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Abstract. We describe several variants of the vertex space algorithm of Smith for two dimensional
elliptic problems. The vertex space algorithm is 2 domain decomposition method based on non-
overlapping subregions, in which the reduced Schur complement system on the interface is soived
using a generalized block Jacobi type preconditioner, with the blocks corresponding to the vertex
space, edges and a coarse grid. We consider two kinds of approximations for the edge and vertex
space sub-blocks, one based on Fourier approximation, and another based on an ajgebraic probing
technique in which sparse approximations to these sub-blocks are computed. Our motivation is to
improve efficiency of the algorithm without sacrificing the optimal convergence rate. Numerical and
theoretical results on the performance of these algorithms, including variants of an algorithm of
Bramble, Pasciak and Schatz are presented.

Key Words. Domain decomposition, schur complement, interface probe, block Jacobi precondi-
tioner, elliptic equations, preconditioners, vertex spaces.
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1. Introduction. Domain decomposition methods often provide suitable tech-
niques for solving large linear systems of equations arising from discretizations of par-
tial differential equations. In particular, these methods can be advantageous for the
efficient and localized treatment of irregular geometries, discontinuous coefficients, lo-
cal grid refinement, boundary layers and coupling between equations of different type,
see for instance [20, 5, 6, 7).

In this paper, we primarily focus on the development of efficient versions of two
divide and conquer type domain decomposition algorithms based on non-overlapping
subregions for solving sell adjoint elliptic problems in two dimensions. The algorithms
we describe are variants of the vertex space algorithm (VS) proposed by Smith [27]
and Nepomnyaschikh [25], and an algorithm of Bramble, Pasciak and Schatz (BPS) [3).
In both cases, a block Jacobi type preconditioner is used to solve the reduced Schur
complement system on the interface. The blocks in the BPS algorithm correspond to
the nodes on the edges separating the subdomains and to the collection of vertices
of the subregions, while in the vertex space algorithm additional overlapping blocks,
centered about each vertex consisting of nodes on the interface close to the vertex, are
included to account for coupling amongst the non-overlapping blocks.

In order to implement the original version of the VS preconditioner [27], the sub-
blocks of the Schur complement, which are dense matrices, need to be computed and
inverted using direct methods. It can, however, be easily shown that if these sub-blocks
are replaced by spectrally equivalent approximations, then the rate of convergence of
these algorithis remains asymptotically the same. In order to reduce overhead cost,
we therefore focus on constructing approximations which are inexpensive to construct,

* Department of Mathematics, University of California at Los Angeles, Los Angeles, CA. 90024,
This work was supported in part by the Department of Energy under contract DE-FG03-87ER25037,
by the Army Research Office under contract ARO DAAL03-81-G-1560, by the National Science Foun-
dation under grant FDP NSF ASC 9003002, and by the Office for Naval Research under contract
ONR N000314-90-J-1895. .



and which are inexpensive to invert.

Two kinds of approximations will be considered, one based on Fourier approxima-
tions of the interface operators, and another based on sparse algebraic approximation
of the interface operators by a probing technique. The Fourier based approximations
can be shown to be spectrally equivalent with respect to mesh size variations. How-
ever, their performance can be sensitive to the coefficients. On the other hand, the
probing based algorithms adapt well to the coefficients, but can be sensitive to mesh
size variations.

In § 2, we describe the elliptic problem and the Schur complement system on the
interface. In § 3, we describe the original versions of the BPS and VS preconditioners
for the Schur complement on the interface. In § 4, we describe the two variants, one
based on Fourier approximations, and the other based on the probing technique. In
§ 5, we present numerical results comparing the rates of convergence of the various
preconditioners.

2. An elliptic problem and its many subdomain decomposition. Here we
describe the block structure obtained when a self-adjoint elliptic problem is discretized
on a domain {2 partitioned into many non-overlapping subdomains §2; with an interface
B separating the subdomains. A reduced Schur complement system is derived for the
unknowns on the interface. Some properties of this Schur complement system and an
iterative procedure for solving the elliptic problem are described.

2.1. Block partition of elliptic problem. We consider the following 2nd order
selfl adjoint elliptic problem on a polygonal domain § € R*:

{ -V - (a(z,4)Vu)

f mQ

1) 0 on dQ,

U

where a(z,y) € RB**? is a symmetric, uniformly positive definite matrix function having
L*(82) entries, and f € L*(Q).

We assume that the domain §Q is partitioned into N non-overlapping subdomains
,-++,Qy of diameter H, which form the elements of a quasi-uniform coarse grid
triangulation 7¥#, see Fig. 1. We also assume that the subdomains f; are refined
to produce a fine grid quasi-uniform triangulation 7* having elements of diameter A.
Corresponding to the coarse grid and fine grid triangulations, we discretize (1) either by .
using finite elements, see [14), or by using finite difference methods, see [29], resulting
m a symmetric positive definite linear system

(2) Apup = fi,
on the fine grid and
(3) Apug = fus

on the coarse grid.
Let I denote the union of the interiors of the subdomains, and let B denote the
interface separating the subdomains:

I= U,-Q,‘, B = (U,-@Q,—) — 011,
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Then, grouping the unknowns in the interior of the subdomains in the vector u; and
the unknowns on the interface B in the vector uy, we obtain a reordering of the fine
grid problem: '

I-Au AIB][UI-’ [f11

(4) | ATs Aps || us || f5 ]

Here A;; corresponds to the coupling between nodes in the interior of the subdomains.
For most discretizations, including five point discretizations, the interior nodes in £,
are coupled only to the nodes on the interface B, and not to adjacent subdomains. In
such cases, A;; = blockdiag(A,;,---, Ayy) is a block diagonal matrix.

