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Abstract. We describe sequential and parallel algorithms based on the Schwarz alternating
method for the solution of mixed finite element discretizations of elliptic problems using the Raviart-
Thomas finite element spaces. These lead to symmetric indefinite linear systems and the algorithms
have some similarities with the traditional block Gauss-Seidel or block Jacobi methods with overlap-
ping blocks. The indefiniteness requires special treatment.

The sub-blocks used in the algorithm correspond to problems on a coarse grid and some overlapping
subdomains angd is based on a similar partition used in an algorithm of Dryja and Widlund for standard
elliptic problems. If there is sufficient overlap between the subdomains, the algorithm converges with
a rate independent of the mesh size, the number of subdomains and discontinuities of the coeflicients.

Extensions of the above algorithms to the case of local grid refinement is also described. Conver-
gence theory for these algorithms will be presented in a subsequent paper.
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1. Introduction. The Schwarz alternating method was introduced more than
120 years ago by H. A. Schwarz [25] as a technique for proving the existence of solu-
tions to certain elliptic problems on complicated geometries by iteratively solving it
on subregions. Since then, the method has been extended to nonlinear problems, the
Stokes problem and has recently proven to be a suitable divide and conquer technique
to solve a wide class of problems, [15, 16, 14, 4, 7, 1, 2, 22, 26].

Our purpose of this paper is to extend these algorithms to mized formulations of
elliptic problems [23] which lead to large, sparse, symmetric indefinite linear systems.
These mixed formulations of elliptic problems are useful in certain applications where
good approximations to the derivatives of the primary unknown in the differential
equation is required. In its matrix version, these algorithms have similarities with
generalizations of the standard block Gauss-Seidel and block Jacobi methods with
overlapping blocks and some further modifications for the indefiniteness.

Our studies were initiated by a recent paper of Glowinski and Wheeler [10] which
proposed a non-overlapping domain decomposition algorithm for this problem, with
a rate of convergence, which was independent of the coefficient variations, but which
depended mildly on the mesh parameters. With the use of overlapping blocks based on
an appropriate choice of overlapping subregions and a coarse grid, the algorithms, de-
scribed here, converge at a rate that is independent of mesh parameters and coefficient
variations.

In § 2, we describe the mixed formulation of elliptic problems and its finite element
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discretization. In § 3, we describe the classical Schwarz algorithm and a highly parailel
version of it for symmetric, positive definite linear systems arising from standard dis-
cretizations of elliptic problems. The corresponding algorithms and the modifications
necessary for solving the symmetric, indefinite linear systems arising from the mixed
case are described in § 4. Numerical results on the convergence of these methods for
various mesh and subdomain sizes and for problems having highly discontinuous coef-
ficients are also presented in § 4. In § 5, we discuss sequential and parallel iterative
refinement algorithms for solving problems on grids with local refinement. In a subse-
quent paper, we will provide theoretical estimates on the rates of convergence of the
algorithms described here,

2. An Elliptic Neumann Problem and its Mixed Finite Element Dis-
cretization. We consider the following problem for unknown p on a polygonal domain
2 C R? with f € L*(Q) and g € L*(0Q):

(l) -V (a( ,y)Vp) = f in{

i-(eVp) = g in 0L
Here i is the outward normal to 09 and a(z,y) denotes a 2 x 2 symmetric positive
definite matrix function with L®(£2) entries satisfying

alz,y)¢ > all€)f, for a.e. (z,y) € {1,

for a positive constant o. By applying the divergence theorem to the eliiptic equation,
we see that:

ffd.rd? = ——/ Vo (alz, y)Vpldedy = -—/ (a{x,y)Vp)- fids = —f gds,
0 0 a0 a0

from which we obtain the compatibility condition

ffd:t;dy+/ gds = 0.
! o

When this condition is satisfied, this equation has a solution p which is unigue up to a
constant. Throughout the rest of this paper, we will assume, without loss of generality,
that ¢ = 0, and that f has mean value zero.

In this paper, we assume that we are primarily interested in computing the velocity
i = —alz,y)Vp. In an application o reservoir simulation, p represents the pressure of
the fluid, a(z,y) the permeability properties of the medium and 4 the Darcy velocity
of the fluid. If the coefficients a{z,y) are discontinuous, the gradient of the pressure
will also be discontinuous in general, but the velocity @ = —a(2,y)Vp will still be
smooth in most applications. In such cases, if a good approximation to the velocity is
required, approximating p and numerically differentiating it leads to loss of accuracy.
If instead, the following mized formulation of (1) having both p and # as unknowns is
discretized, then it yields good approximations to the velocity .

i@ = —a(z,y)Vp in  Darcy’slaw
(2) Vg = f in £ Conservation of mass
il = —g in 82 Flux boundary condition



2.1. Weak form of equations and its finite element discretization. We
obtain a mixed finite element discretization of (2), by introducing a weak form and
then restricting the trial and test functions to finite dimensional spaces. To obtain the
weak form for Darcy’s law, we multiply a(z,y) ' + Vp = 0 by sufficiently smooth
velocity test functions ¥ with zero flux (normal component) on 08 and integrate.
The term [, Vp - fdedy can be integrated by parts to give — [, pV - Gdady, since the
boundary terms are zero. Similarly, we multiply the conservation of mass equation by
test functions ¢ € L*($}) and integrate. We obtain:

Find @ ¢ Hy(div, Q) and p € L*(£2) such that
(3) [q@Ta(z,y) "Odzdy + [, p(V - Ddady = 0, Vi € Hy(div, )
foa(V - @)dady = [, fededy, Yge L*(Q).

