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Our early results for iterative refinement algorithms in the mixed case similarly showed
independence of the mesh sizes, but not of the number of refinement levels, see [16]. By
reducing the mixed problem to an equivalent standard discretization, we now obtain
optimal bounds as in Dryja and Widlund [20, 3] also for the mixed finite element
case. We also derive quantitative bounds for some iterative refinement algorithms
using strengthened Cauchy inequalities.

In § 2, we describe the mized formulation of elliptic problems and its discretization
based on Raviart-Thomas spaces. In § 3, we provide an abstract framework for the
Schwarz and iterative refinement algorithms of [15]. In § 4, we establish optimal
convergence rates of the Schwarz methods. In § 5, we discuss locally refined grids, the
stability of mixed discretizations on locally refined grids, and provide qualitative and
quantitative bounds for the iterative refinement algorithms.

2. A mixed formulation for an elliptic Neumann problem. Consider the
following problem on a polygonal demain Q C R?

-V {a(z,y)Vp) f inQ
(1) { ﬁ-éVé) - g indf.

]

Here 7 is the outward normal to 942, a(x, y) a 2 x 2 symmetric positive definite matrix
function with L°°(§2) entries satisfying

€ a(z,y)é > o], for a.e. (2,5) € 2,

for a positive constant a. We assume the inhomogeneous terms f € L*(Q2) and g ¢
L*(9Q) satisfy the compatibility condition:

] Fdudy +/ gds = 0.
l a1}

The solution p is then unigue up to a constant. Without loss of generality, we assume
g =10

2.1. A mixed formulation of the problem, and its discretization. In many
computations, such as in porous flow, the quantity of primary interest is the velocity
i = —a{z,y)Vp. Accurate approximations to # can be obtained with a mixed formu-
lation using the pressure p and velocity # as unknowns:

i = -—a(e,y)Vp i  Darcy’s law
(2) Vi = f - Counservation of mass
n-i = —g " in 882 Flux boundary condition

" The corresponding weak form, see [18, 18], is given by:

Find % € Ho{div,§2) and p € L*(Q) such that
(3) Jypwla(z,y) '0dady + f,p(V-¥)dady = 0, ¥ € Hy(div, Q)
Joa(V - i)dedy = Jofedzdy, Vge L*(S) .

The function space Ho(div, ) C H{div, ) for the velocity i is defined by
Ho(div, Q)= {0 € H(div,Q2): 7 =0 on 602},
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where H(div,2) = {(v;,,) € (L*(Q))*: V-5 € L*}Q)}, is equipped with the norm

12+ iV - 3|3,

||ﬂ|§1(d£u,n} = {|7]

see Raviart and Thomas [18]. The appropriate space for the pressure is L2(£2). Let

(4) Alu,v) = ]QuTa.(x,y)vdxdy, Vu,v € H(div,Q),
and let
(5 B(u,q) = '/;2(V ~u)gdzdy, we€ H{div,Q), g€ L*Q).

A discretization of (3) is obtained by replacing the function spaces by finite di-
mensional subspaces V* C Hy(div,Q) and Q" C L3}, respectively. In particular,
we choose V" and Q" to be the lowest order Raviart-Thomas finite element spaces
[18] which are briefly described in § 2.2. The discrete problem leads to a symmetric,
indefinite linear system:

A BF |, W,
& 5 TR

The Schwarz and iterative refinement methods for solving it are described in [15].

2.2. The Raviart-Thomas spaces on a triangular grid. For simplicity, we
only describe the lowest order Raviart-Thomas spaces on a guasi-uniform triangular
grid 7" on Q with elements of size h.

Definition. A family of triangulations {r"} of £ is said to be quasi-uniform, if
there exists positive constants c,, ¢*, such that for all triangles I and for all &,

€0k 2> hyg 2 ¢*h,

where ox is the diameter of the largest inscribed circle inside K, hy is the diameter
of K and h = max hy.

The lowest order Raviart-Thomas velocity space V*(Q2) consists of piecewise linear
vector functions which have constant normal component (ﬂu),\.l on the edges of the
triangles, see [18]. For instance, on the unit reference triangle & with vertices

a'l = (050)? a’? = (170)1 &3 - (011)1
the velocities have the following form:

= a + biq . .. =
7, == . . s .
Vi(K) = {( . bi‘z ) :Va,b,c € R; where = (3,,48,) € K}.

For a general triangle K € 7% see Fig. 1, with vertices a,,d,, as, it is possible to map

K onto K, so that Fi(&;) = a;, for i = 1,2,3, using an invertible affine linear map
Fg : K — K of the form Fy(2) = Bg& + byi. Here By is a 2 x 2 invertible matrix
and by is a 2-vector, see [2, 7] and the following map between vector valued functions
% on I and 7 on i,

#(z) = (1/Jx) By o Fg'(z) and (2} = Jx BR'7 o Fr(2),
3



Fis. 1. Lowest order Raviart-Thomas spaces on a triangle K.

/N

L 2
Dn|x = constant

-

iy - fi|,, = constant € 1y, - Til, = constant

€a

€;

iy, - fi],, = constant

is valid with J, = det(Bg). Such maps preserves the normal components on the edges.
The velocity space on K, V,{K) is defined by this map:
Vi(K) = {7: 7« © € Vi(K))},
and V*{) is defined by
Vi (82) = {v € Hy(div,Q): 0l € V(K}}.

