G A —————— 8
|E2($)|oc ~ 140 Tr h

Except for the second order difference method, the analjlzt;ic error estimates are
much smaller than the numerical errors (we have computed the asymptotic errors
using these estimates for the derivatives of u, but we do not list them here because
the predictions are very poor). This is due to the fact that our second order
approximation of a(z) is not accurate enough to provide a good bound for the
higher order derivatives.

Next we expand a(z) locally around the point where a{z) = 0 up to a higher

51

order term,
a(z) = —re+ sz?, r = 1.3379,s = 1.13151.
Now solving the characteristics analytically, t.e.
dz/dt ~ —1.3379z + 1.1315122,
we get

(—1/z + 1.51385/(—1.3379 + 1.51385z))dz = 1.3379d1

1.51385z(¢) — 1.3379 1.51385z(0) — 1.3379
In —In

(1) 2(0) = 1.3379dt

1.51385
- 1.3379¢ /1] 1.3379t _1Y].
Therefore, u(z,) = u(z(0)) along the characteristic & = —raz + sz?, i.e.
1.51385

u(z,t) = sin(z exp!-337% [[1 + z(exp!337% —1)}]).

1.3379

With one more term in the expansion for a{z), we get a better approximation for
u. This is essential to obtain a useful estimate for the higher order derivatives of

the exact solution. Let

)

u(z,t) = sinf

1+ Bz

52

where A = expl37 and B = 1.131512(exp!3%7% —1), then we get the higher
derivatives of u(z,t) as follows:

Az) A
1+ Bz’ (1+ Bz)?

u, = cos(

Av_\ A)3+_(Am)6AZB
1B \0 By T B T+ Bay

Uppy “COS(

Az) 6AB*
1+ Bz’ (1+ Bz)?

+cos(

B (Az % A 5 + sin(Az)—20A4B
Yrgwes — COS 1+ Bz (1_*__83)2 s 1+ Bz (1+B.’L‘)9
+cos(Az)—120,43132 4 sin Az)240A233
NI B/ U+ Bo) "+ Bz’ (1+ Bz)
+oos Az) 120AB*
M ¥ Bz (1+ Bz)
- e)~ e o
Ussasnes =~ TR T Bay) ~ ™M T T B (14 Ba)®
Az | 63045B2 . Az 420044B?
+cos(S8t

1 +Bcc)(1 + Bz)iz ™y +Bz)(l + Bo)l!

Az | —12600A3B4) Az [15120A28°

+COS(1+Bm) (14 Bz)® T 1+B:c) (1+ Bz)®

53

Az)5040./185
1+ Bz’ (1+ Bz)®

+ecos(

It is reasonable to estimate |ulPl(.,1)|,, by ulPl(0,t) for p and ¢ large, since the

solution is most singular at the point where a(z) = 0. Therefore, we obtain

[ulB(,)] = ul(0,t)
= —A®46AB?
= 6.68e%t — 15.36e¥t — T7.68e™,
WDl = W0,
= A5 —120A3B? +120AB*
= 44.07e5t — 479.54ett + 1026.603
—786.82e¥t 4+ 196.71e™,
WDl = W7(0,)
= A7+ 6304582 — 12600A%B* + 5040AB°
= —0271e7t 4 1753887t 4 355455

—128930e%® + 1380103t — 63465e%t 4 10578,

We can see that there are some large factors in front of the leading term which
do not appear when we approximate a(z) by —rz previously. Now proceeding as

before, we obtain the following upper bounds for the error constants:

B2 gt
B,)loot? < T [100,)]oods

R4 gt
Bl t)loh® < g5 [1090, 5)lucds

54

!E2(')t)|ooh6

!EZ(W t) |ooh6

In Table 4.1 below, we list the asymptotic errors for the 2nd, the 4th and the sixth
order methods using the leading order term of [ubl(.,)|, to represent [ull(,,)|
They are larger than the numerical errors listed in Table 3.2 at any time for any

N, and give a good agreement with the numerical error up to the leading nonzero

4h%
315

i
71(Q
[10, 9)

E

e 7l(o d
[—
- 140[0 ™) »8)loods

digit for N = 512 and ¢ < 2.0.

For N < 512, the numerical solution is not well resolved for large times. The
fourth or the sixth order accuracy is not strictly observed numerically. So it doesn’t
make sense to compare the numerical error with the analytical estimate directly in

that case. Table 4.1 gives the error estimates in the case of (a(z) ~ rz +s22),a =

1.2, = 1.3379, s = 1.13151.

(stencil : j-4 .. j+4)

(stencil @ -3 .. j+3)

N grid points | t=0.5 t=1.0 |t=1.5 |t=2.0 {t=2.5|t=3.0
32 0.0103 0.087 658 4.9 36.5 | 271
64 0.00258 | 0.0218 | .164 1.23 9.12 | 67.9
128 0.000644 | 0.00544 | 0.0411 | .306 2.28 |17
256 0.000161 | 0.00136 | 0.0103 | 0.0766 | .57 4.24
512 4.03e-05 | 0.00034 | 0.00257 | 0.0192 | .143 | 1.06

Table 4.1-1 2nd Order Error Bounds (E,k2) from Asymptotic Error Analysis

59

N grid points | t=0.5 t=1.0 |t=1.5 t=2.0 |t=25 t=3.0

32 0.00893 | .262 7.44 211 5.98e+03 | 1.7e4+05
64 0.000558 | 0.0164 | .465 132 374 1.06e4-04
128 3.49¢-05 | 0.00102 | 0.0201 824 23.4 662

256 2.18¢-06 | 6.4e-05 | 0.00182 | 0.0515 | 1.46 41.4

512 1.36e-07 | 4e-06 0.000114 | 0.00322 | 0.0913 2.59

Table 4.1-2 4th Order Error Bounds (E,k*)} from Asymptotic Error Analysis

N grid points | t=0.5 t=1.0 t=1.5. t=2.0 t=2.5 t=3.0

32 0.0434 4.73 511 5.52e+04 | 5.97e4+06 | 6.45e-+08
64 0.000678 | 0.0739 | 7.99 863 9.33e+04 | 1.01e407
128 1.06e-05 | 0.00115 | .125 13.5 1.46e+03 | 1.57e+05
256 1.65e-07 | 1.8e-05 | 0.00195 | .211 22.8 2.46e+03
512 2.59-09 | 2.82e-07 ¢ 3.05e-05 | 0.00329 .3566 38.4

Table 4.1-3 6th Order Error Bounds Egh® from Asymptotic Error Analysis

4.1 Method of characteristics

To confirm our numerical error we use the method of characteristics again.

4.1.1 Explicit Solution for Linear Equations

Lemma.The linear partial differential equation

u, + alz,)u, + bz, t) = f(x,1),

56

u({z,0) = up(z)
where a, b, and f are smooth functions, has the solution
w(X(t,z),t) =exp” Jo ox(si2)ds ug(z) + fot exp” S, o (na))dn f(X{(s,z),s)ds
along the characteristic line

dX(t,z)/dt = a(X,1)

X(0,z) = =

proof: Multiplying both sides of the equation by the integral factor expfo bX (s2))ds

we get
d [0(X (s,2))ds [(X (s2))
E[U(X(t,m),t) explo SIEB) = F(X (8, z),1) explo ds,
which implies
t 1 s
u(X (1,2,) explo XN _u(z,0) = [explt {XONN (X (s,2), 5)ds.
[t
Hence, we have

t t &
u(X(t,z),t) =exp” Jo oX sNds () +/; explo X (ma))dn f(X(s,z),s)ds.).

In the following, we will derive equations to determine the high order derivatives

of u. We denote by wu; the jth derivative ubl. Differentiating the equation

u, + a{z)u, =0

57

directly seven times, we get

(w); + aluy)e + azt

(tg) + auy)e + 205ty + Aygthy

(u3); + alus)y +3a,us + 3, s + Crprthy

(uq)s + a(1g), + 4oty + 6ay5us + 404,05 + Gugeathy

(us)s + a(us), + Bazus + 10a .1y + 10a,,,U3 + 584002 Us + Gogozals
(ug); + a{ug), + 6azug + 15a,,us

+200,5584 + 158 000Us + 600pzeots + Cuprzzally

(ur) + a(ur)e + Taguq + 21ag ug + 35855,us5 +

35“9:3::1:9:“4 + Qla‘a:ma:m:cu3 + 7aa:x:a:ra::nu2 + Corrnrrsthl

Equivalently, we can rewrite them as

(uq)e + a{ug)y + @y = g1,

(ua)e + a{uz)s + 20,0y = —(azth) = go,

(ug); + o{ug), +3a,u5 = —(3apglis + Ggoolty) = g3,

(ua)s + a(uy), + dauy = —(6055us + 4gpntly T Ooreothn) = 9as
(us) + a(us)y +5a,us = —(10a5,uy + 10a,,,u3 +

SammxIUZ + aa‘:mxmm“S) = G5,
(u6)t + a(uﬁ)m + 6azu6 = _(lsaxa:ufv + anzwmuti +

IsamszUS + Gawmx:ﬂzUZ + a:t:a:zz:na:ul) = Gs»

58

(u'i")t + a‘(u'?)r + 7a‘a:u7 - ”(21‘11::0“6 + 35a’:cxxu5 +

35&'9:::::1::3”4 + zlaac:ca:xru.?r + 7aa:m:r::t:x:cu2 + amrmxmmwul) =gy
By the above Lemma, we get

H t

ua(X (1), 1) = exp™ Jo =Xy (5,0) 4 [exp™ Jo 200N gy (X (s, 2), s)ds,
4 t

ug(X (1,2),1) = exp™ Jo XN (5,0 4 [exp S 2K g (X (3, 3), 8)ds,

t t t
u (X (¢, 2),1) = exp” Jo Tas(X (s:m))ds uqy(z,0) + /0 exp_ J, Tac(X (s:2))ds g7(X (s, z), s)ds.
Therefore, we obtain approximately

[u3 |oo < 10.7 exp4'761ia

1Byl < 0.3745(exp™6 —1).

But these estimates are not very sharp. The best way is to approximate these
equations numerically. We will adopt two approaches. First, we use 4th order
difference approximations for those derivatives of u, uy, uy, ..., 7, and the 4th order
Runge Kutta for the time discretization. Then the leading error coeflicients, £,,
E,, and Fg, converge and give good estimate for the errors for short times (¢ < 2).
But the convergence is very slow for large times. More points are needed to obtain
an accurate approximation.

The second approach uses the method of characteristics. We rewrite these

equations in terms of the characteristics.

du
‘g't‘l‘ = (u1); +a(uy), = —aguy = fu,

39

dus

7 (ug)s + alug)s = —(205u; + agpuy) = [y,

dus

"{'ﬁ_ = (U‘B)t + a(uii):z: = —(gamul} + 3a.."::nu2 + amzmul) = f35

duy

E' - (u4)t + a(ufi):n = —(4(13,?.54 + 60‘2::1:”3 + 40’51::17“2 + aa:x:t:mul) = f4}

dug

“ﬁ{— = (u5)t + a(uﬁ)m = _(5aa:u5 + 10(1‘::::1:”4 + lgammxu@ +
5a:c:trw:nu2 + amzzmmu‘S) = fﬁa

du6

-d_t = (U'G)t + a(ufi)a:' = "‘(6‘%“’6 + 15“:1:.7:’“‘5 + 20awmxu4 "["
150’:w:r::ru3 + 6azrma:zz:u2 + ammxmmmul) = f6;

dy

_E't—- - (UT)t + a(u'?)a: i —(TGmu'T -+ 21&:’:5&‘“6 + 350’:1:3:5“5 +

35ammma:u4 "'E_ Zlaxrmzxu.’:} + TmewwwaQ + azxmz:ﬂmxul) = f'?‘

The advantage of this formulation is that the convection term is dropped and
the computational grid points are self adaptive. In this formulation, we solve the
following system of ordinary differential equations for the leading coefficient of the

errors, Fy, Esand Fg.