Eliminating interior unknowns u;, we obtain u; in terms of ug:

(5) ur = Ay (fr — Arpus),
and substituting this in the 2nd block row of (4) yields an equation for ug:
(6) Sup = fp ~ A}"BAﬁlfh

where S = App — ATgA;] A;p is referred to as the Schur complement or interface
matrix. Some properties of the Schur complement will be discussed in § 2.3. First, we
will cutline a procedure for solving (4).

2.2. lterative solution of the block partitioned system. System (4) can be
solved as follows. First problem (6) is solved for ug and then (5) is solved for u,.
If direct methods are used to solve (6) then § needs to be computed explicitly, and
this can be expensive in general (though this is standard practise in the substructuring
methods used to solve linear elasticity problems), since it involves computing the action
of A7} on the all columns of A;g. This can be implemented more efficiently through
subassembly, see [27], requiring only as many solves on each (); as there are unknowns
on ;N B. Even if the matrix S has been assembied, it is often preferable to solve (6)
by an iterative method, since direct methods to solve (6) require significant memory
storage and computational complexity.

Due to the expense of computing 5 and solving (6) by direct methods, we con-
sider solving (6) by a preconditioned iterative method such as the conjugate gradient
method, see [22], without the explicit construction of S. In this case only matrix vec-
tor products with S are required, and each such matrix vector product requires the
solution of one problem on each subdomain £2;. The Schur complement, however, is
ill-conditioned with &(S) = O(h™!), see [2, 3], and therefore requires a preconditioner
M ; the construction of efficient preconditioners M for § will be the main focus of this
paper.

First, we note that the procedure to solve the linear system (4) by solving the
reduced Schur complement system (6) corresponds to a block LU factorization based
solution:

_ _ | Air O I AjfAmg
for § = ABB - .‘4?3‘4}}1/1]3. Thus
A_l . I "A}‘IIAIBS_I A}—Il O
“lo s —AT AT T |7



and backsolving requires solving two systems with coefficient matrices A;r and one
system with coefficient matrix .5, which will be done using a preconditioned conjugate
gradient method. We note that, it is possible to construct a global preconditioner A
for A by replacing A;; by preconditioner A;;, and by replacing S by preconditioner
M. In this case the inverse of the global preconditioner 4 has the form:

Al I -4 AppM—? } [ {i:r_!l OJ
0 JM—I —A?BA}_II .I

Approximations to the submatrices A;; can be obtained for instance by replacing it _
either with a scaled version of the Laplacian, or by other preconditioners, such as ILU,
see [9].

2.3. Some properties of the Schur complement S. The Schur complement
matrix 5 is a discrete approximation to a Steklov-Poincare operator, see [1], which
enforces ransmission boundary conditions on the interface B. In the continuous prob-
lem, these transmission boundary conditions correspond to the requirement that the
solution u be continuos across the interface and that the flux 7 - (a{z,y)Vu) also be
continuos across the interface. In the discrete case, the action of the Schur complement
on a grid function ug on B is the same as the action of the discrete operator A, on the
discrete harmonic ertension of up into the subdomains; More specifically, let Etug
denote the discrete harmonic extension on B to the interior of the subdomains:

(8) EhuB = [“—AJ_-JIAIBUB,UB] y

A Ars ~A7/ Aspup - 0

Afs Aps Uug Sup |
Thus, if Ry denotes the pointwise restriction of nodal values of a grid function onto
the nodes on B, then Sup = Rg A, E*up. In addition,

then

(9) mgsmg = (Ezp) AL(Exp).

This property shows the positive definiteness of the Schur complement. In addition to
S being positive definite, it is an M-matrix when 4, is an M -matrix, ie., §; < 0 for
i# j and (§71); > 0 for all 4, j, see [29, 12].

Remark. For finite element discretizations, let A®) denote the stiffness matrix
obtained by integrating the bilinear form on £, i.e., the discretization of the Neumann
problem on €. For finite difference methods, let A®? correspond to the discretization
with discontinuous coefficients which is a(z, ) in Q; and zero outside £2;. Then, the
energy z7 Ar can be partitioned as

N
(10) T Aye = ZmTA{‘)m,

[E-31
and correspordingly, the Schur complement § can be partitioned:

A!'
(11) x%SmB EZIBgSﬁ)EB,
i=]

4



F16. 1. The verter spoce partitioning of the interface.