The pressure space @*(£2) consists of piecewise constant functions, constant in
each triangle K. These Raviart-Thomas spaces lead to a stable discretization with
O(h) discretization error.

3. An abstract framework for the Schwarz methods. The multiplicative
or additive Schwarz algorithm to solve a symmetric, positive definite linear equation
in a Hilbert space can be viewed as a procedure for residual correction within certain
subspaces, see [12, 1, 17, 21, 4]. The rate of convergence is then expressible in terms of
certain partitioning and interaction properties of these subspaces. Here, we summarize
the main results that will be used in this paper. An abstract form of the Schwarz
methods is described in § 3.1 and § 3.2, and its application to mixed finite element
discretizations is summarized in § 4.

Let X denote a finite dimensional Hilbert space with inner product (.,.) and con-
sider the following symmetric, positive definite problem:

(7) Find uy € X such that A(up,vy) = W(v,), Vo, € X,
where A(.,.) is symmetric, coercive bilinear form satisfying
Ci(vn, vn) < Ao, va) < Colvp, va),
for positive constants Cy and C, and W{.) is a bounded linear functional satisfying:
W (o)l < Cllwsll, Yo, € X.
IFor 2 = @,--+,N,let X; C X be subspaces whose sum spans X:

X =Xo+ -+ Xn.
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We assume that the following partition and interaction properties hold. They will be
used to estimate the rate of convergence of the Schwarz algorithms.

Partition assumption. There exists a positive constant C, such that for any u, € X
there is a partition

Up = ttg+u, + -+ uy, withu; € X,

satisfying

N
Z A(ui, ut) S CDA(Uh, 'U-h).

1=0

Remark. Such a C always exists for any finite dimensional X provided Xg 4 --- +
Xy = X, see [12]. What is important is to establish an estimate which is independent
of, or grows very slowly when h — 0.

Following [21], we also use the following
Interaction parameters. Let £ denote a symmetric matrix of dimension N + 1
whose entries 0 < ¢; < 1, are the constants in the following strengthened Cauchy
inequalities between spaces X; and X;:

| A, u;)] < Eile(uiau:’)’l/ziA(ujsuj)ll/zy Vu; € X; and u; € Xj.

Let Iy C {0,--+, N} be a subset of indices and let 7; = |[;| be the number of elements
in the set I,. Also let,

o = man ) bl
The constant iy + ngy represents the interaction between the various subspaces X; ; if
all the subspaces are mutually orthogonal, then i3 4+ ng = 1, while if all the spaces
interact strongly, then i, + ng = N.
For each subspace X;, and u, € X, we let Fyu, denote the orthogonal projection
of u;, onto X;:

(8) Fiu, € X; such that A(Piuy,v,) = Alug,v) Vo, € X,

3.1. Multiplicative Schwarz algorithm. The multiplicative Schwarz algorithm
to solve (7} is given as follows, in terms of the subspaces X, ---, Xy, and the projec-
tions P;. Let v° € X be an initial guess:

Setk =10
While {|W{.} — A(u*,.)|| > tol do
Fort=0,---, N define

N ) (Uh _ ux-.+w{ﬁ) _

endFor
endWhile A
Note that w;, = P (v, — uk+7v_1“rT) can be computed without explicit knowledge of

u, since the right hand side in

A(wy,vy) = Alup — u“N'_;“,vh) =W(v,) - A(u”ﬁir_l,'uh), Yo, € X,
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is known. It can be easily verified that the kth iterate u* of the multiplicative Schwarz
algorithm satisfies

(9) (up —u") = (I~ Py)- (I~ Bo)(up —u*h),
and thus recursively

lun ~ u*lla < pFllun - wlLa,
where

p= (I~ Py} (I = Po)lla-

The following Lemma of [1, 21] is a generalization of a result in [12] relating the
convergence factor to the partition and interaction parameters Cy and i, + ny.

LemMMA 3.1. Suppose that the spaces X; salisfy the partilion assumption with
constant Cy, and let iy and ny denote the interaction parameters. Then,

1
Co(1+1dp + my)?

(10) p=llI =Py} (I~ Fjlla<1-

3.2. Additive Schwarz method. The additive Schwarz preconditioned system
to solve (7), based on the subspaces X, -, Xy is given by

(11) (PD";"P]+"'+PN)uh:g}sa

where g; can be computed without explicit knowledge of u;. If the conjugate gradient
method is used to solve (11) , then by standard estimates, see [11], the mth iterate u™
satisfies:

m \/E—} "
(12) . mgz( V) =l

where & = A ue /Amin, 18 the condition number of Py + -+ + Py

A ((P() I P.N)uh.)uh)

Arnin‘ = ﬁ )\ma:z:) V'LL & X
A(Hh,‘ll.h) h

The following Lemma of [21] is a generalization of a result in [4].

LeMma 3.2, Suppose the spaces X; satisfy the partition assumption with constant
Co and let iy and ngy denote the interaction parameters. Then, the condition number
of the preconditioned system (P, + -+ + Py) satisfies

R(P0++PN)SCQ('10+T?,0)

4. Applications to Schwarz algorithms for mixed finite element dis-
cretizations. The Schwarz methods of § 3 were described for symmetric, positive
definite problems, and so are not directly applicable to symmetric, indefinite problems
such as (6). However, if the velocity in (6) is divergence free, then the pressure can
be eliminated implicitly, and the symmeftric, indefinite problem can be reduced to a
symmetric, positive definite problem for the divergence free velocity, thereby enabling
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application of the results of § 3. We briefly describe this procedure, and provide esti-
mates for the partition and interaction parameters Cy, i, and ng for the specific choice
of subspaces and norms appropriate for the mixed formulation case.