=),
d“féf’t) = fil@t), =11,
I
I E

60

= 4al,pppmms/ 315 (for j-4..j+4 stencil)

Again, we use the 4th order Runge Kutta method to integrate the system of
ordinary differential equations in time. It turns out that the particle method
converges very fast for all these three error equations and for all times ¢ <= 3. The
error coefficients E,, E, and E, obtained from the particle method approximation
match very well with the numerical errors. It gives a better approximation than
those of the asymptotic analysis and the finite difference approximation.

In Table 4.2, we list the error tables obtained by using the asymptotic error
expansions and approximating the error equations by the method of characteris-
tics. We also list the differences between the predicted errors and the measured
numerical errors obtained by using the the pseudo-spectral method with 2048 grid
points as an accurate solution. The approximations are extremely good for mod-
erate times. Even for large times, the predicted errors are of the same order as the

ones measured directly.

N grid points | t=0.5 |t=1.0 |t=15 |[t=2.0 |t=2.5 |t=3.0
32 0.00903 | 0.0769 | .419 1.92 |8.06 |32.3
64 0.00226 |0.0192 |.105 48 | 201 |8.09
128 0.000564 | 0.00481 | 0.0262 |.12 |.504 |2.02
256 0.000141 | 0.0012 | 0.00655 | 0.03 |.126 | .505
512 3.53¢-05 | 0.000301 | 0.00164 | 0.0075 | 0.0315 | .126

61

Table 4.2-1 2nd Order Error Bounds from the Particle Method

N grid points | t=0.5 t=1.0 t=1.5 1=2.0 | t=2.5 | t=3.0
32 0.00269 | 0.0203 516 4.7 359 | 270
64 0.000392 | 0.00145 | .109 99 8.72 | 674
128 8.36e-05 | 0.000948 | 0.014 22 2.06 |16.7
256 2.08e-05 | 0.000231 | 0.00405 | 0.0539 | .479 | 4.1
512 5.12e-06 | 3.99e-05 | 0.000972 } 0.0123 | .117 | .967

Table 4.2-2, second order method, @ = 1.2,e =10,

Difference between the predicted error and the measured error

N grid points | t=0.3 t=1.0 t=1.5 | t=2.0 t=2.5 t=3.0

32 0.00774 | .258 5.44 98.8 1.61e+03 | 2.48e+04
64 0.000483 | 0.0161 34 6.18 100 1.55e+03
128 3.02e-05 | 0.00101 | 0.0213 |.386 6.28 96.7

256 1.89e-06 | 6.29¢-05 | 0.00133 | 0.0241 | .393 6.04

512 1.18e-07 | 3.93e-06 | 8.3e-05 | 0.00151 ’0.0245 378

62

Table 4.3-1 4th Order Error Bounds from the Particle Method

N grid points | t=0.5 t=1.0 t=1.5 t=2.0 t=2.5 | t=3.0

32 -0.00455 | -0.0277 127 4.53 135 3.85e+03
64 -0.000353 | -0.00498 | -0.0446 | .136 8.25 240

128 -2.77e-05 | -0.000844 | -0.00619 | -0.04 428 14.8

256 -1.79e-06 | -6.01e-05 | -0.00116 | -0.011 0.00937 | .783

512 -1.15e-07 | -3.76e-06 | -7.6e-05 | -0.00123 | -0.0099 | 0.031

Difference between the predicted error and the measured error

Table 4.3-2 4th order method, a = 1.2,¢ = 0,

N grid points | t=0.5 t=1.0 t=1.5 t=2.0 t=2.5 t=3.0

32 0.0346 5.47 475 3.37e+04 | 2.14e+06 | 1.28¢+08
64 0.000541 | 0.0855 § 7.42 527 3.34e+04 | 2e+06
128 8.45e-06 | 0.00134 | .116 8.23 522 3.12e+04
256 1.32e-07 | 2.09¢-05 | 0.00181 | .129 8.16 487

512 2.06e-09 | 3.26e-07 | 2.83e-05 | 0.00201 .[-.128 7.61

Table 4.4-1 6th Order Error Bounds from the Particle Method

63

N grid points | t=0.5 t=1.0 t=1.5 t=2.0 t=2.5 1=3.0

32 -0.00388 | -0.0254 0.00876 5.7 643 6.96e+04
64 -0.000238 | -0.00344 | -0.0501 -0.0488 9.86 1.09e+-03
128 -5.8e-06 | -0.000529 | -0.00657 | -0.0475 0.074 16.8

256 -1.19e-07 | -1.54e-05 | -0.000524 | -0.00883 | -0.0177 | .112

512 -2.02e-09 | -2.99¢-07 | -1.8e-05 |-0.000661 | -0.00914 | -0.0154

Difference between the predicted error and the measured error

Table 4.4-2 6th order method, a = 1.2,¢ = 0,

64

CHAPTER 5

Extension to 1-D and 2-D Burger’s equations

Tt is of most interest to find out whether or mot that those observations for
the 1-D linear model problem are also true for the 2-D nonlinear problems. We
consider the 2-D viscous Burger system. In the inviscid case, the Burger equation
will develop a shock discontinuity at later times even if we start with smooth initial
conditions. In the presence of viscosity, the shock is smoothed out. But there is
still a viscous shock profile whose thickness is proportional to the viscosity. We ask
the same questions for this 2-D viscous Burger system as before: Which method
can achieve the given error tolerance with the most efficiency.

To perform an error analysis, we begin with a one-dimensional Burger’s equa-

tion where we can afford to do well-resolved calculations.

Uy + UU, = €Uy, (5.1)

u(z,0) = sin(z). (5.2)

This is a nonlinear equation. The solution is more compressed than the linear
case, and more points are needed to resolve the shock profile. To determine the

thickness of the shock profile, we introduce a change of variables:

y==xfe, T=1t[e

65

Uz, t) = Ulz,z/e,t/e).

Then U satisfies

U, +UU, = U,,

*

The transformed variable U satisfies the same viscous equation with unit viscosity.
Tt is well known that the solution U is smooth for all times. Therefore u, has a
s mallest scale proportional to O(€). But unlike in the linear case, the nonlinear
iteration of shock decreases the shock strength. The solution becomes smoother
in time. This is also confirmed by our calculation.

The result indicates more points are required for achieving 1% error tolerance.
Even for achieving 3% error tolerance, we need to have N = 256 for fourth order
and sixth order difference methods when the solution is the most nearly singular .
Basically, the observation agrees with the linear result. Forth order or sixth oreder
difference methods can achieve a given error tolerance with only twice as many
grid points as needed for the spectral method.

In our experiments, we use the pseudo-spectral method with 1024 grid points
as our “accurate” solution. In Table 5.1, we list the errors obtained by comparing
the numerical solutions of the three difference methods and the pseudo-spectral

with this “accurate” solution.

66

N grid points | 2nd order | 4th order | 6th order | pseudo spectral
32 0.0036 4.30e-4 l4le-4 7.18e-6

64 0.0009 2.99¢-5 3.51e-6 7.03e-10

128 0.0002 1.91e-6 6.03e-8 1.50e-13

256 5.51e-5 1.20e-7 9.85e-10 | 1.00e-14

512 1.38e-5 7.50e-9 1.56e-11 |0

Table 5.1-1 1D Burger, € = 0.15, tzme

=.5

N grid points | 2nd order | 4th order | 6th order | pseudo spectral
32 0.1225 0.1095 0.0878 0.0363
64 0.0427 0.0317 0.0223 0.0056
128 0.0123 0.0039 0.0019 1.09e-4
256 0.0031 3.10e-4 5.45e-5 5.38¢-8
512 7.79%-4 2.07e-5 1.19e-6 0
Table 5.1-2 1D Burger, € = 0.15,#2me = 1.0

N grid points | 2nd order | 4th order | 6th order ‘pseudo spectral
32 1.1397 0.6038 0.4182 0.1423

64 1.0599 0.4613 0.3072 0.0881

128 0.5409 0.1889 0.1126 0.0183

256 0.1219 0.0287 0.0128 3.45e-4

512 0.0235 0.0019 4.36e-4 0

Table 5.1-3 1D Burger, € = 0.15,time = 1.5

67

N grid points | 2nd order | 4th order | 6th order | pseudo spectral
32 1.7760 0.7128 0.4749 0.1410
64 1.5809 0.5455 0.3493 0.0865
128 0.6045 0.1916 0.1120 0.0167
256 0.1158 0.0265 0.0115 2.67e-4
512 0.0222 0.0017 3.73e-4 0
Table 5.1-4 1D Burger, € = 0.15, time = 2.0

N grid points | 2nd order | 4th order | 6th order | pseudo spectral
32 2.0766 0.7221 0.4694 0.1249

64 1.5937 0.4771 0.2992 0.0688

128 0.4536 0.1387 0.0788 0.0100

256 0.0798 0.0166 0.0067 9.64e-5

512 0.0160 0.0011 1.86e-4 0

Table 5.1-5 1D Burger, € = 0.15,ttme = 2.5

N grid points | 2nd order | 4th order | 6th order 'pseudo spectral
32 2.2252 0.6810 0.4366 0.1083

64 1.8832 0.3843 0.2376 0.0519

128 0.3194 0.0948 0.0521 0.0053

256 0.0531 0.0099 0.0037 3.40e-5

512 0.0111 0.0007 8.67e-5 0

Table 5.1-6 1D Burger, € = 0.15,time = 3.0

68

We can see from the above tables that the results basically agree with the
linear case. The numerical results indicate that we only need O(%) grid points
(¢ is the size of viscosity) to resolve the shock profile. Since the thickness o
shock profile remains to be of order O(2) for all times, the number of grid peints
needed for achieving a given error tolerance does not increase with time. A sixth
order centra) difference calculation with N = 256 approximately achieves the given
error tolerance 1.3% at ¢ = 1.5 in the case when viscosity equals to 0.015. Beyond
time t = 1.5, the errors begin to decrease because the strength of the shock profile
is weakened as time increases due the smoothing effect from the viscosity terms.
This observation is also confirmed by the 1-D calculation with viscosity 0.015 in
the case ¢ = 1.2 and § = 0.1.

In the following two tables, we give the least number of grid points required to
achieve the error tolerances 3% and 1% respectively, The results indicate that the
fourth and the sixth order methods just need twice as many grid points as needed

for the pseudo-spectral method in achieving the same error tolerances.

69

time 9nd order | 4th order | 6th order | pseudo spectral
hline 0.5 | 32 32 32 32

1.0 128 64 64 64

1.5 512 256 256 128

2.0 512 256 256 128

2.5 512 256 256 128

3.0 512 128 128 64

Table 5.2. 1-D Burger, the least N in achieving 3% error, € = 0.015

time 2nd order | 4th order | 6th order | pseudo spectral
hline 0.5 | 32 32 32 32

1.0 128 128 128 64

1.5 more 512 512 256

2.0 more 512 512 256

2.5 more 512 512 256

3.0 5712 256 256 128

Table 5.3. 1-D Burger, the least N in achieving 1% error, € = 0.015

We now consider the 2-D viscous Burger system.

U+ Uty + VU, = €(Uyy + thyy) (5.3)
Oyt v, + v, = €V, + vyy) (5.4}
u{z,y,0) = sin(z)* sin(y) (5.5)

70

v(z,y,0) = cos{z)*cos(y). (5.6)

We perform the same comparison between the finite difference methods and the
pseudo-spectral method. In this case, we take the numerical solution obtained by
using the sixth order difference method with 256 x 256 grid points as our “accurate”
solution. The pseudo-spectral method is simply too expensive to compute for
data sizes larger than 256 x 256 grid points on a Convex vector computer. It
already takes about one day to compute the solution using the sixth order difference
method with 256 x256 grid points. The corresponding calculation using the pseudo-
spectral method is estimated to take about 9 days.