a cross-point

(&8, w)
Vo
a vertex{subregion 97 2,
an edge} E;;
where
(12) _ 5O = R A EP,

Each §'¥) is a map of the Dirichlet values ug to the normal derivatives on 89,N B
of the discrete harmonic extension E"uy, and this is not a local operator, i.e., the
matrix § is dense on 8; N B, see [2]. In the two subdomain case, § = SM) + 5§ jg
thus a map of the Dirichlet value up to the jump in the normal derivatives on B of the
discrete harmonic extension E*up, which corresponds to the a discrete approximations
of the transmission boundary condition. In the two dimensional case, the entries of §
decay as |S;| = O(ﬁ:lw), see Golub-Mayer [21], and preconditioners for § have been
studied extensively, see [2, 8, 4, 19, 10]. The important properties of the two subdomain
Schur complement is that its entries decay away from its main diagonal, and that it
is uniformly spectrally equivalent to the square root of the Laplace operator on B, as
the mesh size goes to zero. Due to this connection, it can be shown that its condition
number grows as k() = O(3#), see [2). Applications of both these properties will be
discussed in § 4.1 and § 4.2. '

3. The BPS and VS preconditioners for 5. We will describe two precondi-
tioners for § in this Section, one introduced by Bramble, Pasciak and Schatz (BPS)
[3], and another, the vertex space preconditioner (VS) introduced by Smith [27} and
Nepomnyaschikh {25]. Both these can be interpreted as generalized block Jacobi type
preconditioners for (6) with overlapping blocks and involving residual correction on a
coarse grid. Variants of these preconditioners will be discussed in § 4.

3.1. Notations for a partition of the interface B. In the case of many sub-
domains, the interface B can be partitioned as a unjon of edges E;; and cross-points
V, see Fig. 1:

B = U,JE.J UI/,

where E;; denotes the edge s'epa,rating subdomains £; and £;, and V denotes the
collection of cross-points (vertices {zf,y') of the subdomains). Note that the edges
E;; are assumed not to include its endpoints.

5



For each edge E;; we define R, as the pointwise restriction of nodal values to
E;;, ve., if g is a grid function defined on B, and if E;; contains n,;; interior nodes,
then its restriction Rg, gp is a vector with n;; components defined on E;; by

Rg,,98 = gp on E;.

Its transpose Rgij extends grid functions in E;; by zero to the rest of B:

T o gE.‘j on Eij
Re,96,; = { 0 on B - Ej;

Similarly, we define Ry as the pointwise restriction map onto the cross-pomts; if gp
is a grid function on B, and if there are ny cross-points on B, then Ry gp is a vector
with ny components defined by

Ryvgp = ggon V.

Its transpose RY, is thus extension by zero of nodal values in V to B:
P )

pr. _ ) gy onV
RV.‘IV "_{ 0 OR.B—‘/

3.2. The BPS preconditioner. In order to motivate the construction of the
BPS preconditioner, we first define a block Jacobi preconditioner M, consisting of
diagonal blocks of the Schur complement S in the following block partitioning of the
interface B. Let us suppose there are n edges E;; with some ordering E,,---,E,.
If the unknowns on each edge E; is grouped together in ug,, and if the unknowns
on the cross-points are grouped in wy, then S has the following block partitioning
corresponding to (up,, - -, up_, Uy ):

Se, Smr, Sev

StEe. * Se.  Sewv

Sglv e Sg,,v Sy

Here, Sp.g; = Rg, S jo denotes the coupling in S between nodes on E; and E;, and
Spv ® Rp,SRY denotes the coupling in § between nodes on E; and V. Note that
edges E; and E; will be coupled in § only if they are part of the boundary of a common
subdomain ;. This can be seen by using the relation between Schur complement and
discrete harmonic extensions; since, for instance, discrete harmonic extensions of grid
functions on edge E; is non-zero only in the subdomains that for which E; is part of
its boundary. S is thus a block sparse matrix and corresponding to each edge E;;, the
submatrix 5 y is identical to the two subdomain Schur complement on interface E;
separating {}; and €;. The submatrix Sy which corresponds to coupling in 5 between
cross-points is almost a diagonal matrix since the cross-points are weakly coupled in 5.
In the case of five point discretizations on rectangular subdomains, Sy is diagonal since
the corner nodes (cross-points) of rectangular domains do not influence the solution in
the interior.



For this block partition of §, we define the action of the inverse of the block Jacobi
preconditioner M;:

(13) M7'gp= > R%, S5 Re,fp+ BVS: Ry fa.

2
edges 15

This block Jacobi preconditioned system can be shown to have a a condition number
satisfying:

-1

B < Sl < o B0+ g (),

where ¢, and ¢, are independent of I and A, see [3, 30]. This indicates that as H — 0,
i.e., as the number of subdomains increases, the rate of convergence deteriorates. This
can be attributed to the absence of global communication of information amongst all
the edges in the preconditioning step.

The original version of the BPS algorithm [3] involves two changes to this block
Jacobi preconditioner. One is that the submatrices Sg,, are replaced by Fourier based
approximations S 5;; Which will be described in § 4. The second change is to incorporate
global coupling in order to obtain a rate of convergence which does not deteriorate as
the number of subdomains is increased. In order-to do this, the cross-points correction
term Ry SRy in (13) is replaced by a coarse grid correction term RY A3' Ry as in
two level multigrid methods (involving weighted restriction and interpolation maps Ry
and R} respectively). These are defined below. Let ¢, 5 denote the kth coarse grid
piecewise linear finite element basis function

1 ifl=k
¢k.H(xF5yF):{ 0 lfl-‘,?é E

where (z{7, 4} is the Ith cross-point. Then,

(RHfB)(va yf) = Z Qék,H(mf’ yJH)fB(xf1 jH)

(z3,95)

Its transpose R thus denotes linear interpolation of the nodal values on the endpoints
of edges E;:

(Rﬁgv) (@, 9)= ) gvied, v e u(z,v), (2,4)€B.