The Schwarz algorithms described in [15] to solve (6) on a quasi-uniform grid
T#{{1} are based on two levels of discretization, a coarse grid 7% (£}) and the fine grid
T"(§2) obtained by successive refinement of the coarse grid. The coarse grid elements
.-, Qy, also referred to as subdomains, are extended to form overlapping subdo-
mains 3, -,y with distance(88;,00)) > BH, where 0 < § < 1. The Raviart-
Thomas velocity spaces on the coarse grid and extended subdomains ) are denoted
VH(Q) and VH(Q), respectively.

The algorithms consist of three steps. In step one, a discrete velocity uf, satisfying

Byuy = Fy,
is computed. The divergence free velocity correction @, = uy — uf in (6) then satisfies:

Find @, € V*{) and p,, € Q"($2} such that
(13) A(’&h, Uh) + B(’Uh,ph) = Hf'h(v;,‘} - A(u‘,‘;, ’Uh), V'Uh € Vh(ﬂ)
B(ily, qy) = 0 Vg, € QM) .

By choosing divergence free test vectors v, in equation (13), we obtain that 4, satisfies:
(14) Find i, € X such that A(G,,w) = Walwy) — A(ul,v) Vo, € X,
where

X = VHQ)n Hy(dir®, Q).

The problem for determining the divergence free velocity i, is symmetric, positive
definite since the hilinear form A(., .} is symmetric, positive definite on X:

(15) A(vp, vs) = fQ vh a{z, y)vdedy > a'./Q vi vydady = aﬂ’“k”i{(diu,n)»

wlhere o is the minimum eigenvalue of a(z,y) on Q.

In the second step, the divergence free velocity correction i, = u, —u} is computed
using either the multiplicative or additive Schwarz method. The subspaces in the
Schwarz methods are given by

X,-:Vh(ﬂg)ﬂHo(div{],Qg)C_X, i:l’...ﬁN’

and the projection Pv, onto X, implemented in [15], is given by

-1
BREEHREHID
aq; - B,' 0 ' Bh 0 0 ’
where E; is the restriction map onto Q for ¢ = 1,--., N and onto the coarse grid for
1= 0.
In the third step, the pressure p, is computed.
Remark. A discrete divergence free velocity w, is divergence free in the sense of
distributions. To prove this, we use the property that the divergence operator maps the

P
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velocity space V*{Q) onto Q*(Q)/R. Choosing g, = V- w,, in the discrete divergence
constraint

(9 wn)dndy =0, Vo, € QY.
we obtain
V - wylfdzdy = 0.
fgi wy|“dxdy

We now describe some general results about divergence free functions.

4.1. Some properties of divergence free functions. We describe tools for
analyzing the convergence of the algorithms. Many of them are given in a recent paper
of Ewing and Wang [6] and are presented for completeness. We also describe extensions
of their results suitable for additive algorithms. The whole analysis centers on a scalar
stream function representing divergence free functions.

Let H'(Q) be the standard Sobolev space

R = {ue () g5, 5% € (@),
1/2
equipped with norm ||ul| ., ) = (fQ (|u!2 +188% 4+ %;_ng) da:dy) , and let H3{Q)) be
its subspace with zero boundary values on 8. Let S*(Q) C H(Q) be the space of
continuous, piecewise linear functions on the given triangulation r*(Q). The following
result establishes the existence of a stream function for divergence free functions in
two dimensions.
Lemma 4.1, If i € H(div, Q) is a two dimensional divergence free vector function,
then there exists a scalar stream function ¥(z,y) € HY{Q) with

T = (v, v) = (b, —tpy ) = Curl ¢,
Proof. See [6]. O

Remark 1. Let u be a divergence free function with the associated stream
function w = {4, —4.), let 7 = (n;,n;) be a normal to an edge, and 7 = (—ny, n,)} be
the tangent. Then on the edge -

R = ('llby?_d)r) ’ (nlan?-) = (¢z:¢y) -(—ﬂg,nl) B ?9_17/_)’

where /07 is the tangential derivative. Thus, in particular, if 4 has zero flux on
I' ¢ 89, then 4 will be constant on T

The following result stated in [6], relates the divergence free velocities in the low-
est order Raviart-Thomas space X on the triangular grid to the space of continuos,
piecewise linear functions 5"(2).

LeMMA 4.2, Ifv, € X = VHQ) 1 Hy(div®, Q), then there exists a scalar function
Py, € SMQ) with

Curl ¢, = v;.

Conversely, if &, € §*(8), then Curl £, € X.
8



Proof. By Lemma 4.1, there exists a scalar stream function with Curl 9, = v,.
We now show that ¢, is piecewise linear. Since 89/01 = v - = C'onst on the edges of
each triangle, it follows that 4 is linear on each edge. Since the lowest order divergence
free Raviart-Thomas velocities are piecewise constant, 1, is piecewise linear on each
triangle. Since dip,/d7 = 0 on 851, v, can be chosen to be zero on 9 and thus
Pr € S™(Q).