Here the appropriate function space for the velocity is Hy(div, §2), where
H(div,2) = {(vy,ve) € (L () : V-7 € L*(Q)},
is equipped with the norm
805 aiv ) = 1922 + IV - 5125,
and
Hy(div, Q)= {0 € H(div,Q): 77 = 0 on 90},

see Raviart and Thomas {23]. The appropriate space for the pressure is L%(§2), and
the pressure unique only up to a constant.

A Galerkin approximation is obtained by replacing the function spaces by finite di-
mensional subspaces V* C Hy(div, ) and @ ¢ L3(82), respectively. In particular, we
choose V* and Q" to be the Raviart-Thomas finite element spaces [23], which satisfies
the uniform inf sup condition, a condition that is required for a stable discretization.
The discrete problem becomes:

Find u, € V* and p, € Q" such that
4)  founa(z,y) mdedy + [opa(V vy)dady = 0, Yo, € V*
Jo an(V - up)dzdy = [, fodady, Vg, € Q".

We expand the solution uy = Y ;o w9, and p, = >iL, pixi, where @,---. &, and
X1," "y Xm denote a basis for V, and ¢ respectively. Choosing test functions from this
basis, we obtain a linear system for the coefficients {2y, pi) = {¥1,. . ., Un, D1y« oy P )t

o (R RI
B, 0 Dn By

Here A, is a symmetric, positive definite matrix with 4;; = fq <I>,-Ta($,y)”1<1>jda:dy,
B, is an approximation to the divergence map with By, = fo x;V - @;dzdy, and its
transpose Bi is an approximation to the gradient. The right hand side W), = 0 and
F, is a vector with F; = [ qx;dzdy. Since fov-Vp = 0 for constant p, it follows
that (1,...,2)" belongs to the null space of Bf . Because fq fdady = 0, it follows that
FT(1,...,1) is zero and the linear system is consistent.

Remark. We will interchangeably use matrix and function notations; thus
(s, pp) will denote either functions or its vector representation with respect to the
basis.
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F1G. 1. Lowest order Raviart- Thomas unknowns for element K;; in a rectangular grid.

2.2. The lowest order Raviart-Thomas spaces on a rectangular grid. For
simplicity, we describe only the lowest order case on a rectangular grid, leading to O(h)
convergence for both the velocity and pressure components, see [23]. The domain
1 = [0, L] x [0, L,] is partitioned into an m; x n, rectangular grid with elements
of area h h, where h; = L;/n,, for i = 1,2, see Figure 1. We defire the nodes
(zi,9;) = (thy, jhy) for i = 0,--+,n; and § = 0, -+, ny. The 4jth rectangular element
is Ky = [z, 2] x [y, 50 fore=0,---,ny —1,and j =0, -+, ny — 1.

The velocity space V, is defined by first order piecewise polynomial vector functions
wy = (21, 1) whose flux 7 - u, is continuous across elements (both components of the
velocity need not be continuous across elements). More specifically, the components
have the form:

{(Tiy1 — ) {(z — =)

ui (2, y) = R + ML T ) for (z,y) € Ky,

and

(Y541 — ¥) (v —v;)

; + Uy for (z,y) € K
T (Y41 — ;) 2,t,j+1(yj+1 - ;) (2, 9) "2

“2(9% y) = Uyy
where uy; ;= uy (25, (45 + ¥541)/2) and wg; ; = wy ((2; + 2,41)/2,y;) denote the value
of u, and u, on the midpoints of the edges z; x [y;, ¥;.,1) and [2;, 2,4, x y;, respectively.
Since (0, 1) is normal to each horizontal edge, u, - (0,1} = uy(z, y} is continuous across
horizontal boundaries and constant on each horizontal edge. Similarly, u, - (1,0) =
u,(z,y) is continuous across vertical boundaries and constant on each vertical edge.
Thus, the velocity unknowns consists of the values u;; on each vertical edge z; x
[¥j,¥41) and ua, ; on each horizontal edge [2;, 2:41] x ;-

The pressure space (J" consists of piecewise constant functions p; with unknowns
p;; associated with the center of each cell K.

If the coefficient matrix a(z,y) is diagonal, then A4, is a block diagonal matrix
with tridiagonal blocks, provided all the vertical edges are ordered sequentially along
each horizontal strip of Q and all the horizontal edges are ordered sequentially along
each vertical strip of {}. For example, if a(2,y) = I, then the diagonal blocks of 4, are
of the form (hyh,/6)tridiag(1,4,1). In case of general coefficients a(x,y), numerical
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integration rules are needed to evaluate the stencil. The stencil associated with B), on
each rectangular element k; is:

(Bhuh){j = hl[uz;i,j-(-l - u2;i,j} + h?[ul;i+1,j - ul;i.j]-

The stencil for Bf at a vertical edge 47 is:

(Bthh) = hz[Pf-1,j - pi.j]a

i

and at a horizontal edge ¢J:

(ngh)ij = h‘l[p:',j—l - Pf,j]-

2.3. Properties of the discrete problem and a method for solving it. Sys-
tem (5) is by construction symmetric, indefinite and singular with B,(1,...,1)¥ = 0.
The matrix A, is symmetric, positive definite, and its condition number is proportional
to the variation in a(z,y), and uniform in A A nice analysis of the bounds for the
range of negative and positive eigenvalues of (5) can be found in [241.