With these changés, the BPS preconditioner can be defined:
Mzpsfe= ). RE,S5,Ru,fo+ RhAy Rufs.
edges i
These changes improve the condition number over that of the block Jacobi version.

THEOREM 3.1. The BPS preconditioner satisfies

Amaz (M EJIDS S) 2
——— = < (1l +log(H/h
Amin(MEP]‘SS) < e log"(H/h)),

where ¢, is independent of H and k.



Proof. See [3] and [30]. O

Remark. It can be easily verified that for five point discretizations of the
Laplacian, the coarse grid Schur complement matrix Sy = Ry S, R% is equal to the
coarse grid discretization Ay = R A, Ry, since piecewise linear interpolation results
in grid functions which are discrete harmonic on the subdomains. In case of more
general coefficients, it can be shown that Ay and Sy are spectrally equivalent with
respect o coarse grid size H.

3.3. The vertex space algorithm of Smith and Nepomnyaschikh. Thelog-
arithmic growth in the condition number of the BPS preconditioner can be attributed
to the neglect of coupling between adjacent edges of B. The VS preconditioner of
Smith [27] and Nepomnyaschikh {25} incorporates some coupling between adjacent
edges through the use of certain overlapping blocks of S corresponding to nodes on
certain verter regions V,, which will be defined, and it leads to a condition number
independent of mesh parameters.

Let V; denote the portion of B within a distance of SH from (zf, y¥) for some
positive fraction 0 < § < 1, see Fig. 1. We refer to each V; as a vertex region or vertex
space. We define the corresponding pointwise restriction map Ry, to be

Ry, gp = gp on V3.

Its transpose BT is thus extension by zero outside V,:
P \ y k

T — Gvi Ond
By, gv, = { 0 onB-Y,.

Corresponding to each vertex region V;, the submatrix Sy, is defined by Sy, =
Ry, SR{. . The action of the inverse of the vertex space preconditioner M, involves
the inversion of these new overlapping blocks in addition to the blocks used in the BPS
preconditioner:

(14) M) fs = REA IRHfB+ZRT.,(S )" 1RE.Jf‘B“f“ZR (Sv,) " Ry, fp.

Eu k

The following result is proved in [27, 25).
THEOREM 3.2. Suppose the overlap of the vertez regions V;, is BH, then:

s’ru:l.r(‘?kfv_1 )
Amin (My38) ~

where C(B3) is independent of H and h.
Remark. Other bounds are available for the condition number of the vertex
space preconditioned system:

Amar (M735) { a(l+e(1/8)),
Ain(My§S) = | es(1+log?(H/h)),

where ¢, ¢; are independent of H and h, but may possibly depend on the coeffi-
cients a(z,y), while ¢; is independent of H,/ and the coefficients a(z,y) provided the
coefficients are constant in each subdomain £, see [27, 31, 17].

< C(B),
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4. Two variants of the vertex space method. Animportant consideration in
the implementation of the algorithms is the expense of computing the edge and vertex
matrices Sg,; and Sy, , respectively, and the cost of solving the subproblems using direct
methods. -If there are n; nodes on each 3Q; N B, then computing all the submatrices
Sg,, and Sy, would require solving n; problems on each §);, and this increases as the
mesh size h is reduced. I n,;; is the number of nodes on E;, the cost of using direct
methods to solve edge problems is O(nf;) once the Cholesky factorizations have been
determined, see [27, 28}, since the edge submatrices S, are dense. n;; increases as
the mesh size h is reduced.

This expense can be significantly reduced if the exact edge and vertex matrices are
replaced by approximations which can be computed at significantly less cost, and which
can be inverted at less cost. If these approximations are spectrally equivalent to the
exact submatrices, then the overall preconditioner would remain spectrally equivalent
to the exact VS preconditioner, and the number of iterations required to solve (6)
would remain independent of &, see Theorem 4.3.

In this Section, we describe two variants of the vertex space and BPS algorithms
in which the exact edge and vertex matrices are replaced by approximations. One
variant is based on Fourier approximations of both the edge and vertex matrices, while
the other variant is based on sparse algebraic approximation of both these matrices
using a probing technique. Combinations of Fourier and probe approximations are also
possible, but will not be considered here for simplicity, e.g., see J11].

4.1. Fourier approximations. Fourier based approximations of the edge and
vertex matrices are constructed based on the property that, restricted to simple curves
(curves which do not intersect themselves}, the Schur complement is spectrally equiv-
alent to the square root of the Laplace operator on it, and this has been studied
extensively, see [2, 21, 8, 4, 19, 10].

4.1.1. Fourier edge approximations. First, we consider Fourier approxima-
tions of the edge matrices Sg;;. Let edge E;; separate ; and ;. Since, the submatrix
Sg,, is identical to the two subdomain Schur complement on Ej;, standard precondi-
tioners for the two subdomain case can be applied, see (2, 21, 8, 4, 19, 10].

-Let J denote the discrete Laplacian on a-uniform grid containing n;; interior nodes
with mesh size h = 1/(n;; + 1) :

2
—h2—€£—zJ-:-=

dx?