In the following table, we give the least number of grid points needed in achiev-
ing 2.5% error tolerance. We can see that the observations we made for the 1-D

model problem still hold for the 2-D problem.

time | 4th order | 6th order | pseudo spectral

1.5 | 256 256 128
2.0 256 256 128
2.5 | 256 256 128

Table 5.4. 2-D Burger system, the least N in achieving 2.5% error, ¢ = 0.015

71

CHAPTER 6

2-D implementation on Parallel Computer CM-2:

As we can see in the calculations for the 2-D Burger system, it requires ex-
tremely high numerical resolutions to achieve a given error tolerance. As the
viscosity € tends to zero, the solution becomes more and more singular and it re-
quires more and more grid points to resolve it. Eventually the required resolution
cannot be fulfilled by a sequential computer. A more powerful supercomputer is
required to achieve the desirable numerical resolution.

In this chapter, we implement our numerical experiments on a massive par-
allel machine, the connection machine CM-2. For practical purposes, we study
the question of what is the optimal order of finite difference methods in the sense
of achieving a given error tolerance with the least computational effort. For se-
quential computers, the computational time is mainly govéfned by the arithmetic
operation count, and we found from the previous chapter that the fourth order
difference method gives the best performance in terms of achieving a given error
tolerance with the most computational efficiency. The computer architectures in a
massively parallel super computer is fundamental different from that of a sequen-
tial machine. In a parallel machine, communication is the most time consuming

part in general. We need to take into account the existing architecture for FFT

72

and the interprocessor communication factor. Naturally one may wonder if the
comparison result obtained in a sequential machine still applies to a massively
parallel machine.

In the following table, we give the total computational times for the 2nd, 4th

and 6th order difference methods and the pseudo-spectral method.

N grid points | 2nd order | 4th order | 6th order | pseudo spectral
32 0.0032 0.0035 0.0102 0.1653
64 0.0049 0.0101 0.0164 0.2989
128 0.0110 0.0221 0.0346 0.5680
256 0.0329 0.0611 0.0911 2.2244
512 0.1131 0.1981 0.2804 8.3008

Table 6.1 Execution times (sec) on the CM-2.

As we can see from the table above, the ratio of the computational times
among these methods are roughly equal to 1.000 : 1.857 : 2.769 : 67.61 in the case
of 256 x 256 and 1.000 : 1.752 : 2.479 : 73.47 in the case of 512 x 512.

Recall that the fourth order difference method can achieve the same order of
accuracy as the sixth order method using the same number of grid points. And the
fourth or sixth order method can achieve the same order of accuracy as the pseudo-
spectral method using at most twice as many grid points. From the above table,
we can see that using the fourth order method can save the computational time

over the pseudo-spectral method up to a factor of 10 in achieving the 2.5% error

3

tolerance. And the sixth order method can save the computational time over the
pseudo-spectral method up to a factor of 7. On the other hand, the second order
method can achieve roughly the same order of accuracy (2.5 %) as the sixth order
method using twice as many grid points. From the above table, we can see that the
computational time for the second order method with twice as many grid points is
comparable with that for the sixth order method. So the second order method is
competitive with the sixth order method if the memory storage is not a concern.
But taking all the factors into consideration, the fourth order method is still the
most preferable method. This is because it takes roughly the same number of grid
points to achieve the same accuracy as the sixth order method and is much faster
than the second order method with twice as many points. Moreover it is about 10
times faster than the pseudo-spectral method to achieve the same error tolerance.
In Part II, we will establish a timing model to analyze the performance of high
order difference methods on CM-2. We find that the fourth order method remains
to be the winner even under various possible improvements on the communication

and floating point operations.

4

Part II. Performance Modeling

on Parallel Computer CM-2

75

CHAPTER 7

Introduction to Part IL.

There are a large class of physical problems whose solutions require large scale
computations. The computation of turbulent flows is one example. Typically,
these computations demand a extremely high numerical resolution in order to
resolve the physically interesting small scale structures. Naturally one would like
to perform such a calculation on a computer which can provide both extremely
high speed arithmetic operation and a large memory storage. A massively parallel
supercomputer has both of these advantages. By dividing the computational work
into many individual processors, a paralle]l computer can in effect achieve a very
high speed up over the conventional sequential machine. This provides a very
powerful addition to the existing computational environments and makes many
difficult computational problems become more tractable now.

One major difficulty in a massively parallel computer is that the inter-processor
communication is very costly. In many cases, the communication time could be
comparable to the time used for the arithmetic operation. Although many attempts
have been made to reduce the communication time in a parallel machine, the
communication time is still a very important factor that could affect the overall

computational performance. For a given computational problem, one needs to

76

design the algorithm in such a way that it minimizes the communication time. Very
often this is problem dependent. From a general user’s point of view, it would be
very desirable if one can provide some kind of timing model which can predict the
overall performance by taking into account both the arithmetic operation count
and the inter-processor communication time. This is the purpose of the second
part of this thesis.

Finite difference methods are perhaps the most commonly used numerical meth-
ods in computational fluid dynamics. As a natural continuation to my previous
work, I choose to study a timing model for high order finite difference approxima-
tions for the inviscid and viscous Navier-Stokes equations in periodic geometries.
There are many different ways in designing a difference approximation depending
on individual physical problem. Here we only study the simplest version of all: the
symmetric finite difference approximation. The obvious advantage of this method
is that it can be easily vectorized and parallelized.

As we know from the previous study, a high order difference method has the
advantage of achieving a given error tolerance with a relai:i;reiy fewer grid points.
But it also suffers from being more expensive computationally. The interesting
question is what is the optimal order of the scheme in the sense of achieving a
given error tolerance with the most computational efficiency. The answer depends
on several factors. First of all, it depends on how smooth the physical solution
is and how much one can afford to completely resolve the smallest scale in the

solution. Secondly it also depends on the arithmetic operation count of the method.

7

Lastly and most importantly it depends on the communication time needed for the
numerical method. It is not difficult to see that the higher order the method is,
the more expensive the communication time is in addition to the increase of the
operation count. Thus there is a very subtle balance between the accuracy and
the computational cost.

There are two execution models to compile a CM fortran program, the fieldwise
(Paris) and slicewise models. The main difference is in the way the compiler maps
CM array onto the underlying hardware. In the fieldwise model, the storage of
a single precision number (a 32-bit word) is allocated in 32 consecutive bits of a
physical bit-serial processor’s memory. It requires a interface called “Sprint Chip”
to transpose the data for the floating point operations. In the slicewise model, on
the other hand, a 32-bit word data is stored in a 32-bit slice across the memory
of 32 bit-serial processors. In this manner of storage, the floating point operations
can be performed directly using the data from the common processor memory
without additional transposition of data. This distinct feature of the floating
point architecture significantly improves the CM’s floating point computational
power. For more detailed discussions regarding these two models, see chapter 1.1
and chapter 2.

Chapter 2 of the Part II is devoted to studying a timing model based on the
slicewise model on CM-2 which takes into account both the communication time
and the arithmetic operation time. In our timing model, we propose a method

to estimate the purely internal communication time and the purely external com-

78

munication time. These two communication factors are then combined with the
arithmetic operation estimate to provide an accurate prediction for the overall
computational time needed for a high order difference method. Our preliminary
calculations indicate that the relative error of our timing model is less than 10%
in the three dimensional geometry on 16K CM-2, and less than 20% in two and
three dimensional geometries on 8K CM-2. One new feature of our model is that
the overhead time in the internal communication depends on the geometry of the
data. Our model provides an explicit formula which account for this fact.

There are some existing timing models proposed for the fieldwise model on CM-
2, see, e.g., Levit {13], and Pozo [15]. In the fieldwise model, each 32-bit word is
stored in a bit-serial processor. And one can specify a geometry by using a special
Paris function call. This defines the number of virtual processors simulated by a
bit-serial processor in each dimension. Then one can use the specific description
of each bit-serial processor to estimate the communication time for the fieldwise
model. Appropriate parameters are obtained by using a lea@t square fit. However,
in the slicewise model, a 32-bit word data is stored in a; 32-bit slice across the
memory of 32 bit-serial processors. Thus it does not make sense to talk about the
subgrid sizes of each bit-serial processor, because there is no single data completely
stored in one bit-serial processor. Instead we should consider a floating point node
(consist of 32 bit-serial processors sharing a floating unit) as the basic element of
the slicewise model, and the VP ratio should be defined in terms of the number

of virtual processors in this basic element. As a consequence, the timing model

79

developed for the fieldwise model does not directly apply to the case of the slicewise
model, and a new timing model for the slicewise model is needed. To the best of
our knowledge, there are no such models available for the slicewise model yet.
We use the timing model developed in chapter 2 of this part to perform a num-
ber of interesting studies. First of all, our timing model validates the observation
we made in the previous chapter: the fourth order finite difference method is the
most favorable method in terms of achieving 1% error tolerance with the least
computational effort. This corresponds to the case when the solution develops a
small scale structure. When the solution is very smooth (such as in the case of
o = 0.8 for the hyperbolic equation), a higher order method (6th order or higher)
is more preferable depending on the size of the given error tolerance. We also ask
the question of how sensitive this conclusion depends on the specific performance
parameters of a parallel computer. To answer this question, we study the behavior
of the our timing model by varying different parameters in our model, e.g. the
communication startup overhead constant, and internal and external communi-
cation factors, as well as the floating point operation parameter which measures
the arithmetic performance cost. To our surprise, the timing model is very stable
under these perturbations. In the case of large data sizes 256 x 256, 512 x 512,
and 1024 x 1024, the arithmetic time tends to dominate the communication time.
Reducing the communication time by a factor of 10 only changes the overall time
by roughly 35 percent. On the other hand, reducing the arithmetic operation time

by a factor of 10 significantly reduces the overall computational time by roughly

80

55 percent. In the latter case, doubling the number of grid points in the second
order method takes about as much time as the sixth order method. From our
previous study on accuracy of these methods, the second order method with twice
as many grid points performs equally well as the sixth order method from the
point of view of accuracy. But doubling the total number of grid points costs more
memory storages. So there is still some preference of using the sixth order method
to the second order one. The fourth order is the true winner. This is because it
takes roughly the same number of grid points to achieve the same accuracy as the
sixth order method and is much faster than the second order method with twice as
many p_oints. This study seems to suggest that the fourth order difference method
is still preferable even with an improved compiler of CM-2. We also have done the
comparison by reducing various parameters by a factor of 100. Results are very
similar to what we have discussed above.

The rest of the thesis is organized as follows. In the following I shall give a
brief introduction to the architecture of CM-2, the parallel machine on which we
have performed most of our calculations. In chapter 2, we derive and analyze our
timing model, and estimate the relative error of the model. In chapier 3 we use
the timing model developed in chapter 2 to study some possible improvements
of performance by varying different parameters in the timing model. The main

conclusions are summarized at the end of chapter 3.

81

7.1 Introduction to CM-2.

The Connection Machine Model CM?2 is a massively parallel computing systemn,
of the single instruction multiple data (SIMD) type, and with distributed memory
hypercube structure compacted. The CM system consists of a parallel processing
unit containing thousands of data processors, each with its own memory, all acting
under the direction of a serial processor called the front end. There is also an I/O
system that supports mass storage, graphic display devices and other peripherals.
For details, see [20, 19].

A fully configured Connection Machine Model CM2 consists of 64K (65536) bit-
serial processors which has a clock rate of 6.7 MHz and utilizes 2048 Weitek 3132
floating point units (FPU). When properly pipelined, the floating point unit per-
forms a single precision 32-bit-floating point multiplication and a 32-bit-addition
for each clock cycle. This gives us an aggregate peak floating point performance
over 27 Gflops:

2048 x 2 floating point ops/cycle x6.7 x 108 cycles/sec = 27.4 x 10° floating
point ops/sec.

To understand the performance on CM2, we have to first understand its funda-
mental structure. The central element of the CM system is the parallel processing

unit, which contains

e thousands of data processors — (from 2K to 64K) each data processor acts

very much like a serial computer (it can execute arithmetic and logic instruc-

82

tion, calculate memory address, and perform interprocessor communication
or 1/0) but there is a difference, which is the data processors do not get
instructions from their respective memories. Instead, they are collectively

under the control of a single micro-coded sequencer.

e a sequencer — to decode commands from the front end computer and broad-
cast them to the data processors, so that all the data processors execute the

same instructions simultaneously.

e an interprocessor communication network — very few useful problems can be
decomposed into completely independent subproblems, and most require the
processors to interact. Processors must be able to pass information among
themselves in the pattern best suited to the needs of the moment; the pattern
must be able to adapt to any applications needed, and to change over time.