System (5} is most often solved by iterative methods. The standard conjugate
gradient method is not directly applicable, but gradient type methods based on regu-
larization or penalty can be employed, but require the solution of systems of the form
A+ pBYCB for some choice of regularization matrix C and penalty parameter p, see
[8, 27, 9}. Alternatively, the preconditioned Minimum Residual method can be applied,
which does not involve the selection of parameters; see [24] for the analysis of such a
preconditioned system.

We now describe a simple technique, which reduces {(5) to two positive definite
problems. This procedure is employed as a solver for the subproblems in § 4. From
the first block row of (5), we obtain that wu, satisfies

Apuy = Wy — B:{Ph:

which determines u, in terms of p,. Substituting the velocity into the divergence
constraint, we obtain a reduced equation for the pressure py:

(6) Spy = F, — BLA7'W,,  where § = —~B, A7 B].

§'is symmetric, positive definite with null vector (1,---,1)” and is spectrally equivalent
to a discretization of (1). It is usually expensive to compute, requiring the solution
of one linear system with coefficient matrix A, for each column of 5. This can be
avoided if equation (6} is solved by the conjugate gradient method which requires only
matrix-vector products of §. Neglecting the null eigenvalue of 5, the condition number
of § is O(h™?), as for standard elliptic problems.

Since § is ill-conditioned, preconditioning is required for large problems. Precon-
ditioners, such as LU see [21], or MINV see [3] can be applied indirectly to a finite
difference approximation of (1), and used as preconditioner for 5, see [28]. However,
in the tests reported in § 4.5 we used only diagonal scaling as the preconditioner. Note
that if a(z,y) is diagonal, A, is tridiagonal and can be inverted in O(n) operations,
where n is the size of 4;.



3. Schwarz methods for standard formulations of elliptic problems. Be-
fore we describe the Schwarz methods for the mixed problems of § 4, we ilustrate
the sequential and parallel versions of the Schwarz algorithm for solving a symmetric,
positive definite Lnear system arising from the standard discretization of an elliptic
problem.

3.1. Multiplicative Schwarz method. We consider

(7)

Lu=-V (a(z,y)Vu) = f mQ
v = 0 maQ ’

which yields a symmetric, positive definite linear system:

(8) Apup = fi, .
for some suitable finite difference or finite element discretization.
Let {27, -+, Q) denote some overlapping cover of {2, with corresponding coefficient

matrices A;. Then one iteration of the multiplicative Schwarz method consists of
sequential correction on each of the overlapping subregions Q.. More precisely, we
define K; to be the restriction map of nodal values on ! to the nodal values in the
interior of £

(Riuh) (.Tk) = uh(ﬂlk), fOI' o8 « Qi.

Then RT is an extension by zero of nodal values in the interior of £ to Q. The
coefficient matrices for the subproblems can be expressed as A} = R; A, RY. Let ol < 1
be a given tolerance. The iterates are defined by
Begin
Letk =0
While [|A,u* — fill > tol do
Fori=1,...,N
Compute the residual f;
fi= (- Ah“H:"’L)
Solve subproblem
w; = BT A7'R;
Update Solution
uE = gt R 4oy,
endFor
end While
End
The iterates of the algorithm satisfy:

" = unlla, < PF)u° — wy |4, s

for some 0 < p < 1, where {|v|j4, = (UTAhy)UQ is equivalent to the H'({) norm,
see {151, [1], [19]. For various choices of overlapping subregions along with a coarse
grid problem, the rate of convergence p has been shown to be independent of mesh
parameters, [1, 4].

Remark. Note thai one iteration consists of a sweep over all the subregions )
in some sequential order. This method can be parallelized by colering the subdomains,
see Fig. 2, and solving simultaneously on disjoint subdomains of the same color.
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3.2. Additive Schwarz method. The additive Schwarz method to solve (8)is a
highly parallel variant of the Schwarz alternating method in which all the subprobiems
are solved simultaneously; see Dryja and Widlund [4]. It generally requires conjugate
gradient acceleration [11].

The method can be viewed as a preconditioning technique; see {4], {12], and in the
following, we describe the action of the inverse of the preconditioner M to solve (8).
Given a forcing term f, the action of the inverse of the preconditioner: M ~!f, based
on subproblems on the overlapping subregions £, is:

N
M7 f =Y RFAT'RS.
le
Note that each term in the sum can be computed in parallel. Equivalently, the system

M~ Au, = MY,

can be solved using the conjugate gradient algorithm [11] with the standard Buclidean
inner product replaced by the A inner product. The CG iterates satisfy:

2 m
" —ulla <21~ u® —u
e = ulla €2 (1= 2222 ) o =l
where & is the quotient of the maximum and minimum eigenvalues of M ~* A4, see [11].
As for the multiplicative version, with the use of a coarse grid problem and overlapping
subdomains, £ has been shown to be independent of the mesh parameters {4].

4. Schwarz methods for the mixed finite element discretizations. The
Schwarz methods for the symmetric positive definite case (8) carries over, with some
modifications, to the singular, symmetric indefinite case (5). As before, solution to (5)
is found by iterative correction on subregions, with the requirement that the fluz of
the velocity be continuous across subdomain boundaries. No boundary conditions are
applied to the pressure. However, in order for the local Neumann subproblems to be
well posed, the flux boundary condition must be compatible with the local divergence
constraint. In matrix terms, two issues need to be addressed in order to define a
Schwarz method having subproblems of the form

* * * * * *

(9) * A.,‘ B,T * Uy - W,'
+ B, 0+ D; Fo17
¥ * * % * *

after some suitable reordering of (5). They are:
1. F; must have mean value zero, since the local matrix B; will be singular with

{1,-+,1)7 spanning its null space. This corresponds to the requirement that
the local flux boundary conditions be compatible with the local divergence
constraint.