The converse follows trivially. D

As a consequence of this stream function representation, the bilinear form A(.,.)
on X is equivalent to a bilinear form .&(,) on $*(). Let Curl ¥ = w; and Curl
£, = v;. Then, by substitution, we obtain

A(Curl 4, Curl &) = A(¥y, &),

where the bilinear form A(.,.) is given by
(16) At &)= [ (T8 a(e,u)(Ten)dady,

with a symmetric, positive definite coefficient matrix a{z, y) given by

(17) iz, y) = ( mg (1} )a(w,y)_l( (1) _(1] )

This equivalence between the bilinear forms A(.,.) and A(.,.) leads to an equivalence
between orthogonal projections in X and $*(§). Fori=1,---, N, let
ST = §MQ) N Hy (O,

and let 5° denote the space of continuous piecewise linear functions on the coarse grid
TH({). For each i, let P denote the orthogonal projection onto X; in the A(.,.)
inner product, and let P denote the orthogonal projection onto S in the A{.,.) inner

product.
Lemma 4.3. Let v, € X with vy, = Curl ¢y, for i, € S*(Q). Then,

1).

Phy, = PA Curl o, = Curl P{iq,bh.

AP 4+ PR)vg,v) A ((Pu/i +oet Pfé)¢h1¢h)
A(vn, vn) - Ay, ¥n)

Thus {P§ + -+ P#) = a(FPd + -+ PR),

(T = PRy (I - PPWa= (I - PEY---(I - P4

Proof. To verify 1), let ¢; € S be the stream function with Curl ¢; = PAv,, and
let w, € X; be test functions with w; =Curl §;, where £ € 5. Then, applying the
definition of projection, we obtain

A(HAvhawi) = Ao, w;), Yuwy € X,
9



which is equivalent to
A, &) = A, &), V&€ S,
by the equivalence between the bilinear forms. Thus, ¥; = PAq, and Curl Py, =

A
PACurlyy.

2} Equivalence of the two Rayleigh quotients follows from 1), since
(PA+ -+ P8)Curly = Curl(P{ + - -+ Py,

and since A(Curl ¥, Curl ¥,) = A{%,, ¥,).
3} Equivalence of the two error propagation maps also follows from 1} by using

A(Curl 4, Curl ,) = A(t, $s) and
(I—P&)- (I - P&)Curlyp = Curl(J — PE)--- (I~ P,

and by applying the definition of the norm. 0O

We end this section, with a partition Lemma for the mixed finite element case
described in [6].

THEOREM 4.4 (EWING AND WANG). Let uy € X = V*(Q) N Hy(div, ). For the
given collection of subspaces X; © X, 1 = 1,---, N based on the overlapping subdo-
mains 0 with overlap ratio 3, and the coarse grid space X, C X based on the coarse
triangulation 77 (1), there exists a partition

Up = U -+ Uy + - F Uy,
with u; € X;, 1 =0,--, N, salisfying
N
Z ;4(’035, 'Ui) < CQA('L!.h, ’U,h).

(=
The constant Cy > 0 is independent of H and h, but mildly dependent on 3.
Proof. Let u; € X be represented u, = Curl #,, where v, € S*(Q2). By a
standard partition lemma. for the piecewise linear finite element space §%(€2), see Dryja
and Widlund [4], there is a partition

¥ =tho + -+ Py, with ¢ € S,
satisfying

N
Z J’i(’»bn ﬁ%’) < Cofi(¢h1 ¢h)’

with a positive constant C; independent of H and A provided the overlap § is fixed.
The partition Lemma follows by defining

u; = Curl ¥, € X,

and using the equivalence between the norms. 0
Remark 1. If the coarse grid space is not used, then there is a partition

wy = Uy 4+ Uy, with'u,-éXi,

satisfying
N
D Al w) < (CLTHD) A(up, wy),
i=1

where C is independent of H and h for fixed overlap 8. This follows from the corre-
sponding result for $"(£2), see [4].
10



4.2, Convergence rates of the Schwarz methods for mixed formulations.
An optimal bound for the multiplicative Schwarz method in the mixed case was recently
established by Ewing and Wang [6]. We describe this briefly and include a simple
extension of their results to the additive Schwarz algorithm.

The velocity iterates @ obiained by applying either of the Schwarz methods to
solve mixed finite element problem (13) are divergence free. By application of the
results of § 3.1, the iterates of the multiplicative Schwarz algorithm satisfy:

lin — @*ia < p*liis — 8°4,

where p = (T = )+ (I — P)lla-
THEOREM 4.5 (EwING AND WANG). For the collection of overlapping subdomains
1,0+, and the coarse grid, the convergence factor p of the multiplicative Schwarz
algorithm is independent of H and h for fixed overlap 5.
Proof. By Lemma 3.1 of § 3.1, the convergence factor satisfies

1
P . —
p - 00(7‘0 + n9)2

where C,, i, + 1o are the partition and interaction parameters, respectively, for the
spaces X;. By the Ewing-Wang partition Lemma 4.4, ) is independent of H and A
for fixed overlap 5. iy -+ ny is also bounded independent of H and h. See [6] for the
details. [

Next, we consider the additive Schwarz algorithm.