Then, J/? is uniformly spectrally equivalent to § £;; s the mesh size h is varied, see
[2]. Since the discrete Laplacian is diagonalized by the sine transform, J = WAW,
where

Wi_f = ‘\/2—5511'1(3]?1"}&),

and A = diag(};) with A; = 4sin®(%32), it follows that J'/2 = WAY?W. By using
Fast Sine Transforms, it is possible to compute the action of the inverse of J/? in
O(n;; log(n,;)) flops.



The Fourier based preconditioners M considered here are all based on the sine
transform W, but vary with the choice of eigenvalues:

M = Wdiag{p,)W.

The eigenvalues p; are chosen to better approximate the eigenvalues of the exact Schur
complement Sg,;. In the model case of Laplaces equation on {; U §; with rectangular
subdomains {2, = [0,1] x [0, ] and Q; = [0, 1] x [~;, 0], where m; and m; are positive
integers with [; = (m; + 1}k and I; = (m; + 1)A, the eigendecomposition of the Schur
complement is known exactly. These exact eigenvalies are given below in Mcy,,, along
with the eigenvalues of three other preconditioners:

Dryja preconditioner Mp, see [16]: Hy = /\,lc’ ?
Golub-Mayers preconditioner M, see [21):  py = /A, + 322
BPS preconditioner M___, see {3]: e =/ A(1 = 28)

mi+1 w41
] . P B s P 1-7v,° 1
Chan preconditioner M _,  , see [8]: e = (iﬂrﬁi + WL A+ A

where 7, =

(15)
We have the following result,
LEMMA 4.1. Let M denote either the Dryja, Golub-Mayer, BPS or Chan precon-

ditioners for Sg_.. Then

/\maz:(‘Mr_ISE,'J')

’\min(M_ISE;j) S Ci,

where C) is independent of h. For Sk, corresponding to Laplaces equation on the model
domain §;U; with rectangular subdomains Q; = [0,1]x[0,1}] and Q; = [0, 1] x[-1;, 0],
the condition number of the Dryja, Golub-Mayer and BPS preconditioners satisfi:

Amax(M_ISE.’j) 1 1
Amzn(ﬁlmlsﬂu)g 02(1 + _' + —)}

I 1

7

where O, is independent of b, l; and l;, while the condition number of the Chan pre-
conditioner satisfies:

)\ma:v (ME)]I-G!’ISE"_-{)
)‘ml'n(M(;)ian SE.',')

Proof. See Bjorstad and Widlund [2], Chan [8]. I

The Fourier preconditioners described.so far do not depend on the coefficients
a(z,y) of the elliptic problem, and thus the rate of convergence can be sensitive to the
coefficients, see {12]. In order to incorporate some information about the coefficients,
we scale the Fourier preconditioners by a scaling matrix. In the original BPS algorithm
[3], 2 scalar coefficient a;; representing the average of the eigenvalues of a(z,y) at a
point in £2; and a point in ©; was used as scaling on each edge E;;. Here, we use a
diagonal matrix D;; as scaling, where D;; denotes the diagonal of 4, restricted to £y,
and define the diagonally scaled Fourier preconditioners by

(16) St = D}{*W diag(u,)W D{*,
10

< C,.



For most applications to isotropic coefficients, these diagonally scaled Fourier precon-
ditioners perform well.

4.1.2. Fourier vertex space approximation. Next, we describe approxima-
tions of the vertex space matrices Sy, based on Fourier techniques. For the case of
the discrete Laplacian, it is possible to express the eigendecomposition of Sy, for cross
shaped vertex regions in terms of sine transforms, thereby enabling the use of fast
transforms to invert Sy, , see [25]. However, it is not easily generalized to the case of
varying coefficients, and instead we construct approximations to the vertex matrices
by using a direct sum of smaller matrices that will be described in the following.

We will describe the procedure for the model geometry of Fig. 3. Let uy, be a grid
function on B which is zero outside the vertex region V;, i.e., zero on B — V,. Then,
by the property of the Schur complement (11}, we obtain that

4
. T e ,
(1 l') Uy, SV" Uy, = E Uy, S(’)u‘/k,

=1

where S is the component of the Schur complement originating from (;, as described
in (12). For i = 1,2,3,4, let L} denote the L-shaped segment V, N 8%, and further
let Rpx denote the pointwise restriction onto Lf. Then, as in the case for the edges,
(RLauB)TS{ )(RLI:UB) is spectrally equivalent to (Rrsup)” M¥(Ryrup) where Mf is
any of the unscaled Fourier approximations to the square root of the Laplacian on L,

see (15). Let Df denote the diagonal of A®) restricted to L¥. Then, by including the
effects of coefficients, we define the following scaled Fourier based preconditioner for

Svk:

4
(18) 5%, =Y BRI (DEY/PME(DE*Rys.

i—=1

For most applications we considered, it was sufficient to choose the number of nodes on
the vertex regions V; to be small, say 5 or 9, and so the matrices S'f,k can be computed
at little expense, and can be inverted inexpensively by direct methods.