2. Due to the non-uniqueness of the local pressure solution p;, its mean value
on the subregion is arbitrary and should be suitably prescribed in order to
compute a globally defined pressure p),.

These and other issues are discussed in § 4.2, § 4.3 and § 4.4, Numerical tests of the
algorithms are presented in § 4.5,



4.1. Coarse grid and subdomain problems. We assume that £ is partitioned
into subdomains £, - - -, Qy of diameter O(H ), which forms a shape regular coarse grid
triangulation 7°. A fine mesh 7" consisting of shape regular elements of size O(h), is
obtained by refinement of the subdomains ;. An overlapping covering is obtained by
extending each subdomain £; to a larger region €} by including all fine grid elements
at a distance S H or less from §;, for a fixed fraction 0 < § < 1, see Figure 2.

Let V% and (J° denote the Raviart-Thomas velocity and pressure spaces on the
coarse mesh 7°. On each subdomain ©; let V; = V* N Hy(div,§;) and let Q; =
Q*NL%(§;) denote the fine grid Raviart-Thomas velocity and pressure spaces restricted
to §2,;. Similarly, on each extended subdomain £}, we let V/ = V* n Hy(div, ) and
Qf = Q" n L),

We use RY : VO x Q° — V" x Q*, to denote the standard interpolation map
from the coarse grid to the fine grid. For example, for the rectangular grid of § 2.2,
with rectangular subdomains, each fine grid vertical edge value is obtained by linearly
interpolating the two adjacent coarse grid vertical edge values; similarly for the fine
grid horizontal edges. The fine grid pressure value in an element is the same as the
coarse grid pressure restricted to that element. Ry : VP x Q@ — V® x Q° will denote
the restriction onto the coarse grid.

On the subdomains, we use BY : V: x Q; — V" x Q*, to denote the extension
by zero from §2; to £. Its transpose K; : V" x Q% — V; x Q;, denotes the restriction
map, where:

Rt’ (vha Qh.) ((?3, y) = (1’h($’y),9h(ma y)) fOI‘ (“T: y) € Qi'

Analogously, R+ V! x Q! — V* xQ", will denote the extension map on the extended
subdomains 2, while R: : V" x Q" — V/ x @/, will denote the restriction map.

The submatrices on the various grids can now be expressed easily in terms of (5)
and the restriction and extension maps. The coarse grid matrix is

(A BT L[4 BT 2
(10) Ly= B, 0 ]—RU[Bh 0 Ry .
The coefficient matrices on the subdomains are
(A BT [ 4 BT r
and on the extended subdomains,
A BT A B p
(12) Li = [ B{ 0 - Ri [ Bh 0 R{ 3

and these are easily seen to be submatrices of (5).

4.2. Structure of the Schwarz algorithms for the mixed problem. As
mentioned earlier, in order to apply the Schwarz methods to the symmetric, indefinite
problem (5), two issues need to be addressed. One concerns the compatibility of the
local flux boundary conditions on each 8€; with the local divergence constraint:

z,y)dad :'/ uy, - nds.
Jo Sty = [

2
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The other concerns the computation of a global pressure solution from the results of
local Neumann problems. These two issues will be treated in three steps.

Step 1. In order to provide compatible local flux boundary conditions, we compute
a velocity u} which satisfies the divergence constraint

*
Byuy = Fy,

and use this as the initial iterate in step 2. All subsequent corrections in step 2 will be
divergence free and hence zero flux boundary conditions will be compatible with the
zero divergence constraint. To find such a w}, we first compute a discrete velocity v
by solving the original problem on the coarse grid:

-1
s | _ pr | Av BY W
- ARl
The coarse grid solution u} does not necessarily satisfy the fine grid divergence con-

straint Byu} — F), = 0. However, Byuf — F), has mean value zero on each {); since in
the weak form

@ F, — ¢ Byl = /ﬂ w(Fy — V-ub)dedy =0, Vo € Q°,

and since in particular for the piecewise constant characteristic function XQ, € Q°

/v.ugdmy:f ﬁ-ugd.s:/ F dedy.
£ 852, £t

Now, since F,, — V- u} has mean value zero in each €2, the zero flux boundary condition
on each @§2; is compatible with F, — V - u§ on {;, and the following subproblems are
therefore well posed:

uw | prre1p | We— Apug
[ }mm,. R,[Fh_Bhua ]
We define

uf = ug + u) + o+

which by construction satisfies Byu} = Fj,.
Step 2. The solution to (5) can be written

Up - _ uy
Pn 0

where the correction satisfies
4, BT || @ 7 — Ay
(14) h h Uy, - W Ah’tbh ,
Bh 0 Pn 0
since Iy — Byuf = 0. Therefore 4, = u, — u} is divergence free.
In order to compute i,, we will apply either of two iterative procedures based

on solving subproblems so that the velocity correction remains divergence free in each
9




iteration. The first algorithm is based on the multiplicative Schwarz method of § 3.1.
It converges as a fixed point iteration and will be described in § 4.3, The second
algorithm is based on the additive Schwarz method of § 3.2. It requires conjugate
gradient acceleration for convergence and is discussed in § 4.4.