THEOREM 4.6. For the choice of overlapping subdomains $1y,--+,Qy and the
coarse grid, the condition number of the additive Schwarz preconditioned system satis-

fles:
H(P$+---+P§) <c,

where C is independent of H and h for fived overlap ratio 3.
Proof. By Lemma 3.2 of § 3, the condition number of the additive Schwarz method
satisfies

"C(Péd"f'""l'Pﬁ) < Colio + mg),

where Cy and iq + ngy are the partition and interaction parameters, respectively, for
the subspaces X; of X. By Lemma 4.4 of § 4.1, C; is independent of H and A, for
fixed overlap 8. To estimate 4, and n,, we let Iy = {0}. Then 4, = |I;] = 1. Since for
standard triangulations, each triangular subdomain )} intersects with at most thirteen
neighbors, for 1,7 # 0, there are at most 13 non-zero entries ¢; for in each row for
3,7 # 0. Since |e;;| < 1,

np = ?é‘i"i‘.z € <13,
J€To

and so ¢y + ny = 14. The result now follows. O
Remark. If the coarse grid space is omitted, then the condition number of the
additive Schwarz algorithm satisfies

K S Cl/st
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and the convergence factor of the multiplicative Schwarz algorithm satisfies:

2

<1- =
Pl

where (] and (', are independent of i and 4.

5. Jterative refinement methods for mixed formulations. Two kinds of
iterative refinement algorithms for solving mixed formulations of elliptic problems on
locally refined grids are described in {15}. In this Section, we first establish the stability
of the mixed finite element discretization on locally refined grids, and then provide
qualitative and quantitative bounds for both kinds of iterative refinement algorithms.

We recall the construction of the composite refined grid in [15]. A quasi-uniform
grid 7% () of size hy on £y = Q, is successively refined locally on 2 sequence of nested
stbregions £1;:

QoD D D80x_1 D 0.

All elements of 78 (Qg) in Q, are refined uniformly, and the locally refined grid on
€, is denoted 7" (Q,), with elements of size h; = hy/2. Similarly, for ¢ = 2,---, N,
all elements of 7*—(§4_,) in §; are refined uniformly and this refined grid on §Y is
denoted 7%(£,), with elements of size h; = h;_,/2. The composite grid rhor8~ ig
defined by:

ho,..hn — | (N=1_h; h
Fhes V=Ui:0 T (Q-i_Qi+1)UT N(QN)>
and the Raviart-Thomas velocity space on 77027 by

Vhor N 2 VR(Q0) 4k VI (Qy);

see [, 15). Bach V*(Q;) C Hy(div,Q;), and so has zero flux on 89;. The composite
pressure space is defined by

The discretization of (3) based on the composite grid spaces Vher v x Qhor v leads
to a linear system of the form:

Ao N Bg’ N Uy, N Wo, .~
18 N H¥ UL, ) 3 — FREETY .
( ) I: By .~ 0 Po, N Fo,

---------

5.1. Stability of the composite grid discretization. The discretization of (3)
is stable provided two conditions hold, see [7, 18]. One is that the bilinear form A(.,.)
is coercive in the subspace of divergence free functions, Vi~ ¢ Ho(div® ), i.e.,
there exists a positive constant C independent of k; such that

A(wy,wy) > Cllwplhgain,nyy  Ywn € VMW with V-, = 0.

This coercivity condition is satisfied for alt choices of velocity subspaces since for a
divergence free function w,

aj!w”%wwm = cr/\;lwg“wdmdy < -/Q'wTa(a:,y)wdmdy = Alw,w),

12



where o is the uniform lower bound for the eigenvalues of the coefficient matrix a{z, y)
and is independent of #;. The bilinear form B(., .) must also satisfy an inf sup condition,
see 7], i.e., there is a positive constant § independent of h such that
iB('Uh,q;&)i ~ir s L B
T 2 Plignlicaey,  Vau € ¢7(82).
onev [|onllAeaio )

According to [18, 7], it is sufficient to show that given ¢ € Q" /R, there exists v, € V*
such that

Vv, = gy,
and such that
loallmgasv,oy) < (1/ Bl gnllzeq)-

This condition is proved for the Raviart-Thomas elements on quasi-uniform meshes,
see [18]. On the composite mesh, we have the following result.

THEOREM 5.1, There is a positive constant (2, - - -, Q) independent of hy, -+, hy .
such that for any q, € Q™" having mean value zero, there exists v, € Vher- v sat

isfying
V- Vp = 4n,

and

lonllgrain, @y < Bllall 22y

Proof. For i = 0,--+, N, let T; denote the L? projection onto Q" 4. -+ Q" . Then
Ty = I, and we can partition

g =Togn + (N —To)an + 4+ (T — Tv1) -

By this construction, each ¢; = (T;—T;_; )gy is orthogonalin L2(£2) to all other ¢;. Since
the functions in each Q" (Q;) are discontinuous across element edges, it also follows
that g; = (7} — T;_1)gs has support in €; and hence ¢; € @™ (£;). Since XQ,» the
characteristic function of £;, is in @*-1(;_;), and since ¢; is orthogonal to Q*(f2,),
it follows that each ¢; has mean value zero on ;.