THEOREM 4.2. The matrices .Sh'{’}l are spectrally equivalent to to Sy,, i.e., there
exists constant ¢, ¢; independent of h such that

}‘ma:n ((g‘i)mlsi’k) <
Amin ((S‘i)“lsvk) o

Proof. The proof follows trivially by application of the standard result, see [2, 4],
that on a simple edge such as L}, the square root of the Laplacian on it is spectrally
equnalent to the energy of the local Schur complement, i.e., there exists constants
Cg ,c1 mdependent of h such that:

c(") < wf‘l';k S‘(;k)mvk

< c(i).
- ﬂ;gklw'kl'vk halht

Similar bounds hold when M} is replaced by (Df)/2ME(DF)'/?, with suitably modified
constants cg ), cg ), since the entries of D} can be bounded in terms of the upper and -

1t



lower bounds for a(z,y) in the neighborhood of L¥, independent of k. From this the
result follows immediately, since:

2T §4
)} < Z;_l Vi V;ka < mav\{crl )}
E:—l "L'V;‘ﬁf ka

for the suitably modified coeflicients c ) and c ), O

min{cy
t

4.1.3. Fourier based preconditioner. Based on the approximations S E,; and
Svk, we define the Fourier vertex space preconditioner (FVS) by

(19) Miis = Ry Ag' Ry + ERE., (SE., IRE., + ZR (SV*) 'Ry,,

and the Fourier BPS preconditioner (FBPS) by, see [3}:
(20) Mzhps = RGAR Ry + Y R, (S5,) Ry,
ij

Note that the Fourier edge approximations § g,.j can be inverted in O(n;; log(n,;)) flops,
using the Fast Sine Transform. Direct methods can be used to solve the Fourier vertex
problems 5’5;. The coarse grid matrix problem Ay can be solved using either direct or
iterative methods. .

Remark. In the original BPS preconditioner [3], the edge approximations were
chosen to be

Sg,, = oW diag(u,)W,

wheie a; is the average of the eigenvalues of a(z,y) at a point from Q; and 2 point
from £;, and pp = /A4(1 — A¢/6), and this differs from the version described in (20)
because of the scaling matrix DF.

THEOREM 4.3. The Fourier preconditioner Mpy g satisfies:

mGE(MF\.R' )
“ -<--. A"J'W"i(j""{.r-‘vs

where ¢y, ¢; are independent of H, h, but may depe_znd on the overlap ratio §.
Proof. Bounds for the extreme eigenvalues of M5y ;S is obtained from bounds for
the Rayleigh quotient:

< e,

xESTB ) (:Egﬂlvsmg

. ~1 <
Amm(MFVSS) B ( B zp Mpvszp

<Ama:f: M_l S *
z_BMVSwB )—- ( Fvs )

The fraction 255z p/25 My s has uniform upper and lower bounds, see [27]. It there-
fore suffices to obtain uniform upper and lower bounds for the fraction 5, My sz 5 JeEMpyszp
or equivalently for

T af~1
tpMyszp

Amin(MpyvsMy3) < < Amar(Mpys M7 3).

2L Mpysep
By spectral equivalence of the edge Fourier approximations, Lemma 4.1, there exists
constants ¢;; and C;; independent of H and A such that:

:BESE__lj_:cB <
C,'j T S Uy,
= oT(&F -1 7
xB(SE,'j) Tp
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and similarly for the vertex spaces, by Theorem 4.2, there exists constants ¢, and C}
independent of H and h such that:

T o1
‘IBSV;, Ip

T 2R (S,) e

< G

Cy

Letting C = max{C;,C} and ¢ = min{¢;;, ¢, }, we obtain that

T o-1 T o1 T pT 4-1
2.i;2855,%8 + 2 2p5y, ts + s Ry Ay Ryzp

¢ T(&F -1 T(OF y-1 T RT A~1 <G
2 2p(SE, ) 'z + 2y 25(SE, )z + s R AL Ryt

and hence our result follows. 0O

4.2. Probe approximations. Next, we describe another variant of the VS and
BPS preconditioners in which the edge and vertex matrices are approximated by sparse
matrices obtained using an extension of the probing technique of Chan and Resasco
[13], Keyes and Gropp [23, 24], and Eisenstat [18]. Unlike Fourier based approxima-
tions, the construction of the probe approximations require solving six problems on
each subdomain, and thus has a greater overhead cost than the Fourier approxima-
tions, but still considerably.less than the exact submatrices. An advantage of these
approximations is that they often adapt well to coefficient variations and aspect ratios.
However a disadvantage is that they do not adapt optimally to mesh size variations.

We will describe construction of these probe approximations for the model rectan-
gular geometry of Fig. 1. The techniques are easily extended to more general geome-
tries.

4.2.1. Edge probe approximations. We first describe how sparse approxima-
tions to the edge matrices can be constructed [13]. In its basic form, the probing
technique consists of approximating each Sgp,, by a tridiagonal matrix g g,; which is
chosen on the assumption that each node on an edge is strongly coupled in § only to
nodes adjacent to it and weakly coupled to the other nodes. A heuristic motivation
for this is that the entries of each Sy, are known to decay rapidly away from the main
diagonals:

(50wl = 0 (= imlz),

see Golub and Mayer [21].
To obtain a tndla,gona.l approximation S g, Y0 Sg,;, we equate the matrix vector

products Sg,.p; to SE p; for the following three probe vectors p;:
P = [1$010’ 1,0,0,-- ']T1 D = [0, 1,0,0,1,0,-- -]T, Py = [O, 0,1,0,0,1,-- .]T_

These matrix vector products [5’ Ei; pl,g Ei;P2y s £,;Pa) results in:

Geu (B
(Bo s (B0 (80,0

(SE,-,- )32 (SE” )33

e Se ) 0
_ (S )21 (S )22 (S )23
G )34 (5., )32 (s, )aa

o D
=R
—_— o D
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Fic. 2. Stmultaneous probe vectors

pi’i:152?3' P3+i,i~_~172:3-

D 0 0 i Pi i
Di Di p: Pi Q 0 0 1]

0 1] 0 _ 0 s P
b B D; P; 0 i) 0 ]

0 0 0 P {H D;
By b P P Q 0 0 f

0 0 0 p:’ p! pl

and equating this with [$ BisP1 5E:;P2, Sg,;p3] gives:

(’5'5'. )11 (S )52 0

E 21 SE 22 Ej; 23
(21) (5 ;34 ES';% ES ;33 = [SE.-,-Pz,SEquSE,-,-Pa]:

from which the non-zero entries of 5'3 can be easily read off. In general 5'5 will

not preserve the symmetry of Sg,,, and §0 we symmetrize it to obtain S& k,; using a
minimum-modulus procedure descr;bed below:

GP Y. = (‘SZ'E.-,-)j:' 11‘I(SE )JII < |(SE )ijf
B = { (Se)s 16185, )] < 1(Se sl

We will denote the construction of § E.J. from Sk, ;p1, S5, P2, S £,;P3 by the notation:
(22) ‘ SE,; = PROBE(Sg,,p1, S&,,P2, SE,,P3)-

The resulting approximations can be shown to preserve row-wise diagonal dominance,
see [12]. This idea is motivated by Curtis, Powell, and Reid [15]. In an analogous
way, using a symmetrised variant of {15], see Powell and Toint [26], it is possible to
obtain a symmetric tridiagonal approximation directly using just two probe vectors,
see [23, 24].

Computing the three matrix vector products S, ;i Tequires three solves on each
subdomain 2; and ;. Thus, in order to compute edge approximations 52 E:;; on the
edges of all the subdoma.ms twelve solves on each subdomain would be requn‘ed since
the boundary of rectangular subdomains consists of four edges.

We now describe a procedure for computing all the edge approximations using
only six solves on each subdomain, by simultaneously prescribing boundary conditions
. on other edges, an idea first used in Keyes and Gropp [23, 24]. To minimize the

14



FiG. 3. Numbering of Edges.

E Ey
B % E,

(e, yf) = Es

Eys £, Ey 5 Es

E; Ey

approximation errors arising from the coupling between vertical and horizontal edges,
we will specify probe vectors p; either on all horizontal edges simultaneously, or on all
vertical edges simultaneously. For ¢ = 1,2, 3, see Fig. 2, define:

p. = { p; on all horizontal edges

0  on all vertical edges ,

_ ) 0 on all horizontal edges
Payi p; on all vertical edges.

On the horizontal edges, the probe vectors p; can be ordered from left to right, and
on vertical edges from bottom to top. For these six probe vectors, we compute the
discrete harmonic extensions E"“p1 = (- A7 A15D;, P;), and this involves six solves on ‘
each subdomain. If E;; is an horizontal edge, we define:

S5%.; = PROBE(Rg, Ay E"Py, Re,,AvE" p,, Rp, AL E"Ds).
If E;; is a vertical edge, then we define:
St.; = PROBE(Rg, AvE"py, R, AwE"ps, Rp, AnE" py).

We have the following result on the non-singularity and diagonal dominance of the
resulting probe approximations.

THEOREM 4.4, If the coefficient matriz A, for the model rectangular geometry of
Fig. 1 satisfies the discrete strong mazimum principle (as is the case for standard five
point discretizations), then the probe approzimations SE obtained above are strictly
diagonally dominant.

Proof. We will prove the diagonal dominance of approximation 5‘; on edge F,
in the model geometry of Fig. 3; the proof for the other edge approximations are
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analogous. By construction,
8%, = PROBE(Rp, Ay E"p,, Ry, Ay E"py, Ry, A E"py).

Due to the effects of the boundary conditions on the adjacent edges, it is easily verified
that (see § 3.2 for notation):

Rp, AyE"p; = Sp,p; + Se,g,pi + Sp,6.05, fori=1,2,3,

and from this we obtain:

(’S_".gl)i,i = Zmod(i—j,S).—.G(SEL + SElEs + SEIET)ijj’
(23) (é'gl Jiio1 E Pomod(i-j3y=1{SE, + Sp.Es + SEE2 )i s
(SE)iin1 = Lomodi-j =-1{5E, + SE,E, + SE,E, )i j-

For discretizations A, satisfying the discrete strong maximum principle, § is a diag-
onally dominant M-matrix, see [12], and so its off diagonal entries are non-positive,
and its row sums are non-negative. Using this in (23) we obtain that (S5, )i; £ 0 for
J # 1 and the row sum:

(5'1’;)1 o1+ (ggl)z’,i + (Sg, i1 = E(SE, +SeE, + SEiE. )iy > 0,
7.

which shows that diagonal dominance is preserved. Finally, the min-mod procedure
preserves diagonal dominance by definition.