In both algorithms, the velocity v, in the corrections (vy, gy ), will be divergence
free, i.e., B,v, = 0. Thus,

T T
® R T[] g

which shows that the problem of determining %, is symmetric positive definite.
Step 3. The pressure (0, p;) satisfies:

g ERIEY R

’ Bh 0 Pr 0
where Bip, = W, — A,u, is computed once the velocity u, = @, -+ uj is known.
When local Neumann problems, with zero flux boundary conditions, are solved by
restricting this residual to the subregions 2}, the solution will have the form (0, p}).
Both (0,p) and (0, p{) will be solutions to the Neumann problem on Q; , and so the
pressure p; will differ from the global pressure p, restricted to §2} only by a constant,

due to uniqueness for the local Neumann problem on £. Thus, corresponding to each
extended subdomain §2}, there exists a constant ¢; such that

pi=pn+¢ in .
From this it follows that
pr=pi e - In QiNQE.

Starting with any extended subdomain, say {2}, we determine these constants in the
overlapping subdomains to obtain a consistent pressure in Q. Details are given in § 4.3
and § 4.4

Remark. In each Schwarz iteration, we will solve local problems with a zero di-
vergence constraint. Such discrete velocities v, are also divergence free in the pointwise
sense. This can be seen by using that for the Raviart-Thomas spaces, the divergence
map takes the velocity space V* onto Q". From this it follows that by choosing
gy = V- Vhy lf

/ o (V-v)de =0, Vg, € V" then / IV - 3 [2dz = 0.
kY] . i

4.3. A multiplicative Schwarz method for mixed finite elements. We now
describe the three steps of the multiplicative Schwarz method to solve (5) based on
the subregions €;, 2} and the coarse grid. The iteration is continued till the residual
is smaller than tol.

1. Compute u} such that Byu} = F}, in step la and 1b.
la. Solve the coarse grid problem:

Uug T -1 0
=Ry L, R .
[PE] oo O[Fh}

16



1b. Solve the problems on each subdomain £;:

w? _ W, — A; ug
[ @ } = RILR, [ By - By } |
Define

uh = uh +uf + -+ Uy
2. Let (8% %) = (ur,0) and let k=0
While ||W, — 4,%* — BY p*|| > tol do:

Fori=40,...,N
i+3 .
2a. Compute the correction §&*+~¥1 to the velocity using the current residual:
i+ _ W, — A, ittt wET
| g | T A

2b. Update the velocity 4°+ ™ using this correction:
M = st 4 gt
3a. If 72> 2, determine a constant ¢; so that:
gi(z)+ ¢ =¢_y ey, on YNy,

where ¢; = 0,
endFor
3b. Fori=1,.-. N let

= gi+c¢ Infl
T opf in  — §4

3c. Normalize the pressure to have mean value zero on €k

ko k_(la"':l)'Pk T
p=p H(l,...’;)nz(la 1)

endWhile

Remark. During each iteration, we may sequentially solve the coarse grid
problem and each of the extended subdomain problems in any order. One choice is to
use the standard lexicographic ordering of the subdomains. Another possibility is to
partition the extended subdomains 2} into C distinct colors, so that no two extended
subdomains having the same color intersect, see Figure 2. Then we may concurrently
solve the local subproblems on different subdomains of the same color.

The following result will be proved in [19], [18].

THEOREM 4.1. If the extended subdomains 1, ..., Q% are kept fized and the mesh
size h s varied, then there exisis a constant 0 < p < 1, independent of h, such that

2" = wrlla, < P511E° — ualla,-

p will depend on H if the coarse mesh is not included in the iteration. Based on a
idea used in a recent paper of Ewing and Wang [6], we are now able to prove that p is
independent of H when a coarse grid is used. Numerical tests of § 4.5 confirms that
when a coarse grid is used, the convergence factor p is independent of A, H and the
variation in the coefficients.
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4.4. Additive Schwarz method for mixed problems. Instep 2 of the preced-
ing algorithm, the divergence free component 4, = u; — u} was updated sequentially
on each of the extended subdomains £ or simultaneously on subdomains of the same
color. In the additive version, all the subproblems can be solved simultaneously. As
for the previous algorithm, the additive algorithm consists of three steps.

Step 1. Compute u} satisfying the constraint B,u* = F, as follows:
la. Selve the coarse grid problem:

ug T‘—l W,
= Ry L; R, .
i =

1b. For¢=1,...,N compute:

ul | _ pro1p | Wa— Anu '
[*}MR?-L{ Rt[Fh_Bhua}a

i

and define uj = uf +uf + - -+ u}.
Step 2. To determine the velocity @, = uy — uj, solve the following equivalent
positive definite problem

(17) Py, = gy,
using the conjugate gradient method. The matrix vector product is defined
N
Py, = Z Fivp,
i=0
wherefor 1 = 0, -+, N:

-1
Py | or | Al BfT o | Apvn

This requires the solution of N + 1 subproblems. Though 4, is not known explicitly,
the forcing function g, can be computed as follows:

N -1
dn — ¢+ T A:‘ B;: T I Wh - Ahu;:
HR AR R |

Note that by construction, g, is divergence free since each term Fjii, is divergence free.
In addition, the matrix vector product with P yields divergence free vectors. Thus all
iterates in the CG method remain divergence free. The matrix P is symmetric, positive
definite only in the A, inner product, and we therefore use the inner product 2T A,y
in the CG method. Once 1, is computed, we define

Up :Ui'{"ﬂh

Step 3. To compute the pressure p,, we first solve:

Y — I Tr—=1p IVh“"Ah’th
0w oo |
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Fori=2,.--, N, choose ¢; such that:

G+ ¢ o= giog + ey in RNy,

. . T
wliere ¢, = U, UJeHie

Ph = ¢ +¢ on £,

The following result is proved in [18].
TueoreM 4.2, If the extended subdomains 2, ..., are kept fized, then there
exists a constant 0 < ' independent of h such that

w(P) < C.