CM2 supports this with 3 kinds of interprocessor communication:

1. Nearest-neighbour (NEWS) communication — There is hardware sup-
port for the grid-based communication - nearest neighbour accesses,

dimensional sifts, and cumulative computation along grid axis.

2. General purpose (router) communication - each processor gets a value

from any arbitrary processor.

3. Global communication (scan)

¢ Zero or more [/O controllers and/or frame-buffer modules.

83

7.2 Two execution models: Paris (Fieldwise) model/ Slicewise model

There are two execution models the programmer can choose when he/she com-
pile a CM Fortran program, the Paris (Fieldwise) or the Slicewise models. Here the
notation “Paris” stands for parallel arithmetic instruction sets. The difference is in
the way the compiler maps CM arrays onto the underlying hardware. The slicewise
model only runs on a CM with the optional 64-bit floating-point accelerator, while
the Paris model can execute on any CM configuration.

Here we introduce two terms: processing node and processing element (PE).

Processing node ¢ All CMs are organized into processing nodes which con-

sists of 32 bit-serial processors and other associated hardware.

o If the CM system has a floating point accelerator, then it has one
floating-point chip per node. (i.e. one floating-point chip per 32 bit-

serial processor)

Processing element (PE)} The basic unit of either model

84

Paris (Fieldwise) Model | Slicewise Model

CM system It can be run requires a CM
required on any CM hardware w/ 64-bit floating
configuration point accelerator

Each bit-serial processor. | Each processing node.

processing element | e.g. a 64K CM-2 (i.e. 32 bit processors w/ FPU)
in Paris model has e.g. A 64K CM-2
64K PEs. in slicewise model has

64K /32 = 2K PEs.

performance slower faster

(due to special optimization)

7.3 Virtual Processing

Virtual processor facility is an important feature of CM system that enables
each PE to simulate more than one virtual processor per PE equally dividing its
memory and sequentially serving the virtual processors. The virtual processor
facility associates one virtual processor (VP) with one data element of a data set.

The set of all virtual processors associated with a data set is called a virtual
processor set (or a VP set) See Example 1. The ratio of the virtual processors
required by the application to the number of physical PEs is called the VP ratio.

The VP ratio indicates how many times each PE must perform a certain task

85

in order to simulate the appropriate number of virtual processors. In this way,
a program can be executed unchanged on CM system with different number of

physica

| processors. Purthermore, using high VP ratio allows one to run extremely
large size problem and also improves the performance of the CM.

Example 1. Suppose we have a VP set of 64K (65536) virtual processors.
In Paris model execution, if the program runs on a 64K CM, the VP ratio is 1
and if the program runs on a 32K CM, the VP ratio is 2. In the slicewise model

execution, if the program runs on a 64K CM, the ratio is 32 while if the program

runs on a 32K CM, the VP ratio is 64.

7.4 Principles of optimizing the performance of CM-2

To achieve the best performance on the CM system, an application program
must maximize the processor use and streamline or reduce interprocessor commu-

nication, which can be summarized as:

e Use as many CM processors as possible in each operation because if a program

leaves the processors inactive, it reduces the advantage of parallel processing.

¢ Avoid interprocessing node communication whenever possible because oper-

ations within processors are faster than those between processors.

¢ Whenever communication is necessary, use the most efficient communication

mechanisms and paths.

86

Therefore the allocation of arrays on the CM gives different efficiency in per-
formance. There is a canonical layout which the CM Fortran compiler uses to
allocate arrays on the CM to achieve the above goals for many array uses. For
some applications, one can get better efficiency by using a different layout. LAY-
OUT is one of the compiler directives in CM Fortran for this purpose. LAYOUT
causes an array to be laid out in CM memory in a way that either reduces inter-
processor communication or optimizes the speed of communication along specific

dimensions.

7.5 VP geometries

The VP set is at least the size and the bank of the array. However, the VP set
may be larger than the array because the exact size and shape (the geometry) of

a VP must also meet some constraints set by the execution model.

e In the Paris model, the axes of the VP grid must be a power of 2. Hence the

VP ratio is also a power of 2.

¢ In the slicewise model, the total size of the VP grid must be a multiple of 4
times the number of processing nodes. (i.e. Right now, the 64 bit floating
point chips have a vector of 4. This constraint will be taken out in the

future).

87

CHAPTER 8

Analysis of floating point operation and grid communication model

To study the performance of a program on CM-2 it is sufficient to study the
performance of the operation within one processor and its inter-processor commu-
nication. If each grid point does not need to communicate with other grid points,
then one need not worry about the data distribution. In that case, we just need to
make sure that we use as many processors as possible to have a good load balance.
However, in numerical approximations of physical problems, we need to approx-
imate the physical differential equations by difference operators. These involve
sending or fetching information from other grid points. In this case, communi-
cation between different grid points and/or processors plays a significant role in
the overall performance. How to distribute the data point according to the spe-
cific computer architecture becomes very important if one wants to minimize the

communication cost.

8.1 Fieldwise model versus slicewise model.

Our timing model is established based on the newest slicewise model. This
model performs much faster than the standard fieldwise model. In the fieldwise

model, the storage of a 32-bit word is allocated in 32 consecutive bits of a physical

88

bit-serial processor’s memory. In each clock cycle, a bit-serial processor can send
out only one bit of a single-precision (32-bit) floating point value. However, the
(Weitek 3132) floating point unit can operate a 32-bit word in each clock cycle.
Therefore it takes 32 cycles for a bit-serial processor to send out the whole value of
a 32-bit floating point number to the Weitek 3132 floating point unit. To balance
the bandwidth between these two processors (32 to 1), each two CM chips (total
32 bit processors) are designed to attach to one Weitek 3132 floating point unit.
Thus these 32 bit-processors send out 32 single precision words in 32 clock cycles.
which in average achieves one single precision word per clock cycle.

However, in this manner of storage, those 32 bits sent out by associated 32
bit-serial processors in each cycle do not represent any single precision number.
Fach bit just comes from a different bit-serial processor. Therefore, it requires
an interface to transpose these 32 bits into a proper format for the Weitek 3132
floating point unit. This interface is called ”Sprint Chip” between the common
processor memory and the Weitek 3132 floating point unit.

In practice, it is not very efficient to store the data fleldwise and do transposition
back and fourth between the common memory area and the Weitek 3132 floating
point unit. Recently the CM architects have designed a new slicewise model to view
the processors in a slicewise configuration. A 32-bit word is stored in a 32-bit slice
across the memory of those associated 32 physical bit processors in the processing
node (a processing node consists of 32 bit-serial processors sharing a FPU). In

other words, each bit of a 32-bit number is stored in a different processor of that

89

processing node, 1-bit per processor. Therefore, with slicewise model, the Weitek
3132 floating point unit actually access data from their associated processors in
each clock cycle. That is to say, in each cycle a 32-bit slice across processors is read
into the floating point unit. Thus the slicewise model saves the transposition work
between the main memory and the Weitek 3132 floating point unit. This distinctive
feature of the floating point arcﬁitecture significantly improves the CM’s floating
point computational power.

There are some existing timing models proposed for the fieldwise model on CM-
9, see, e.g., Levit [13], and Pozo [15]. In the fieldwise model, each 32-bit word is
stored in a bit-serial processor. And one can specify a geometry by using a special
Paris function call. This defines the number of virtual processors simulated by a
bit-serial processor in each dimension. Then one can use the specific description
of each bit-serial processor to estimate the communication time for the fieldwise
model. Appropriate parameters are obtained by using a least square fit. However,
in the slicewise model, a 32-bit word data is stored in a 32-bit slice across the
memory of 32 bit-serial processors. Thus it does not make sense to talk about the
subgrid sizes of each bit-serial processor, because there is no single data completely
stored in one bit-serial processor. Instead we should consider a floating point node
(consist of 32 bit-serial processors sharing a floating unit) as the basic element of
the slicewise model, and the VP ratio should be defined in terms of the number
of virtual processors in this basic element. As a consequence, the timing model

developed for the fieldwise model does not directly apply to the case of the slicewise

90

model, and a new timing model for the slicewise model is needed. To the best of
our knowledge, there are no such models available for the slicewise model yet.

In Figure 8.0, we present the structure of such a floating point node which
consists of 2 CM chips linked with a common memory area and its interface chip.
The Sprint chip links between the processor common memory area and the Weitek
3132 floating point unit. In fieldwise model, the Sprint chip needs to transpose
the arguments between the processor memory and the Weitek 3132 unit. In the

slicewise model, on the other hand, it requires no transposition.

Instruction Bus
11 wires 11 wires
to the Hypercube to the Hypercube

. Ews Oo0oO
s |onoo N
Hypercube D D bl Hypercube 10 []

Interface D D '[:l B Interface E‘ D D D

_ _ FPU
Mermory Sprint Chip Weiteck 3132

Figure 8.0 A Processing Node

So what is the difference between the fieldwise model and the slicewise model?

91

It seems that the only difference between them is the performance of floating point
operations. Can we still use the same analytical model which has been developed
for the fieldwise modei? It is not clear. Recall that in a slicewise model, data are
stored slicewisely across the memory of those associated 32 bit processors in each
floating point node. There are no data completely stored in any single bit-serial
processor. By using a special Paris function call, one can specify the number of
virtual processors simulated by a bit-serial processor in each dimension. Then
one can use the specific description of each bit-serial processor to estimate the
communication time for the fieldwise model. Appropriate parameters are obtained
by using a least square fit. In the slicewise model, on the other hand, a 32-bit word
data is stored in a 32-bit slice across the memory of 32 bit-serial processors. Thus it
is irrelevant to talk about the subgrid sizes of each bit-serial processor. Instead we
should consider a floating point node as the basic element of the slicewise model,
and the VP ratio should be defined in terms of the number of virtual processors
in this basic element. Therefore the analytical model provided by Levit {13] and
Pozo [15] in fieldwise model could not be used directly in‘ 'ghe slicewise model. A

new timing model is required to study the performance of the slicewise model.

8.2 Performance Analysis of Floating Point Operation for Slicewise

CM-2

What is a reasonable model for the floating point operation on the slicewise

model of CM-2 7 From the previous section, we understand the underlying archi-

92

tecture of each floating point node of CM-2, see Figure 8.0. We can decompose
the floating point operation into three parts : (1) sending the data from com-
mon memory area through the Sprint chip without transposition to Weitek 3132
FPU, (2) performing computation in the Weitek 3132 FPU, (3) sending the result
through the Sprint chip without transposition back to the associated bit processors.
Therefore, it is reasonable to expect that the floating point operation performance
model consists of a overhead time for filling the pipeline of the floating point vector

co-processor unit and a linear growth rate when the pipeline is filled.

To verify our model for the floating point operations, we have performed a
number of experiments. In our experiments, we compute each basic floating point
operation one thousand times and average the measured time. Then we repeat
the same computations for various data sizes. The measured time is plotted as
a function of data sizes in Figure 8.1, which clearly iﬁdicates that the execution
time grows linearly with respect to the VP ratio. Denote by n the VP ratio per
processing node, by T'(n) the time for a floating point operations. cis the overhaed
time to fill the pipe and « is the linear growth rate when the pipeline is filled. They
satisfy T(n) = c+a *n.