Since the inf sup condition holds for the mixed discretizations on each of the local
quasi-uniform meshes 7%(£;) on €, there exists a positive constant 5;($;) such that
for any ¢; € Q*(§;)/ R, there is v; € V*((),) such that V - v; = ¢; and satisfying

il ercaiv,nn < BilS0)g:llz2can
Choosing ¢; = (T; — T;_;)gx, and defining
Yp =ty + -+ vy,
we obtain,

Vovy =g, + + 48 = 4,
13



and

N N
“’t’h”H(diu,n) < Z “’UiHH{diu,n,-) < Zﬁi(ﬂi)”%“m(m)-
i=0

i=0

By the Schwarz inequality, the right hand side is bounded by

N 1/2
ma,x(ﬁa, .. .,ﬁN)‘\/ N+1 (Z ”%'”,25?(9)) = max(ﬁo, .. -,ﬁN)V N+ IHQianz(ﬂ)'
i=0

Note that the constants Gy, ..., Sn are independent of hy,. .., hy. Therefore, the com-
posite Raviart-Thomas spaces satis{y an inf sup condition, with a constant independent
of hg,..., hy. It is mildly dependent on the number of levels ¥ of refinement. O

5.2. Convergence rates of iterative refinement algorithms. Both the mul-
tiplicative and additive iterative refinement algorithms described in [15] to solve (18)
consist of three steps. In the first step a discrete velocity u* satisfying By . yu* = 0 is
computed. In the second step, the divergence free correction to the velocity @, ... n =
ug ...y — u*, is computed by either a muitiplicative or an additive Schwarz type itera-
tion. In the third step, the pressure pg .. 5 is computed.

The multiplicative iterative refinement algorithm in the mixed formulation case is
based on an iterative refinement algorithm for standard formulations, in which case the
algorithm is often referred to as the Fast Adaptive Composite grid method (FAC) by
Mandel and McCormick{14]. We will also refer to the multiplicative iterative refinement
algorithm in the mixed finite element case as the FAC algorithm. The FAC algorithm
corresponds to the multiplicative Schwarz algorithm based on the spaces

X = Vhernhn 0 Ho(din®, Q),

(19) X, = VR Q) N Hy(din®, %),

with projections P/* onto X; defined in terms of the A(.,.) inner product. These

7

projections are computed in [15] by solving symmetric, indefinite linear systems:

-1
P, = g7 A; BT R. A, N Bg:..,,N v
4 - B; 0 : Ba,.,.,N 0 0 ’
where R; is the standard restriction map onte V*(Q;) x Q™ ().

The stream functions corresponding to the divergence free spaces X; lie in 5% ()
and thus the stream functions corresponding to X lie in the composite space

Shu’m’hN = Sho(Qo) = ShN(QN).

Let P,;‘”: denote the projection onto §*(;) in the ;1(., .)inner product, defined by (16).
Since

PACurl ¢, = Curl P,-‘;",bh,

we have the following resuit.
THEOREM B.2. There exists a positive constant C independent of hy,- -+, hy and
N such that

1
P:“(I”Pﬁ)"'(f'"Pf)HA51—6-
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Proof. Using the fact that P/ Curl 4, = CurlP,-‘axbh, it follows that,
(20) p=IT=PR) (L= PM)lla= (T = PF)--(T = P4

The latter, however, corresponds to the standard error propagation map for the FAC
algorithm on %" and there is a positive constant C independent of 2; and N such
that

i i 1
L= PL)- - (I=P)la <15,
see Dryja and Widlund [20]. O
Next, we describe the convergence bounds for the two additive refinement algo-
rithms considered in [15]. The first algorithm, to determine 4, ...y, is based on the

subspaces
Xi = VM) n Ho(div®, ), i=0,---, N,

and are the same as for the muitiplicative algorithm. The corresponding preconditioned
problem is

P = (P oot PR g,y = g0,

THEOREM 5.3. There exislts a positive constant C independent of he, -+, by, and
N such that the condition number of the first additive refinement algorithm satisfies

K (P(l)) <CON.

Proof. Since each PACurl 1, = Curl PAv,, for 1hy € Shor N we can apply the
same proof as in Lemma 4.3 and obtain

f(PO) = (Pt + PY) = n (P4 + P

The latter represents the additive refinement algorithm in §% "~ hased on the finite
element spaces §%°, ..., 5"~ and is known to have a condition number

5 (Pd 4+ PY) <CN,

for a constant C independent of ~; and N, provided the ratio of the areas |Q;|/|§%..,]
is uniformly bounded, see [20]. [I '

The second additive refinement algorithm in the mixed finite element case, de-
scribed in [15], is based on an additive refinement algorithm for standard formulations
of elliptic problems, in which case the algorithm is sometimes referred to as the asyn-
chronous fast adaptive composite grid method (AFAC). We will also refer to the second
additive iterative refinement algorithm in the mixed finite element case as the AFAC
algorithm. It is based on projections P# onto

VRN Hy(din®, ), fori=0,---, N,
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and Pf_, onto
VEQ) 0 Hy(din®, Q;), fori=1,---,N.
The preconditioned system for the divergence free velocity i, ... v is given by
P@gy .y = g®,
where
PO = P+ (PR = Plo) ++ (P - Py -

Fori=1,---, N, note that P/ — P,-f‘,-_l is the projection onto the space

[V (92) 0 Ho(din®, )] 0 [V75= () 0 Holdin®, 2],

where [V (2,) 0 Hy(div®, )] is the orthogonal complement of [V~ (£;) N Ho(div®, ;)]
in the A{.,.) inner product.