Here x(P) = max(R(z))/ min(R(z)) and R(z) = (27 A, Pz /2T Ay ).
The convergence bound can be improved to make p independent of H and h when
the coarse mesh is included in the iteration. This improved bound will also be proved

in [18].

4.5. Numerical results. In this Section, we present some experimental results
for the algorithms described in § 4.3 and § 4.4. Tests were conducted to determine how
the convergence rates of the various algorithms depend on the mesh size h, subdomain
size H, amount of overlap, and jumps J in the coeflicients. We chose Q0 = [0,1,
and the coefficients a(z, y) of the elliptic operator were taken to be a scalar piecewise

. . . .
constant function a(z, y), with a jump across 2 = 51

1 0L2<(b

The parameter J was varied between 1 and 107%. An n x n rectangular fine grid was
chosen and an n, x n, coarse grid was chosen with » = 1/n and H = 1/n,. We
assume that n, divides n. The number of velocity and pressure unknowns are listed
in Table 2 for various values of n. The lowest order Raviart-Thomas elements were
used. To obtain the extended subdomains §2}, we introduce an integer parameter n,
and group neighboring elements within a distance of n, elements from €2, as in Fig. 2.
The overlap ratio n,n,/n represents the overlap compared to H.

The four color and the standard lezicographic multiplicative Schwarz algorithm
were tested, as well as the additive Schwarz algorithm. The subproblems were solved
using the Schur complement based method described in § 2.3, in which the Schur
complement system was solved by a conjugate gradient method with a diagonal pre-
conditioner.

In Table 1, we list the convergence factor

p = (le /e

and the number of iterations, ITN, required to reduce the relative error by a facter
107%. The exact solutions were randomly chosen using the uniform distribution on
(—2,2).

Conclusions. The numerical results indicate that the convergence factor of all
the algorithms is independent of the jumps J in coefficients, the mesh size h, the

13
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TABLE 1

NUMERICAL RESULTS.

h=? SUB- OVERLAP | JUMP | FOUR COLOR | LEXICOGRAPHIC | PARALLEL
=5 | DOMAINS | size | ratio J-!' | SEQUENTIAL SEQUENTIA
T, ¥ n, T EXNL P ITN P ITN p ITN

16 2% 2 1 1/8 |1 0.17 7 0.16 6 0.34 8
16 2% 2 1 1/8 | 108 0.16 7 0.15 6 0.43 | 10
16 2% 2 2 1/4 |1 0.05 5 0.06 4 0.26 7
16 2% 2 2 1/4 | 10° 0.05 4 0.05 4 0.38 9
16 4% 4 1 1/4 i1 0.06 5 0.08 5 0.34 9
16 4% 4 1 1/4 1 10° 0.06 5 0.09 5 0.41 | 10
16 4% 4 2 /2 1 0.03 4 0.05 4 0.34 9
16 dx 4 2 1/2 | 108 0.03 4 0.06 5 0.37 9
16 88 1 /2 11 0.05 4 0.11 6 0.34 9
16 8% 8 1 1/2 | 10° 0.05 4 0.13 6 0.35 9
24 4% 4 1 /6 |1 0.09 5 0.09 5 0.38 1 10
24 4% 4 1 1/6 | 108 0.10 5 0.10 5 0.41 1 10
24 4% 4 2 /3 |1 0.05 4 0.06 4 0.34 9
24 4x 4 2 1/3 | 10° 0.05 4 0.08 5 0.34 9
24 8% 8 1 1/3 |1 0.05 4 0.10 5 0.35 9
24 8% 8 1 1/3 | 10° 0.05 4 0.12 6 0.36 9
32 4% 4 1 1/8 |1 0.16 7 0.16 6 0.42 | 10
32 4% 4 1 1/8 | 10° 0.16 7 0.17 7 044 | 11
32 4x 4 2 1/4 |1 0.06 5 0.08 5 0.33 8
32 4% 4 2 1/4 | 10° 0.06 5 0.09 5 0.37 9
32 8 8§ 1 /4 |1 0.06 5 0.10 5 0.35 9
32 8% 8 1 1/4 | 10° 0.06 5 0.12 6 0.37 9
32 8 8 2 /2 |1 0.04 4 0.11 6 0.35 9
32 8% 8 2 1/2 | 10° 0.04 4 0.12 6 0.35 9
40 4% 4 1 /10 |1 0.25 9 .25 8 0.44 | 11
40 dx 4 1 1/16 | 10° 0.26 9 0.26 9 0.48 | 12
40 4% 4 2 1/5 |1 0.07 5 0.07 5 0.36 9
40 4x 4 2 1/5 | 10° 0.07 5 0.10 5 0.39 9
40 8% 8 1 /6 |1 0.07 5 0.09 5 0.37 9
40 8+ 8 1 /5 1 10° 0.07 5 0.10 5 0.39 | 10
40 8 8 2 2/5 11 0.04 4 0.10 5 0.33 9
40 8+ 8 2 2/5 | 10° 0.04 4 0.11 6 0.34 9
40 10 = 10 1 1/4 |1 0.06 5 0.10 5 0.36 9
40 10 = 10 1 1/4 | 108 0.06 5 0.11 6 0.38 | 10
40 10 * 10 2 1/2 |1 0.04 4 0.12 6 0.35 9
40 10 * 10 2 1/2 | 10° 0.04 4 0.13 6 0.36 9
40 20 + 20 1 172 |1 0.07 5 - - 0.35 9
60 10 % 10 1 1/6 | 10° 0.09 5 - - - -
60 10 + 10 2 /3 |1 0.07 5 - - - i
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TABLE 2
Number of unknowns,

n 16 | 24 32 40 60

A Aned LERKsTa) e aVa¥a)