By using a least square fit, we obtain the corresponding overhead time, c
(psecs/vp), and pipelined rate, o (psecs/vp) for each basic floating point oper-
ation. We list the values of these two parameters for different basic floating point

operations in Table 8.1,

93

x10-3 Some Basic Floating Point Operations Performance on CM-2

L
2 p E
A -
P .
P
1.5} P 1
P
A .
?-; __‘4-""4 .ﬂ"-
S 1‘ o
8 C - K "
& e “
‘_,,r".'.-'
(rap,r"
o
o
oS5t o]
e
et
e
oA
P
4] 100 200 360 400 500 600 700 BOO o060 1000

VP ratio each Floating Point Node

Figure 8.1: Linear relation between floating point performance and VP ratio

operation | ¢ (¥ sec) | a (v sec)

x=a+b 9.9928 1.1555

a=a+ts 9.5606 0.8233

x=x-b 10.1604 1.1557

a=a-b 10.3266 1.1212

a=a-s 9.5659 0.8233

x=x*b 10.1588 1.1537

a=a*b 10.3123 1.1212

a=a*s 9.6001 0.8233

x=a/b 9.4305 2.7644

a=afs 9.3962 2.4302

Table 8.1: Performance Model for Some Basic Floating Point Operations,

94

Tt is important to note that the vector division or scalar division takes much
more time (more than 2.5 times) in the floating point operation calculation stage
than vector addition, vector subtraction or vector subtraction. Recall that a Gfiop
is defined as the ratio of number of floating point operations and the computational
time, i.e. N/(C + aN) = 1/(a + C/N). Moreover the higher the VP ratio,
the more efficient a CM-2 is being used. Therefore higher VP ratio gives better
Gflop performance of floating point operations. This is also confirmed by our
experiments in Figure 8.2 where we plot the Gflop performance versus the VP ratio
of each processor node. Different curves in Figure 8.2 correspond to different basic
floating point operations listed in Table 8.1. Note the result reflected in Figure 8.2
is performed on a 8K CM-2. We can expect to 1.8 to 2.4 Gflop performances for
a fully loaded 64K CM-2 because a 64K machine has 8 times as many processing

nodes as for a 8K machine.

In fact , the CM-2 Weitek 3132 floating point unit has a pipe for multiplication
and addition so that they can be performed in a unit clock cycle. In Table 8.2,
we list the computational time of several triad vector operations, As we can see
the computational times of the two floating point operations are not additive.
Instead multiplication and addition are performed in a pipelined fashion, so that
the performance of the resulting triad vector operations is almost twice as fast as
that of the basic floating point operations described above. In Figure 8.3 we plot

the triad floating point operation time versus VP ratios. We still observe the same

95

Some Basic Floating Point Operations Performance on CM-2

O o
—

0.25

0.2

Gflops

o1

Q.05

o 50 100 150 200 250
VP ratio each Floating Point Node

Figure 8.2:

300

linear relationship between the execution time and the corresponding VP ratio.

We also plot their Gflop performance in Figure 8.4. They can achieve about 3.3

Gflops on a 64K CM-2.

46

operation c(psec) | apsec)

a=s* (ath) | 10.4871 | 1.3475

x = s * (a+b) | 10.6963 | 1.3819

c=c* (atb) | 8.8799 | 1.3885

x=c* (atb) | 9.4128 | 1.4210

x=c¥a+b| 92841 1.4996

c=c*a+bj 87737 | 1.4616

x=a+s*b |10.6234 | 1.2338

a=a-+s*b 102402 | 1.1962

a=t+s*b | 13.0484 | 0.9692

b=t+s*b |11.7802 | 0.8979

b=t+a*b|10.2576 | 1.1962

a=t+a*hb|10.6656 | 1.1977

Table 8.2: Performance Model for Some Triad Floating Point Operations,

We have tested the accuracy of our model for the floating point operations. In
Figure 8.5 we plot the relative errors of the predicted time by the above models
for the floating point operations versus VP ratios. We can see that the maximum
relative error is less than 3 % . And for high VP ratios the model prediction is

almost exact.

97

x104 Some Triad Floating Point Operations Performance on CM-2
10F /, .
f"‘
8l 4
t‘f"
E:, 6L ,/’ .
@ -
. o
E
4k - .
f"’"
"”
2 "' -
0 100 200 300 400 500 600 700 800 900 1000

Figure 8.3: Linear relation between triad floating point performance and VP ratios

VP ratio each Floating Point Node

0.4

Some Triad Floating Point Operations Performance on CM-2

i i O O L T =

L 1

Figure 8.4: Gflop performance of triad floating point

50 100 150 200 300

VP ratio each Floating Point Node

98

operations vs VP ratios

x10? Accuracy of the model for FPO

2.5} J
g
2r .
3
15 & .
: i 883 2
R
2 r ° -
g O B
=1 o § =

) 0.5 1 15) 2.5 3
VP ratio x103
Figure 8.5: Accuracy of the model for floating point operations

In practice, the arithmetic operations are more complicated than those listed
above. It could be a combination of many different basic and triad floating opera-
tions. In this case, the average Gflop performance for the floating point operations
is much better than the basic and triad operations. In Figure 8.6, we give the
performance (on an 8K CM) of many commonly used arithmetic expressions for
finite difference schemes. For example, the curve at the bottom in Figure 8.6 cor-
responds to the simple arithmetic express A+ ¢e(s(U —V)+ tW), where A, U, V, W
are vectors, s and t are scalars. The curve on the top corresponds to a more

complicated arithmetic expression
A+ e(s(U; = Uy) +1(Vy = Vo) + r(Wy — Wa) + gZ),

where the upper case letters stand for vectors, the lower case ones stand for scalars.

The curves from the bottom to the top correspond to different arithmetic expres-

99

Some Finite Difference Floating Point Operations Performance on CM-2

12k S-S Sy PO e T i .
ir e -0 . —
o e 2 g .
=]
R B J— .
0.6 = TS TR PRI |
oaf g "]
[
02g, . N \ . .

50 100 150 200 250 300

VP ratio each Floating Point Node

Figure 8.6: Gflop performance of finite difference operations and VP ratio

sions with increasing complexities, We can see from Figure 8.6 that the Gflop

performance increases as the arithmetic expression becomes longer.

8.3 Grid Communication Analysis for Slicewise CM-2

The communication performance of the slicewise model is different from that
of the fieldwise model. Therefore, we can not use the existing cominunication
model for our timing model. With different data allocation strategy, slicewise
model not only provides faster performance on the floating point operation, but
also forces us to reconsider the data distribution on CM in a manner different from
the fieldwise model. In the fieldwise model, each single precision data is allocated

to some bit-serial processor so that it makes sense to study the VP ratio of a hit-

100

serial processor. However, in slicewise model, there will be no any single precision
data which is stored in the memory of a single bit-serial processor. Each single
precision data is stored across the memory of 32 bit processors of a floating poini
node. Therefore, it makes no sense to discuss how many data are in a bit-serial
processor. Instead, we have to view a floating point node as the basic unit in the
study of the slicewise model of CM-2. For this reason, we only consider the floating
point node from now on. Thus a 64 K CM becomes 2048 floating point nodes, and
8K CM become 256 floating point nodes.

Unlike the fieldwise model, there are fewer layout directives in specifying a data
structure in the slicewise model. In the fieldwise model, one can specify a data
structure to determine how those dimensions of the original problem be mapped to
the CM processors by calling the following Paris subroutine CM-creat-detailed-
geometry() . However, we cannot do this in the slicewise model. But, as a CM
fortran user, one does not need to specify or even worry about which mapping
is optimized. CM fortran compiler uses a canonical layout, NEWS layout, to
allocate arrays to achieve nearly optimized performance '. We only need to use
CMF-DESCRIBE-ARRAY() to figure out how the data being distributed into
those floating point nodes.

Let us denote the data structure of a data set on CM-2 as G = {P,V}. The
data structure G = {P,V} is commonly called as the “geometry” of the data set.
Here P = {p;,p,,-.., P} denotes the physical processing node dimensions, and

V = {v,v,,...,v;} denotes the virtual processing node dimension.

101

Although the slicewise compiler can automatically choose a layout to optimize
the performance, it is difficult for us to know what is the geometry of the data
structure without calling CMF-DESCRIBE-ARRAY({j .
a few examples to illustrate the underlying geometries associated with different
problems. The first one is relatively easy to guess. The last two are less intuitive.
Example 1. The default layout is given by (:news,:news), i.e. each subgrid
dimension is distributed by the nearest neighbor data distribution. We would like
to find out how a 512 x 512 data is mapped to a 8K CM. In the slicewise model, a
8K CM becomes 256 floating point nodes. In this example, they are configured as
a 2D dimension hypercube, with physical processing node dimension 16 X 16, and

each virtual processing node gets a chunk of data with subgrid size 32 x 32. The

geometry G consists of

P = {16, 16},

Vv = {32,32}.

We can find out the exact geometry layout by calling CMF-DESCRIBE-

ARRAY(). The results are given below.

102

Array geometry id: 0x230390

Rank: 2

Number of elements: 262144

Extents: [512 512)

Machine geometry id: 0x2301c8, rank: 2, column major
Machine geometry elements: 262144
Overall subgrid size: 1024

Axis 0:

Extent: 512 (16 physical x 32 subgrid)
Off-chip: 4 bits, mask = 0xt0
Subgrid: length = 32, axis-increment = 32

Axis 1:

Extent: 512 (16 physical x 32 subgrid}
Off-chip: 4 bits, mask = 0xf

Subgrid: length = 32, axis-increment = 1

Grid decomposition of a 512x512 grid onto a 8K CM-2

Example 2. We consider a three-dimensional default layout (:news,:news,:news}.
We would like to find out how a 128 x 128 x 128 data is mapped to a 8K CM. In this

case, those 256 floating point nodes are configured as a 3D dimension hypercube,

103

with physical processing node dimensions 4 x 8 x 8, and each virtual processing

node gets a chunk of data with subgrid sizes 32 x 16 X 16. Its geometry G 1s

described by

P = {478?8}7

V = {32,16,16).

We get the following information by calling CMF-DESCRIBE-ARRAY() .

104

Array geometry id: 0x230108
Rank: 3
Number of elements: 2097152
Extents: [128 128 128)
Machine geometry id: 0x22ff40, rank: 3, column major
Machine geometry elements: 2097152
Overall subgrid size: 8192
Axis O
Extent: 128 (4 physical x 32 subgrid)
Off-chip: 2 bits, mask = Oxc0
Subgrid: length = 32, axis-increment = 256
Axis 1:
Extent: 128 (8 physical x 16 subgrid)
Off-chip: 3 bits, mask = 0x38
Subgrid: length = 16, axis-increment = 16
Axis 2:
Extent: 128 (8 physical x 16 subgrid)
Off-chip: 3 bits, mask = 0x7

Subgrid: length = 16, axis-increment = 1

Grid decomposition of a 128x128x128 grid onto a 8K CM-2

105

Example 3. This time we consider the default layout (:news,:news,:news) with

data size 32 x 512 x 512. In this case, these 256 floating point nodes are configured

— - — .~ ~

as a 3D dimension hypercube, with physical processing node dimensions 2 X 8 X 16,
and each virtual processing node has a chunk of data with subgrid sizes 16 x64 % 32.

In this example, the geometry G consists of

P = {2,8,16},

V = {16,64,32}.

We get the following information by calling CMF-DESCRIBE-ARRAY() .

106

Array geometry id: 0x22ba38
“Rank: 3

Number of elements: 8388608

Extents: {32 512 512]

Machine geometry id: 0x22b870, rank: 3, column major
Machine geometry elements: 8388608
Overall subgrid size: 32768

Axis 0:

Extent: 32 (2 physical x 16 subgrid)
Off-chip: 1 bits, mask = 0x80
Subgrid: length = 16, axis-increment = 20438

Axis 1
Extent: 512 (8 physical x 64 subgrid)
Off-chip: 3 bits, mask = 0x70
Subgrid: length = 64, axis-increment = 32 .