The second additive refinement algorithm, thus corresponds to an additive Schwarz
algorithm on X with subspaces

4
X, = [VR(Q) N Ho(din®, )] 0 [VP=2 () 0 Ho(din®, 2)] 7, i=1,-, N,
and )
‘Xg = ‘fho(ﬂn) M .Hg(d?.-?)ﬂ,ﬂo)‘

The projections P — Pfi_; for 1 = 1,---, N, are computed in [15] by solving the
sysiems:

A A
{ (B = Fis)on ] = R?L;1R1’LU,,,.,N [ oh .| - Rg?f—lL;:il—lRi,i-—]LO ..... N { oh ] )
G 0 0

where R, ;_; denotes the restriction map onto the space V"1 (€2;) x Q-1 ((,) with an
associated coefficient matrix L;;_;, R; is the restriction map onto V" (£2;) x Q"(f)
with an associated coeflicient matrix L;. Lo ..y Tepresents the coefficient matrix (18)
on the composite grid. Pg'v, is computed as Pgv; in the multiplicative iterative
refinement algorithm.

Let P/ denote the projection onto S*(§2;) in the inner product 151(._, .), corre-
sponding to the projection P onto V*(§2;) N Hy(div®, ;). Similarly, let P/, denote
the projection onte S"-1(£;) N H}(£Y;) corresponding to the projection FP%_, onto
V=100 N Hy(div®, ;). We have the following optimal bound.

THEOREM 5.4, There exists a constant C, independent of h; and N, such that the
condition number of the second additive refinement algorithm (AFAC) satisfies

5 (P o+ (PR Plo) + -+ (PR = Piyoa)) < C.

Proof. Tt is easily verified that PACurl ¢, = Curl P/, and that P4 _1Curl 4, =
Curl PA_ ¢, for ¢, € S "~ By similar arguments as in Lemma 4.3, it follows
that

k(P4 (Pl + Phoaw)) = 5 (PR + (PR + -+ PRoN))
It is shown in [3] that the latter then has a uniformly bounded condition number which

is independent of A; and N. [0
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5.3. Quantitative bounds for the convergence factors. Following Mandel
and McCormick [14] and Maitre and Musy [13] for standard formulations of elliptic
problems, quantitative bounds can be obtained for the mixed finite element multiplica-
tive (FAC) and additive {AFAC) iterative refinement algorithms, in the two level case.
The quantitative estimates for the multiplicative iterative refinement algorithm (FAC)
can be extended to the case of several levels. These results are based on strength-
ened Cauchy inequalities. First, we consider the two level multiplicative refinement
algorithm.

Definition. Let X; and X, denote two subspaces of X. The cosine of the angle,
in the A(.,.}inner product, between X; and X, is defined by:

Al i
cos( Xy, Xy} = sup Ao, uy)|

uaEXo,u1EX s, ug,ur 70 iluD”A HulilA .

Note that cos( Xy, X;} € [0, 1], and if XN X, is nontrivial, then cos(X,, X;) = 1. If X,
and X, are orthogonal in the A(.,.) inner product, then cos(X,, X,) = 0. Furthermore,
ifug € Xy, u, € X;, then

(21) [ A, uy )| < cos(Xo, X )|ucllaliuadla

If cos( Xy, X1) < 1, then (21) is referred to as a strengthened Canchy inequality. The
following result relates the cosine of the angle between spaces to the convergenee factor
of the two level FAC algorithm.

LEMMA 5.5, Let Xy and X, be nontrivial subspaces of X. Then

(PP = | P PR PE |4 = cos® (X, X))

where P, P{* denotes the orthogonal projections onto X, and X, respectively, and
p(P¢ P*) denotes the speciral radius. Furthermore, if X§ C X, and X} C X, arc
subspaces salisfying

X+ X=X,
then the spectral radius of the error propagation map (I — P{){(I — P{) satisfies
p (1= BT = P)) = cos* (X, X1) < cos® (X3, X7).

Proof. See Mandel and McCormick [14]. O
We estimate the spectral radius of the two level FAC error propagation map {J —
P#Y(I - P{), by chosing X§ = X,, and

Xi={w=({I-T":ve X} CXy,

where 11° is the Raviart-Thomas interpolation map onto X, see [18]. I%vis the unique
velocity in X, with a constant flux on each edge E;; with the same mean value as the
flux of v on E;

i Le.,

f (%) - fids = / v-iids, Vi, ;.

Ei; Ei;

The interpolation operator preserves divergence free functions, i.e., II°v of a divergence

free velocity is divergence free, see {16, 18]. To obtain an estimate for cos(X¥, X7),
17



Fia. 2. Standard refinement of a triangle, used to compute the angle between coarse and fine mesh

spaces.
N

K,

I( 1(3 .K-4

(%]

(0,0) X (1,0)

we work on each coarse mesh element separately, and sum over all the coarse mesh
elements. Thus, suppose that for each element K € 7"°(8,), there exists a non-negative
constant 0 < gg < 1, such that

[Ak(u,v)] < aK\/AK(u,u)\/AK(v, v), Yu € Xy, and Vv € (I - 11°)X,.

Then
Al v) = 3" Ag(u,0) < 3 o/ Ax (w,u)y/ Ak (v,0)
K K
< (n}i}xof()\/A(u,u)\/A(v,@).
Thus,
(22) cos(Xo, (I —HNMX;) < (n}\z}xaK),

where o is cos(Xg| g, {1 — IO X | ).