Velocily unknowns | 480 | 1104 | 1984 | 3120 | 7080

pressure unknowns | 256 | 576 | 1024 | 1600 | 3600

subdomain size H, and that it depends only mildly on the overlap n,n,/n. The results
also indicate that the additive version requires about twice the number of iterations
as the multiplicative version. -

Remark. In testing problems with large jump ratio 1/J, we found that the
relative error of the computed pressure was larger than the relative error of the velocity
by a factor on the order of 1/J. We observed this phenomenon, even when direct
methods were used to solve {5). We-attribute this to round-off error, see also [24].

5. lterative refinement methods for mixed discretizations. Iterative re-
finement methods are algorithms to solve linear systems arising from problems with
local grid refinement. In this section, we discuss iterative methods to solve symmetric,
indefinite systems like (5) arising {rom locally refined meshes. The algorithms discussed
are modifications of corresponding algorithms for the symmetric, positive definite case
described in Hart and McCormick {13], McCormick and Thomas [20], Mandel and
McCormick [17], Dryja and Widlund [29]. In the symmetric, positive definite case
the sequential algorithm is referred to as the Fast Adaptive Composite grid method
(FAC), while the parallel algorithm is referred to as the Asynchronous Fast Adaptive
Composite grid (AFAC) method, see [17], {29].

5.1. Repeated local refinement. We consider a polygonal domain = Qg C
R?, which is successively refined in nested subregions ;, ¢ = 1,--+, N,

QoD DD 8y D Qn;

see Fig. 3 for the case N = 2. The composite grid is defined as follows. {1, is initially tri-
angulated by a regular, guasi-uniform mesh of size hy, denoted 7"°(Q). Each element
in the subregion {2, is refined, for instance by connecting the midpoints of the edges of
each element resulting in four subelements of size hy = hy/2. The triangulation of £,
is denoted by 7" (£;). This procedure is repeated on all the nested subregions, with
T(Q;) denoting the quasi-uniform refinement of elements of 7% ({;_,} in subregion
€, with h; = hy_;/2. The composite grid rho--h~(Qq, ... Q) is defined to be the
union of all elements, see Fig. 3, i.e.,

phom b Qe Q) = U T ().

In order to defne the finite elment functions on the composite mesh, the extra
degrees of freedom on the edges on 3, will be treated as slave variables. The composite
Raviart-Thomas velocity space V*o " is defined as:

Vhorby z o (Qoy 4 - 4 VI (Qy),

where V#(Q;) ¢ Hy(div, ;) is the standard Raviart-Thomas velocity space on 7% (),
with zero velocity flux on 9€;. Such velocities can be continuously extended by zero

18



F1G. 3. Nested subregions with repeated local refinement.

Nested subregions. Locally refined mesh.

e

{2

outside {2; with the resulting function in Hy(div,$2). Similarly, the composite pressure
space QMo" s defined as:

Qe = QM () 4+ QM (),

where Q@™ (0} © L*(€;) is the standard Raviari-Thomas pressure space on T*”'(Q,).
The functions in Q" (;) can be extended by zero outside §; with the resulting function
in L3(8).

The discretization of {2) is obtained on the composite mesh by restricting the weak
form (3) to the finite dimensional spaces V?o2% apd Qhor v

Find uy € Viy, nn($2), P € Ghg,.. iy (£2) such that
Jo uia(e, y)tondedy + fopu(V - u)dedy = 0, Vou € Vi, npe (S2)
{Q g(V : uh)drdy = fn fqd'cdya Vq € Qhu,...,-’uN(Q)‘
(19

Discretization (19} can be shown to be stable, see [18], [5], and results in a symmetric
indefinite linear system:

AO N Bg N Up,. N Wo N
20 | e TN By — . '
(20) [ Bo,..n 0 Po,.,N Fo o .n

.....

5.2, Multiplicative algorithms for solving the locally refined problem.
Here we describe a multiplicative algorithm for solving (20) similar to the Fast Adaptive
Composite grid method (FAC); see [17), [29]). For 7 = 0,--, N, we define R} as the
standard extension (interpolation} map
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which maps the nodal values in V*{Q;) x Q*(£;) to the full grid by extending by
zero outside {2;, and interpolating to finer grids defined on {2;. The restriction map is
defined as its transpose:

s . /< FRa, R A ha,... .’:i\t\’ s7RifOy ST R
By (VOO X QT ) — V() x @7 (8).

We denote

and define L; = R?Lu,..-,an which forms the coefficient matrix corresponding to the
refined problem on §1;.

The sequential algorithm consists of three steps:
Step 1. Compute the velocity u* satisfying By

::::::::

uy N _ rpe1p [0
=R Lo R
(PS) 0o O(Fc ..... N)

For i=1,..., N, compute

U\ _ T r-ip 0 _ ;;})u;’
()= ( 5 ) e

and define v* = uf + -+ + uk.