Axis 2:

Extent: 512 (16 physical x 32 subgrid)

Off-chip: 4 bits, mask = Oxf

Subgrid: length = 32, axis-increment = 1

Grid decomposition of a 32x512x512 grid onto a 8K CM-2

107

8.3.1 Data mappings on higher dimensional data structures

Suppose the total size of the original problem is k-dimensional with size (ny, ny, ..., 7))
and we work on CM with 2¢ processors. The geometry consists of G = {P,V},
where P = {py,Pa,..., %} denotes the physical processing node dimensions, and
V = {vy,v,, ...,v;} denotes the virtual processing node dimension. It should sat-

isfy the following two properties:

e The product of the physical processing node dimension, p;, and the virtual
processing node dimension, v;, equals to the problem dimension size, for ¢-th

dimension, where 1 = 1...k .

ng =P ¥ Y,

» The product of the physical processing node dimension equals to the number
of the processing nodes on which we work on. 2¢ CM processors becomes

24-5 processing nodes in the slicewise model. []p; = 24-3

After we find out the description of the data mapping, we can easily study the

mechanism of the grid communication of the slicewise model on CM-2.

8.3.2 Decomposition of NEWS grid communications

The NEWS grid communication can be decomposed into two major parts:

108

e On-Node communication : Communication between two virtual nodes which
are on the same physical node. Since there is a common memory area for

. ; N (VR TR T T SR § ¢ O

a node, it only costs memory moving {copying} within the same node. Wwe

denote the time required for transferring 32-bit word within the same node

as 1,7, M stands for internal Memory moving (copying).

¢ Off-Node communication : Communication between two different physical
processing nodes. This requires moving (copying) data to a temporary buffer,
and transfer data through Off-Node hypercube network. We denote the time
required for transferring 32-bit word off-node as tg, E stands for external

commumnication.

Since we now view an assemble of 32 bit serial processors sharing with a FPU
as a basic unit of the slicewise model of CM-2, the communication mechanism
becomes much simpler than the fieldwise model. Consider Example 1 above. Sup-
pose we would like to calculate the finite difference operator , dz, or Oy on the
2D 512x512 data grid described in Example 1. A simple first order forward dif-

ference approximation for u, with periodic boundary , at grid (i,j), is given by

doi=1pn
ux (1,]) =(u(i+1,j) - u(ij)) / b
end do

ux(1,j) = (u(1,j) - u(n,j)) / h

In the CM fortran command, it is translated to the following operation using the

cshift function (circular shift):

109

(cshift (u,1,1)-u) /h

This requires each grid point to send a data to its nearest neighbor node (with
distance one} along the first dimension. Why the nearest neighbor node? Because
in the NEWS ordering, the data are mapped into the hypercube in a manner that
all neighboring grids are mapped into the neighboring nodes of the hypercube.

One way to estimate the communication time of this difference operation is
as follows. Assume every (virtual) node wants to communicate one floating point
value (32-bit) to its west neighbor. We need to perform the NEWS communica-
tion with distance one along the first axis. Those virtual nodes located in the
left boundary have to be sent out through the Off-Node (external) hypercube net-
work to its neighbor. There are totally 32 x 1 external communications. Others
are sent to their destinations within the same physical node, and it is simply a
memory moving (copying) within a node, which is very fast. There are 32 x 31
internal memory movings (copying) . By a straightforward calculation, the overall
communication time would be given by 32 x t3; + 32 x 31 x toyy. This is similar
in spirit to the models used by Livet [13] and Pozo [13]. .'I"he only difference be-
tween the model proposed above and the models used in [13] and [15] is that we
use this formulation for the processing node instead of for a bit-serial processor.
The drawback of the communication model proposed above is that it ignores the
overhead time in the internal memory moving. As we’ll see in the next section, the

overhead time in the internal communication can grow proportionally with respect

to the product of the second and the third subgrid dimension of the data set in

110

the (:serial,:news,:news) layout.

8.4 Model for Internal Communication

In order to account for the dependence on the geometry of the data for the
internal communication time, we propose a more sophisticated model to correct
the discrepancy in the previous model. The idea is to separate the study of the
internal communication from the external communication. For this purpose, we use
a (:serial, :news, :news) layout with different data sizes as test cases. We perform
cshi ft operation of distance d along the first dimension. This corresponds to purely
internal communication because of the special layout. For simplicity, we consider
the case of d = 1. Other cases can be treated similarly.

One important observation in our study is that the overhead time in the internal
communication depends on the geometry in a subtle way. See Figure 8.7. In this
figure, each line corresponds to a set of data with similar geometry. For those data
of sizes of k x 128 x 128, with (:serial, :news, :news) layout and k varying froni 4 to
few hundred, the performance of eshift with distance 1 along the first dimension
is linear with respect to the size of total subgrid sizes of data. We observe the
same behavior for data of sizes k x 256 x 256, k x 512 x 512, and k x 1024 x 1(524
respectively. Again the performance of each set of data is linear with respect to the
size of total subgrid sizes. However, the corresponding overhead times are different
from each other.

A careful study shows that the overhead time of internal communication of

111

NEWS Comrmunication on CM-2 for 3D (:serial,:news,:news) data

0.025

0.2 /

0.015 1024,1024)]

Time(sec) along 1st Dimension

0.01 - (k,512,512)
0.005
(k,128,128)
0 el 1 " " 1 i)
4] 2000 4000 6000 8000 10000 12000 14000

Total VP Ratio Per Processing Node

Figure 8.7:

each data set depends on its particular geometry. Consider a data set with a layout
(:serial,:news,news) and of subgrid size v; X v, X v;3. A serial array dimension has
the distinctive property that it is always allocated entirely within (never across)
processing nodes. Therefore the cshift along the first dimension takes place within
each processing node. This gives the natural way to describe the model of internal
communication by performing a cshi ft with distance one along the first dimension
on such a data set.

Roughly speaking our internal communication model can be understood by con-
sidering the memory moving as a "DO LOOP?” process. Consider a 3D data with
(:serial, :news, mews) layout and the subgrid sizes vy, v;, and v;. To make a ¢shift
on such a data set along the first dimension, we begin by performing the memory

copying (moving) along that dimension. This consists of a basic overhead cost, Cy,

112

and a memory copying rate, tp;. But we have to repeat the same communication
procedure v, times along the second dimension for each memory moving along the

M X V1) X Ug), Where

first dimension. Thus the accumulated time is 7' = (T +(Ci +
C, is the overhead time along the second dimension. Finally we have to repeat vy

times along the third dimension the same memory moving procedure for the first

two dimensions. Therefore the overall internal communication time is given by

T = (Cy + (C1 + tar X v1) X v3) X v,

where vy, vy, and v are the subgrid sizes in each processing node, and 2y, is the
internal communication rate which may depend on the distance of communication.
The overhead time for the internal communication is now given by €} x vy x vz +
C, X vy It is roughly proportional to the product of its subgrid sizes along the
second and the third dimensions. Note that we have neglected the overhead time

along the third dimension since it is very small compared with Cy X vy x v3+Cy X v3.

8.5 Model for External Communication

To find out the model for the external communication, we measure the time of
some data sets with the layout (:serial, :news, :news). (We can also use {1000:news,
‘news, mews) layout) The idea is to construct some purely external communication
cases. The best way to achieve this effect is to move the data along the second
or the third dimension with distance equal to the subgrid size of that dimension.

This causes the entire chunk of data in a node to move to its nearest node. For

113

example, if we consider a data of size 128 x 128 x 128, with (:serial, news, ‘news)
layout, its subgrid sizes are 128 x 8 x 4 on a 16K CM. To perform communication
along the second dimension with distance 8, all the data within a processing node
need to move out to its nearest neighboring node. This means there are 32 x 8 x4
external communications, and no internal communication. From a least square

fitting, we easily get the cost for external communication in this case as

T = Cour +tour X 1 X U3

where Copr = 24.41 x 10(-9) sec and toyr = 8.376 x 10(-5) sec. In this case, the
overhead time does not depend on the geometry .

REMARKS: For distance less than the subgrid size of the axis performing
communication, the internal memory moving rate is different. With a careful
study, we can model the internal communication coefficient {,s as a linear function
of the distance. For distances of power of two and larger than the subgrid size of
the communication axis, we only need to take twice as much time as needed for
communication with distance equal to the subgrid size of the communication ax1s.
This is due to the binary-reflected Gray-Code ordering of the off-chip bits in the

grid address [9].

8.6 Combine Internal and External Communication Together

In this section we combine the results on the internal communication with the

external communication to form a general model for the overall communication

114

model. We still use the following example to illustrate our model. Consider a
data set with (:news,:news,:news) layout and of subgrid sizes v; X v; X v3 . So a
processing node simulates v, X vy X vy virtual processing nodes. A cshi ft along
the second dimension with distance d, where d < v, consists of both internal
and external communication. This is because under the NEWS ordering the data
are allocated across different processing nodes. Suppose all virtual processing
nodes communicate a distance d to the right along the second axis. There are d
layers of data to the rightmost side requiring off node communication, while the
remaining v, — d layers only need to do memory moving internally. Thus the total
communication time T is the sum of both internal and external communication
time. This is due to the fact that a SIMD machine can perform either internal or

external communication instruction at any time. we thus have:

T = Tinternal + Tea:ternal
T;mernal = (CZ + (Gl + tM X (92 - d)) X'Ul) X Vg

Texternal = CS + tOUT X X d X3

We can decompose the external communication £, into two parts. One is
memory moving to a temporary buffer ¢, the other is sending out through the
external hypercube wire tzy, i.e. toyr = tar + tpx. Then the formulas above can

be rewritten as:

TInterna.l..Memory_Moving = (02 + (01 + tM X '02) X '!)1) X Uz
T g cternal Sending = CEx +igx X vy X d X vg

T = TInternal_Memory_Mouing + TEa:ternal_Sending
where d is the distance of communication less than the subgrid size v,.

113

Remark. So far, we have used three dimensional data sets as examples to
explain the communication performance. In general, the communication for an
m dimensional data set is performed in a manuer similar to a three dimcnsional
case [7]. For example, suppose we perform a cshift operation along the jth axis
along which the data are distributed in the NEWS ordering (j <= m). If the
dimension m > 3, then the data of subgrids V = v, v,,...,v,, is considered as
V = Hf;;l Vs vj,H’,;’i_,j 410 end if the dimension m < 3, then the the data will be
padded to be a three dimensional one. Then the communication is performed as

for the three dimensional data sets described above.

8.7 Accuracy of the NEWS Communication Model

To test the accuracy of our communication model, we use it to predict the time
needed for performing one cshi ft of distance d along the jth axis, where distance
d is either an integer between 1 and v; or a number of a power of two and greater
than v; if v; is a power of two. For example, if j = 2, the predicted communication

time is estimated by using the following formula

.

(Co + (Cy + tay(vy — d))vy)vg
- +Cour + tour{d)v va, if1 <d<uy;
Cout + touTvivaVs, if d = vy;
\ 2(Cour + torrviVavs), if d > v, and d = 27 for some integer p.

We then compare the predicted communication time with with the measured time

which is obtained by averaging over 100 direct implementation of eshi ft operation.

116

In Figure 8.8, we plot the relative errors for performing the cshift with different
distances along the first axis on the 2-D square data with (:news,:ews) layout on
the 8K CM-2. The relative errors are quite uniform with respect to the distance and
are all less than 20%. Similarly,in Figure 8.9, we plot the same relative errors of the
cshift operation along the second axis on the 2-D square data with (:news,:news)
layout on the 8K CM-2. Again the maximum relative errors are less than 20%.
But the relative errors are more spread out and centered around zero for different
data sizes. In Figure 8.10, we plot the relative errors of the cshift operation along
the first and second axis on the 3-D data with (:news,:news,:news) layout on the
8K OM-2. The relative errors are still less than 20% in this case. Lastly we do the
same comparison on a 16K CM-2 for the 3-D data described above. The relative
errors are less than 15% , slightly smaller than the corresponding calculation on a

8K machine.