Let K denote a triangle in the coarse mesh 7%°(§,), with vertices a,,a,, as. Let
the angles atl the vertices be denoted by #,48,,68,, respectively, and consider the re-
finement obtained by dividing each coarse triangle K into four equivalent subtriangles
K,,..., K, by connecting the midpoint of the edges of K, see Figure 2. Since each
function in V*(K) is specified by the value of the normal component on the mid-point
of edges, and since there are nine edges amongst the four subtriangles, there are nine
degrees of freedom. However, due to the four divergence constraints this reduces to
five linearly independent divergence free functions defined on X, restricted to K. Two
of them belong to X,. A basis for Xy|g is given by:

u; = (1,0) and u, = (0,1).

The remaining three basis functions ua, uy and us are in (I — I%)X|x and are given

18



(1—cc;s(6'z)’ = Si';("?)) on K,
(“}_{205(92)? - sil;{ﬁ'g)) on K,
g ~ (mlmc;s(ﬂ’:), wsi';(‘*ﬂ)) on Ky
_1+c§s(92}’ Sin(z"’"?) on K,
(cos(ﬂa)gcos(ﬂg), —sin(sz)g"s'm(%}) on K,
(_Cos(eajz—cos(ﬂz)’ - Sin(ﬂe)z“"mwa}) on K,
Ug = o (cos(ga);cos(ﬂz)’ ~Si“('92)2‘5i“(93)) on K,
(coslfadteon(ta) sin(z)_sin(t) | on K,
(eslbaldn —sin(ba)y on
(= c05(293)~1 : Si“(293)) on K,
s = (ella)=t —sinla)y op g,
(ellal=1 —sinlia)y o [,

Computing the local stiffness matrix on K in the A(.,.) inner product using the
basis #4,...,us, we obtain a block partitioned matrix of the form:

Mg Gk
{G%; NK]’
where
(My)i; = Ax(us,u); 4,j=1,2
(Grliy = Ar(u,y) =12 j=3,4,5
(Ng)iy = Ag(w,uy); 4,7=3,4,5.
By Lemma 5.5,

COSz(Xolffa(I - HG)XllK) =pr (qum leix)

ol [ ) %) (-[e % )% % D)

This spectral radius is independent of the order of multiplication of the two matrices
since it equals cos?(Xy|x, (I — I°)X;|x) for either ordering. It is easily seen that
this spectral radius is the same as p(M;'Gx N5 'G%) or p(Ng'GE Mz'Gy). For the
Laplacian,

a(m,y) = ( é g ) and AK('L!.?'U) = /K uT'ud;L-dy)

and we obtain,

Mo = [£] 14 0 o K| —1 —cos(B) cos(83) — cos(8,)  cos(fs) — 1
K= 0 4| KT 4 —sin(f,)  —sin{f,) —sin(f;) —sin(d;) |’

4
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and

| K]

{ 1]
Ny = — 1|,
4 2

L I

where |I{| denotes the area of triangle . By substitution, we obtain

ot et D
— rD

1 4 cos*(fy) + cos*(6) 5111(92) cos(é?z) ~ sin(@3) cos(fs)

1 —1AT _
My GieNg Gk sin(8,) cos(8,) — sin(#;) cos(f;) sin®(8,) + sin®{6,)

and its spectral radius pg satisfies

3

it \/16 16d(31:92)
2 }

px = p(Mg G Ng'Gk) =
where

d(8y,8;) = 2sin’(0,) cos®(8,) + 2sin?(63) + = 8111(26'2) sin(26,).
For an equilateral triangle K this gives px < 2, and for a right tna.ngle px < 1.
The constant oy in the local strengthened Cauchy inequality satisfies % < pg. By
applying Lemma 5.5 and equation (22), we obtain for the two level multiplicative
iterative refinement algorithm

3/8 for all equilateral triangles
< maxay <
PSRN OK = { 1/2  for all right triangles

Note that if a{z,y) is constant in each coarse triangle X', og would still be the same.
Hence, the convergence factor is independent of coefficient variations from element to
element.

Remark 1. The preconditioned system corresponding to the symmetrized two-
level FAC algorithm is I — E3 E,, where E, = (I — P{*)}(I — P{} denotes the error
propagation map for the non-symmetrized two-level FAC algorithm. Since E3FE, is
positive semi-definite, we obtain

i mE <1

Kg

where £, is the condition number of the preconditioned system. I we let p, =
| E5 E»,||I/ ? denote the convergence factor of the two-level FAC algorithm, then

1
Ko < —
ST 1 (p)?

Remark 2. By a result in {15], it follows that the condition number sy of the
symmetrized many-level FAC algorithm satisfies:

1
in(l — EyEn) < [1__—
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| /% is the convergence factor of the two-level FAC algorithm. Thus,

where p, = [|E3 Eyi| 4
for a mesh containing only equilateral triangles, ky < ()", since p < 3/8, and for a

mesh containing only right triangles, xy < (2)", since p, < 1/2.

Remark 3. A quantitative bound for the spectral radius of the two-level AFAC
algorithm can be obtained in terms of the spectral radius of the two-level FAC algo-
rithm:

p (1= PD) = pif* = (1 - YT - PO,

see Mandel and McCormick [14]. Here p, is the convergence factor of the two level FAC
method. Thus, for a mesh containing only equilateral triangles, p(I — P{¥) < (2)'/2,
and for a mesh containing only right triangles, p(I — P®)) < (3)1/2,
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