Step 2. Compute the divergence free component of the velocity & = u, _ y — u*, using
the following iterative procedure. Let @° = «*, p° = 0, and set &k = 0.

While |4, . y&* + By .. yp* — Wy .yl > tol do:

For:=10,...,N:

RSy gFt T T 0 gh
- T'L7YR, —
( % ) + Rz i R1 FO,,_,,N LO,...,N 0

Step 3. Define the scalar g5, = 0.
For+=1,..., N define the scalars:

o e + T )de
Y A

P z)= ¢z)+dm zeQ— Qi ,

where Qn,, = 0, the empty set.
EndWhile

Note that all subproblems in step 2 are well posed since the initial iterate 70 = u*
satisfies the discrete divergence constraint. The pressures ¢; determined in step 2 are
unique up to a constant and are assumed to have mean value zero. As the velocity
iterates 4% converge, the global pressure 5 computed in Step 3 converges to Do, N
for the same reasons as in § 4.2.
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TueorREM 5.1. For a given choice of nested subregions &, D &, O ... D Qn,
there exists a constant 0 < p < 1 independent of the mesh parameters hg,...,hy and
N such that

Here (||| = ([, vTa(z,y) 'odady)/2.

Proof. See [19], [18]. O

We are able to provide some quantitative bounds for the convergence factor p in
case there is just one level of refinement.

THEOREM 5.2. For the lowest order Raviart-Thomas elemenis on a triangular
grid, with one level of local grid refinement, and for coefficients a(x,y) which are scalar
piecewise constant functions {constant in the elements of the coarse grid 7°(Qy)), the
convergence factor for the FAC algorithm is

p<3/8
if all triangles are equilateral triangles and
p<1/2

if all iriangles are right angle triangles. p is independent of the coefficient variations.
Proof. See [19], {18]. O
Quantitative estimates for the case of many levels of refinement N > 1 are also
available, but deteriorate with increasing N, see [19].

5.3. Parallel algorithms for solving local refinement problems. We will
describe two parallel algorithms for solving (20) based on the corresponding algorithms
for local refinement in the symmetric, positive definite case [17}, [29]. One of the
algorithms is based on the same local subproblems as in the FAC algorithm. However,
the second algorithm requires additional subproblems, which we now define. For i =
1,..., N, subproblems corresponding to the following finite element spaces V"~ (£;) x
@Q"™-1(52;) are used, and we denote the corresponding local matrices by L;;_,, and the
standard restriction and extension maps by E,;_, and R?:,-_l, respectively.

As in the previous algorithms, there are three steps.

Step 1. Compute a velocity u* satisfying: By nu* = Fy  n as follows:

Step 1a.
up T r -1 0
. =Ry LR
(Po ) 0o T ( FO,...,N )

Step 1b. fori=1,...,N:

uf T r -1 0 PR
=R, LR, - Ly.. F=t"
() =aa( ! )53 )}

Define v* = uf + u} + - -+ uf.

Step 2. To determine the correction e+ = 4% — y* we form an equivalent new
system
(21) PaD,...,N =g,

18



and solve it using the conjugate gradient algorithm [11}. Two choices for P will be
described, P and P each involving the parallel solution of subproblems. The right
hand side g is computed at the cost of one matrix vector product with P, without
explicitly knowing e® ", In solving either Pl N = g(1) op PN = oD the
inner product ¥ Ay . yy is used in the conjugate gradient method.

The matrix vector product for the first choice P is defined by:

Pyt { ph
=Y RIL7'R.L, . :
( an ) ; i i 0, N 0

The corresponding right hand side ¢’ is obtained by:

( gm ) ZRT ( Wo,...,N '—OAO ..... nu® ) '

The sccond choice for P, denoted P?) has its matrix vector product defined by:
N ’Uh
P{z)vh = ;R?L;JR;'LO,...,N ( ) ZRI i— le_: 1 1,i— lLU ..... N ( 0 ) '

The corresponding right hand side ¢®) is obtained by:

(2) N 7 _ * *
g _ z Ty—1 |2 0,....N Ao,...,NU Z -1 WD,...,N - Ao,...,N’U
( 0 ) = prt Ri Li Ri ( 0 ) R: R 1Lz A= 1 EIRE | ( 0 .

N s computed, let

Once &%
L
uﬂ.“-.N =" -+ 60’,“’]\r.

Step 3. After computing the velocity ug .. n, we compute the global pressure
Po,... N Fore=1,---,N:

% = RTL7'R, Wo, v = Ao NUo. . n
i 0 )

and gg, = 0.
Fori=1,...,N:
T = Ja (@it + T, )de
0 =
Jo, dx
Fori=10,...,N:

po-n(2)= q(2)+qq, forzeQy-—Qy,,

where Oy = 0, the empty set.
THEOREM 5.3. For a given choice of nested subregions Qg D Q) D ... Dy, there
exists a constant p < 1 independent of the mesh parameters hy, ..., hy such that

lup — @ — w*|] < 20%|juy, — 4° — 7).
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Here |jv)] = (f, v"a(z,y) 'vdady)/?, and @* the k’th iterate in the conjugaie gradient
method. For P = P, the convergence factor p grows linearly with N, the number of
levels of local refinement. For P = P®)| the convergence factor p is independent of the
number of levels N,

[ Tovml

Prooj. See [18], {29]. O
For the case N = 1, we are also able to prove quantitative bounds for the condition
number x(P?).
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