117

Relative Error

Relative Exor

0.5

0.4

03

0.2

0.1

Q.5

0.4

0.3

0.2

0.1

Relative Error of The NEWS Commaunication Model for Some 2D data

T

Communication along the first dimension
for some 21 square dara :
256x256 data

512x512 data
1024x1024 data
2048x2048 data
(on 8K CM-2)

Distance of Communication

Figure 8.8:

Relative Error of The NEWS Communication Model for Some 2D data

¥ T T T T 1

Communication along the second dimension
For some 21 square data :

256x256 data

512x512 data

1024x1024 data

2048x2048 data

{on 8K CM-2)

1 2 3 4 5 6

Distance of Communication

Figure 8.9:

118

Relative Error

Relative Error

0.5

0.4

03

0.2

0.1

0.5

0.5

0.4

0.3

0.2

0.1

R Communication along the 1st and 2nd dimension for B
somc 212 dats with {inews inews mmewe} lavout:
L 64x64x64 data |
128x128x128 data
. {on 8K CM-2) N
Along 1st dimension & ----my - = =
| Along 2nd dimension : cocoo 3
r Eainb L T pammmmm T B ——— Bommm—————— P — e — = 4
0 1 2 3 4 5 6 7
Distance of Cormumunication
Figure 8.10:
Relative Eror of The NEWS Communication Model for Some 31D data
| Communication along the first dimension a
for some 3D data :
i 32x64x32 data “
L 64x32x32 data h
32x32x64 data
| 64x64x64 data]
{on 16K CM-2)

Relative Error of The NEWS Communication Model for Some 312 data

0.5 1 1.5 2 25 3 3.5 4

Distance of Communication

Figure 8.11:

119

CHAPTER 9

Applications

The model we proposed is designed for the slicewise model of CM-2 . There
exist several different kinds of SIMD parallel machines which may have different
performance in communication and in the floating point operation drue to the
difference in the hardware architecture and compilers. From the users’ point of
view, it would be desirable to have a simple timing model to help them decide
which parallel computer is more suitable for his or her particular problem and
which computational method is more suitable for certain machine. Such a model
should reflect the performance of both arithmetic operation and the communication
cost. Of course the user should have some rough knowledge about the arithmetic
and communication performance of a SIMD type of machine. We would hope that

our model study can provide some useful guideline for the user.

9.1 Predicted Performance of Difference Methods Using the Current

CM-2

In this section, we apply our timing model developed in the previous chapter to-
predict the performance of high order finite difference methods for the 2-D viscous

Burger systems using the slicewise model on the current CM-2 machine. In Table

120

9.1, we list the predicted computation times for several high order finite difference
approximations , ranging from the second order difference method to the tenth

order method.

Sizes 9nd Order | 4th Order | 6th Order | 8th Order | 10th Order

64x64 0.0039 0.0084 0.0139 0.0202 0.0281
128x128 0.0096 0.0192 0.0310 0.0440 0.0608
| 256x256 0.0286 0.0534 0.0624 0.1121 0.1530

512x512 0.0976 0.1715 0.2537 0.3306 0.4435

1024x1024 0.3593 0.6067 0.8709 1.0966 1.4498

Table 9.1: Performance for Original Timing Model

The ratio of the total times among the second order, fourth order and sixth
order is 1:1.76:2.60 in the case of 512 x 512. This is basically consistent with
the corresponding performance measured from the direct calculations, which is
1.000 : 1.752 : 2.479. In fact the maximum relative error is less than 13% for the
second, fourth, and the sixth order methods for various data sizes. This indicates
that our timing model is reasonably accurate. Thus using our timing model, one
can obtain a fairly reliable prediction on the total computational times of high order
difference methods without measuring the computational times directly. Moreover,
this works for any order of difference schemes. From this model study, one can

obtain the general trend of their timing performance.

121

9.2 Performance Analysis for Possible Improved Machine Parameters

It is very hard to design one kind of parallel computer to fit general purpose
problems with uniform excellent performance. Reasonable performance requires
careful marriage of algorithm and architecture. If the architect wants to improve
the speed of performance, which factor should he devote to? Should he work
on the improvement of start up time, internal communication rate, or external
communication rate? We hope through the model study we can reveal which
factor is more dominant in affecting the overall performance of a massively parallel
machine with a similar architecture to CM-2, in particular for the application in
fluid dynamics calculations. In the following sections, we give some predictions
under certain reasonable assumptions. We remark that although our model is
specific to CM-2, but it should be extensible to other SIMD architecture with
some minor modifications.

We are going to vary the parameters in the timing model developed in the
previous chapter to see how much it will affect the overall performance. From our
previous study in chapter 2 of Part II, we see that the communication time could
be as much as the required arithmetic time, or even more in some cases. Thus there
is a subtle balance between the arithmetic operation time and the communication
time. This phenomena is very different from that of a sequential machine. So it
is not clear a priori that a higher order difference method can be more efficient

than a lower order method. And the answer may depend on how much one can

122

improve the speed of arithmetic operation and/or lower the communication cost

in a parallel machine.

6.2.1 Predicted Performance of Improved Communication Startup Over-

head Time on CM-2

Suppose we can improve the communication startup overhead time by a factor
of 10 and keep the other parameters fixed. We obtain the following performance

estimates.

Sizes 9nd Order | 4th Order | 6th Order | 8th Order | 10th Order

64x64 0.0032 0.0069 0.0117 0.0174 0.0245

128x128 0.0082 0.0165 0.0269 0.0385 0.0539

256x256 0.0259 0.0480 0.0742 0.1012 0.1394
512x512 0.0922 0.1607 0.2376 0.3090 0.4166
1024x1024 0.3486 0.5852 0.8387 1.0536 1.3962

Table 9.2: Overhead Parameters are 10 times faster.

As we can see from a comparison with Table 9.1, the total times do not decrease
much, and the ratio of the total time among the second order, fourth order and
sixth order for 512 x 512 case is 1 : 1.68 : 2.40. The result is similar to the original
estimates in Table 8.1. This seems to indicate that the overall performances of the
difference methods are not sensitive to the overhead time. This is to be expected

since the overhead time is proportional to N, x N3 which is much smaller than the

123

the total internal communication time (O(N; x N; X Ns).
9.2.2 Predicted Performance of Improved External Communication
Time

If we reduce the external communication parameter toy7 by a factor of 10, we

obtain the results in Table 9.3.

Sizes ond Order | 4th Order | 6th Order | 8th Order | 10th Order

64x64 0.0029 0.0054 0.0078 0.0102 0.0130
128x128 0.0076 0.0132 0.0189 0.0239 0.0306
256x256 0.0246 0.0413 0.0582 0.0719 0.0926

512x512 0.0896 0.1473 0.2054 0.2501 0.3227

1024x1024 0.3432 0.5584 0.7743 0.9356 1.2083

Table 9.3: External Communication Parameter is 10 times faster.

The total time does decrease, but not by much, We also see that the reduced
time is of ratio 1:3:6 for the 2nd , 4th and the 6th order methods. This is because
the external communication time is proportional to the amount of data moving
outside the processing node, and does not depend on the geometry. For exam-
ple, for the second order scheme, we need to do distance 1 communication. To

accomplish U, in CM fortran code, we do:
51 X (eshift(u,1,1) — cshift(u,1, —1))

which requires one column of 2D data moving out a processing node. For fourth

124

order scheme, we need to do both distance 1 and 2 communication, in CM fortran

code, we do:

sy % {cshifi{u,1,1) — cshift(u,1,—1)) + 85 x (eshifi(u, 1,2) — cshift{u,1,-2)),

which requires one column of 2D data moving out a processing node for distance 1
communication, and two columns of 2D data moving out for distance 2 communica-
tion. Totally, it requires 3 times the amount of time in the external communication
of fourth order U, compared with the second order U,. Similarly, we can deduce
the reduced time for sixth order U_. Therefore the reduced time for external com-
munication among second order, fourth order, and sixth oreder difference operator
are roughly of ratio 1:3:6. The sixth order method saves more time when we re-
duce the external communication parameter, but the actual amount of saving is

not substantial.

9.2.3 Predicted Performance of Improved Internal Communication Time

Now suppose we improve the internal communication parameter by a factor of

10. The results are given in Table 9.4.

125

Sizes 2nd Order | 4th Order | 6th Order | 8th Order | 10th Ozder
64x64 0.0037 0.0081 0.0135 0.0199 0.0278
128x128 0.0087 0.0177 0.0288 0.0414 0.0578
256x256 0.0250 0.0464 0.0723 0.0992 0.1374
512x512 0.0828 0.1422 0.2106 0.2740 0.3740
1024x1024 | 0.2989 0.4869 0.6926 0.8608 1.1575

Table 9.4: Internal Communication Parameter is 10 times faster.

The total time does decrease, not much but more than the case when we im-
prove the external communication parameter correspondingly. The ratio of the
total time among the second order, fourth order and sixth order for 512 x 512 case
is 1:1.71:2.54, which is similar to the unchanged case in table 3.1, (1:1.76:2.60). We
also see the saved time is about ratio 1:2:3. Because once the NEWS communica-
tion is required, data need to be moved in the internal memory of a processing node,
or to be copied to some temporary buffer for external communication. Therefore,
every data needs to be moved in memory. And the required internal communica-
tion time for second, fourth, and sixth order difference operators have the ratio
about 1:2:3. The ratio of the total time among the second order, fourth order
and sixth order for 512x512 case is 1:1.71:2.54, which is similar to the unchanged
case in table 3.1, (1:1.76:2.60) . We remark that although the sixth order method
has improved a lot over the unchanged case, the fourth order method is still more

favorable. This is because even if the communication time can be negligible, the

126

operation time required by the fourth order method is still less than that required
by the sixth order method. And we know from our previous study in Part I that

the 4th order method can achieve roughly the same error tolerance as the sixth

order method with the same number of grid points.

6.2.4 Predicted Performance of Improved Overall Communication Time

If we simultaneously improve the internal and external communication param-

eters by a factor of 10, we obtain the results in Table 9.5.

Sizes 9nd Order | 4th Order | 6th Order | 8th Order | 10th Order

64x64 0.0027 0.0051 0.0075 0.0098 0.0127

128x128 0.0067 0.0116 0.0168 0.0212 0.0277

256x256 0.0210 0.0344 0.0482 0.0589 0.0770
512x512 0.0747 0.1181 0.1623 0.1935 0.2533
1024x1024 0.2828 0.4386 0.5960 0.6998 0.9160

Table 9.5: Both Internal and External Communication Parameter are 10 times faster.

The total times decrease more due to the decrease of both internal and external
communication parameters , but the ratio of the total time among the second order,
fourth order and sixth order is 1:1.58:2.17 which is still not too far away from the

original one , 1:1.76:2.60.

127

- 9.2.5 Predicted Performance of Improved Floating Point Operation

Time

Next, we look at the case where we improve the floating point operation pa-
rameter by a factor of 10. The predicted performance of CM-2 is given in Table

9.6.

Sizes ond Order | 4th Order | 6th Order | 8th Order | 10th Order

64x64 0.0030 0.0070 0.0121 0.0182 0.0253

128x128 0.0060 0.0139 0.0239 0.0358 0.0501

256x256 0.0144 0.0321 0.0540 0.0797 0.1103
512x512 0.0407 0.0865 0.1406 0.2017 0.2740
1024x1024 0.1316 0.2670 0.4191 0.5824 0.7735

Table 9.6: Floating Point Operation Parameter is 10 times faster.

The total times in this case decrease much more than all the previous cases
considered. The reduced times are proportional to the amount of the total amount
of floating point operations, 1.85:2.85:3.81.

Why does the improvement of the floating point operation have more effect
than the improvement of both internal and external communication parameters?
This is because the floating point operation time tends to dominate the whole
performance when the VP ratio is high. This can also be seen from the commu-
nication and arithmetic cost for the unchanged case of Table 9.1 given Tables 9.7

and 9.8 respectively.

128

Sizes 9nd Order | 4th Order | 6th Order | 8th Order | 10th Order
64x64 0.0029 0.0068 0.0118 0.0179 0.0250
128x128 0.0055 0.0131 0.0228 0.0346 0.0484
256x256 0.0123 0.0287 0.0494 0.0743 0.1034
512x512 0.0322 0.0729 0.1219 0.1794 0.2452
1024x1024 | 0.0977 0.2122 0.3436 0.4917 0.6567

Table 9.7: Communication Cost for Original Timing Model

Sizes 2nd Order | 4th Order | 6th Order | 8th Order | 10th Order
64x64 0.0010 0.0015 0.0021 0.0024 0.0031
128x128 0.0041 0.0062 0.0082 0.0095 0.0124
256x256 0.0163 0.0247 0.0330 0.0378 0.0496
512x512 0.0654 0.0986 0.1318 0.1512 0.1983
1024x1024 0.2616 0.3945 0.5273 0.6049 0.7931

Table 9.8: Arithmetic Cost for Original Timing Model

From Tables 9.7 and 9.8, we see that the arithmetic time is more than the com-

129

munication time for larger data sizes. The communication time becomes dominant
only when the data sizes are small. The crossover point varies depending on the
order of the scheme. For example, the arithmetic operation time for the second
order method begins to dominate the total computational time for data size larger

than 128 x 128. In comparison, the arithmetic operation time for the sixth order

method begins to dominate the total computational time only for data size larger
than 256 x 256. We illustrate this behaviour in Figure 9.1 for the sixth order differ-

LI S . S 15
U

ence method as an example. If we scale down the arithmetic 0, the t

ime by 10, the
time becomes dominated by the communication for the case of large data sizes.
This is why scaling down the floating point parameter gives more improvement
than scaling down the parameters of communication.

One interesting observation is that when we scale down the arithmetic param-
eter by 10, the second order scheme with twice as many data takes about the same
time as the sixth order method. Recall that in Part I, we found that the second
order method with twice as many grid points can achieve the same error tolerance
as sixth order method for the inviscid hyperbolic equations (o = 1.2). Should we
choose the simpler second order scheme in this case? Well, twice as many grid
points require twice as much memory space. Therefore, we still prefer to use the
fourth order scheme, which only needs roughly as many grid points as the sixth or-

der scheme to achieve 2.5% error tolerance and is faster than second order scheme

with twice as many data.

130

2D Burgers system by difference method of order 6

0.9
Q.B - 1
0.7} b
0.6 -
05|
0.4+

03F

oF

Figure 9.1: Total time: —, Communication: coo , Arithmetic: ***

9.3 Asymptotic Behaviour for Various Improved Timing Parameters

It is of fundamental interests to understand the dependence of performance
on various timing parameters. Here we test our model by systematically reducing
those parameters by a factor of 5, 10, 30, 60 and 100. We plot the resulting
performances in Figures 9.2, 9.3, and 9.4 for the second, the fourth, and the sixth
order methods when reducing the total communication tirﬁés. As we can see each
curve reaches to an asymptote very quickly as we reduce the total communication
parameters. In fact, there is little change after we reduce the communication
parameter by a factor of 30 for various data sizes. In the extreme case when the
total communication time is equal to zero, the total computational timeis governed
only by the arithmetic operation time. This is the same as in a sequential machine.

But as we know from Table 9.8, the second order method with twice as many grid

131

points is more expensive than the sixth order method. So the fourth order method
is preferable. The behaviour for reducing the arithmetic operation parameters is

IXIT

] *1 P | i IR o, M § M
very similar. We plot the resulting perioima

. P & T - 4 T = S o~
HeD 1 L IFUILCH J.Jdy 3.0 d 9-7 f i

the second, the fourth, and the sixth order methods when reducing the arithmetic
times. Again, each curve reaches to an asymptote as we reduce the arithmetic
parameters. In the extreme case when we set the arithmetic time to zero, the total
computational time is governed by communication. From Table 9.7, we know that
the execution time required for the second order method with twice as many grid
points is comparable to that of the sixth order method. So the simple second
order method with twice as many grid points is competitive with the sixth order
method in achieving the same error tolerance, as long as the memory storage is not
a concern. As before, the fourth order method is still the true winner since it can
achieve roughly the same error tolerance with the same number of grid points as

the sixth order method, and it is faster than the second order method with twice

as many grid points.

132

Total time vs. reductionfactor for second order method

04 T T T J T
oasl 1 .
0.3 R
0.25 B
g
‘g 02 -
[
0.15 - .
1024x1024
Q.11 = o
._b“‘
0.05 R IO - 2. S
0.
o !_h':::u;--o—:-o.:-g.::W.:2:,}:..,oA.,............._.:::::g%g%%%g._,.,...,n..........._.__.
0 5 10 15 20
Reduction factor for arithmetic parameter
Figure 9.2:
Total time vs. reductionfactor for fourth order method
0.7 T T T T r
0.6 -
0.5+ E
0 0.4} .
]
[0.3 -
1024x1024
0.2]
o,‘.
L Y S+ v 1. S
R 256x256
o e_-:.._:_!f_.;_:._':__::'_;'_”E;Z‘..‘I:I".':‘..':ZZII:12831'2&‘_‘___. """"""""""
4] 5 10 15 20 25 30

Reduction factor for arithmetic parameter

Figure 9.3:

133

Total time \‘rs. reductionfactor for second order method

09 T T T T T
[eR:3 \ B
07r E
0.6 “
F 05F -
°
E o4l 1024x1024 i
ol K
03+ -
Q_‘
0.2} Tw, 4
e T COUNRG- J 1.3 3 S RSO
Q1 E
PSRN .= .. . 1 SO SHOHRIR
0 $-g-—-g-g-g-g-g-gogeg--ouiiioToon 9;-2—8}—;-2-8-——-—! ————————————— go—=-=-=-ooo---
0 5 10 15 20 25 30
Reduction factor for arithmetic parameter
Figure 9.4:
Total tirne vs, reductionfactor for second order method
0.4 T T : T T
035+ b
0.3} E
1024x1024
0.25 - B
g
‘g o2F .
3=
0,15 .
0.1 -
" 512x512
U e A e oD e vl e s ko it it s (D pmn s st s d e aa ¢ s e eyt b b R4 e E et e 5 i
0.05F N
256x256
L 91 N]
15 20 25 30

Reduction facwor for communication parameter

Figure 9.5:

134

Time{sec)

Time(sec)

Total time vs. reductionfactor for fourth order method

0.7 T T 7 T T
0.6 E
Q.5 b
1024x1024
o4t ~
03 E
02k E
.,

. 512
o1l ” "-""'*'-Q-oo-to---o—--o-----.---.—--A-....o?}.'g_x:......_._._..._._._._,-v-.-.-.-.o-.-..._._._._._._.:,

256x256

o Caae ©128%128"

[¢] 10 15 20 25 30
Reduction factor for communication parameter
Figure 9.6:
Total time vs. reductionfactor for second order method
09 T ; T v T
0.8 E
07F -
0.6 1024x1024 .
05} B
0.4 E
03F -
.
021 R 512x512 -
R e LI TR - U SRR
[N B
h'o"--n---o..‘o..“
0 g
4] 5

Reduction factor for communication parameter

Figure 9.7:

135

9.4 Concluding Remarks

Our timing model is quite stable subject to various perturbations in the pa-
rameters. Qur study indicates that the fourth order scheme gives the best overall
performance on the current CM-2 for the 2D Burgers’ system. This is based on the
consideration of computational efficiency and the memory storage. This conclusion
remains valid when we improve over the current CM-2 machine, such as reducing
the communication cost by a factor of 10 or improving the arithmetic operation
speed.

We also found that under the current CM-2 architecture the communication
factor dominates the arithmetic operation when the data size is small. But for large
data sizes the arithmetic operation tends to dominate the calculation. Only when
improving the arithmetic speed substantially can we achieve a significant speed up
in the overall computational performance. In other words, the communication is
not as bad as one might think for these kinds of problems on the CM-2.

Can a lower order like the second order method becomes favorable over the
higher order methods for a future generation of parallel computer? The answer is
no if the future machine still keeps the similar architecture as the current CM-2
machine. Our study shows that if the arithmetic operation can be substantially
improved, the second order method becomes very competitive with the higher
order methods as far as the computational efficiency is concerned. However the

price we pay is to use more grid points (e.g. twice as many as required for a sixth

136

order scheme). When memory storage is a concern, a higher order method is still
more preferable. On the other hand, a lower order is easier to implement and
more flexible to mesh refinement and {rea
considerations may lead to the choice of a lower order method. Moreover, it is
likely that there will be more special purpose machine available in the future.

Then special architecture could potentially lead to a substantial improvement in

the overall performance for certain class of applications.

137

Bibliography

[1] J. W. Cooley and J. W. Tukey, “An algorithm for the machine computation

of complex Fourier series,” Math. Comp., Vol. 19, 1965, pp. 297-301.
[2] S. Duggirala, Thinking Machine Corp., private communication.

[3] B. Fornberg, “The Pseudo-Spectral Method: Comparisons with Finite Differ-
ences for the Elastic Wave Equation,” GeoPhysics, Vol. 52, No. 4, 1987, pp.

483-501.

[4] J. Goodman, T. Y. Hou and E. Tadmor, “Weak Numerical Instabilities of

Pseudo-Spectral Methods without Smoothing,” in preparation.

{51 D. Gottlieb and S. A. Orszag, “Numerical Analysis of spectral Methods: The-
ory and Applications,” CBMS-NSF Regional Conference Series in Applied
Mathematics 26, Society for Industrial and Applied Mathematics, Philadel-

phia, 1977.

[6] D. Gottlieb, S. A. Orszag and E. Turkel, “Stability of Pseudospectral and
Finite-Difference Methods for Variable Coefficient Problems,” Math. Comp.,

Vol. 37, No.156, 1981, pp. 293-305.

[7] A. Greenburg, Thinking Machine Corp., private communication.

138

[8] R. W. Hockney and C. R. Jesshope, Parallel Computers, Adam Hilger Ltd,

Bristol, U.K., 1981.

[9] L. S. Johnsson, “Communication Efficient Basic Linear Algebra Computations
on Hypercube Architecture,” J. Parallel and Distrib. Comput., Vol. 4, 1987,

pp. 133-172.

[10] H.-O. Kreiss, “Comparison of Accurate Methods for the Integration of Hy-

perbolic Equations”, Tellus XXIV (1972), Vol. 3, pp. 199-215.

[11] G. L. Browning and H.-O. Kreiss, “Comparison of Numerical Methods for the
Calculation of Two-Dimensional Turbulence,” Math. Comp., Vol. 52, 1989,

pp. 369-388.

[12]) W. D. Henshaw, H.-O. Kreiss and L. G. Reyna, “On the Smallest Scale for

the Incompressible Navier-Stokes Equations,” ICASE Report No. 88-8, 1988.

[13] C. Levit, “Grid Communication on the Connection Machine: Analysis, Per-
formance, and Improvements,” in Proceedings of the Conference on Scientific
Applications of the Connection Machine, H. D. Simon, Editor, NASA Ames
Research Center, California, World Scientific Publ., September, 1988, pp. 316-

332.
[14] K. Mathur, Thinking Machine Corp., private communication.

[15] R. Pozo, “Performance Modeling of Parallel Architectures for Scientific Com-

puting,” Ph.D. thesis, Dept. of Computer Science, University of Colorado,

139

Boulder, 1991.

[16] L. F. Richardson, “The Deferred Approach to the Limit, I-Single Lattice,”

Trans. Roy. Soc., London, Vol. 226, 1927, pp. 299-349.

[17] G. Strang, “Accurate Partial Differential Methods II. Non-linear Problems,”

Numerische Mathematik, 6, 37-46 (1964).

[18] E. Tadmor, “Stability Analysis of Finite Difference, Pseudo-spectral and
Fourier-Galerkin Approximations for Time-dependent Problems,” SIAM Re-

view, Vol. 29, 1987, pp. 525-555.

[19] Thinking Machine Corp., CM Fortran Optimization Notes: Slicewise
Model, Version 1.0 Thinking Machine Corporation, Cambridge, Mas-

sachisetts, March, 1991.

[20] Thinking Machine Corp., CM Fortran Reference Manual, Version 1.0,

Thinking Machine Corporation, Cambridge, Massachisetts, February, 1991.

140