4.2.2, Probe vertex approximations. Next, we describe how sparse algebraic
approximations to the vertex submatrices Sy, can be constructed. Unlike the tridiag-
onal edge approximations § g,.}. which enabled the use of fast direct solvers, the sparse
approximations of the vertex matrices are usually small in general and will be solved by
direct methods that do not make use of the sparsity of the matrices. The procedure we
will describe results from a slight modification of a technique described in (11]. This
new variant can be proved to result in non-singular approximations which preserve
diagonal dominance.

For simplicity, we will describe this procedure for the vertex region V, in the center
of the subdomains Qy,- .-, of Fig. 3. We partition V; into five disjoint regions:

(24) Vi=(ViNE)NVenE)0 (Vi 0 E)N(Vin En (28, 4i),
and we obtain a corresponding 5 x 5 block partition of the vertex matrix Sv.:

Sy 0 85 S1a 85

0 83 S Soy Sas
SV,‘E SlTa 5?3 Sz 0 Sss |

S}?:; Sg; 0 Sy S

5 5% S5 ST Sis

where each §;; corresponds to the coupling between nodes in block ¢ and block 7. The
submatrices Sy, and S34 and their transposes are zero, since there is no coupling in §
between nodes in E; and E,, and between nodes in Es and E,. We will construct a
vertex matrix approximation 5'5; having the same block structure as Sy,, with sub-
blocks 5',-3- which will be chosen to be sparse.
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F1G. 4. Ordering of unknowns within each vertes subregion Vi

Block partitioning of nodes Numbering of nodes
@ E,
x8
x7
(Dx,\v\< B 21134 5
¢ AN @ v
) x5
x 6
&) Eq
Vi V. with N,, =2

To facilitate description of the sparsity pattern, we will use the following ordering
of nodes within V,; for each of the four edge segments E; NV, the nodes will be
numbered to increase away from the cross-point (zf,yf'), which is ordered last. This
ordering is shown in Fig. 4 when each segment E; NV, contain just two nodes.

Our choice of the sparsity pattern for the sub-blocks 5',-3- is based on the assumption
that the elements of Sy, decay with increasing distance between nodes.

Definition and computation of the edge blocks 5; for i = 1,2,3,4. Within
each edge segment E; NV, we assume the coupling in S, is strong only between
adjacent nodes. Based on this assumption, S will be approximated by tridiagonal
matrices S;; which are chosen to be the submatrices of the tridiagonal edge matrices
SE 5, for i =1,2,3,4, which were computed in § 4.2.

Definition and computation of the blocks 5;; for i = 1,-- 5, We assume
the cross-point (zf, y# ) is coupled strongly in Sy, only to the nodes adjacent it. Based
on-this assumption, we choose the vectors 5;s to have zero entries except in the first
entry: -

(Sis):
Sis = 0 , fori=1,-..,5.

For five point discretizations on the rectangular geometry of Fig. 1, it can easily be
shown that the last row and column of Sy, is exactly equal to the last row and column
of Ry, Ay RT. , the matrix A, restricted to V;. Therefore, we define

SiSEAiS: 57 i=1,"',5
Sei = Agi = S5y, 1=1,-+-,5.

To see that A;s = S, first note that ;5 is equal to the restriction of Sug to the ith
edge of V;, where ug corresponds to boundary data which is 1 on the kth vertex, and
zero elsewhere. Now, recall that Sup = RpA, E*uy. For five point discretizations on
rectangular subdomains, the boundary conditions on the corner nodes do not influence
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the solution in the interior. Consequentiy, the discrete harmonic extension Efug
is zero in the interior of subdomains, and A, E*ug simply gives the column of 4,
corresponding to the kth vertex. Thus Sis = A,

Definition and computation of .S',J fori=1,2 and j = 3,4. We assume the
couplings in Sy, between edge segments E; NV} and E; NV, is strong only between
the nodes which are closest (adjacent) to the cross-point (zff,yf). Based on this
assumption, we choose the submatrices §,a, 3’14, ,5'23 and 5’24 and their transposes to
have all zero entries except for the (1,1)-th entry.

. (Sidhu 0
Si={ 0 0 -], fori=1,2; j=3,4.

So there are only eight non-zero entries to define.

Consider for example the entry ( g 14)11, which we would like to be an a,ppmxima,tion
to {S14)11, the coupling in S between node (zf — &, yf) and node (2, yff + k). Note
that (S14)1: = (96:)(zf — h,yf’) (i.e. the component of §6; corresponding to the
point (zf —h,yf') ) where 6, is the boundary data which is 1 on (zZ,yZ + &) and zero
elsewhere, and therefore computing {5)4)1; requires one subdomain solve. In order to
reduce this overhead, we would like to extract an approximation from the subdomain
solves we already used for the probe edge approximations. For example, one could
define (5'14)11 = (Spy)(zf — h,yf). However, it turns out that this definition can lead
to a non-diagonally dominant (and possibly singular) 5y, . This can be seen by noting
that

(Spa)af ~ h,yf) = (Sp,,p1 + Sp,E, 0?1 + Se.g.p1 + SE;Eupl)(mk -k, yf).

The last two terms on the right corresponds to extra influence from 2, on the coupling
between nodes (2 — h,yf') and (2f ,y¥f + h) (which should only involve couplings
within ;). These extra couplings could cause loss of diagonal dominance, since, in
case the coefficients are large in 4, the last two terms will dominate the sum on the
right. In order to eliminate the influence from £, we now define

(514);1 = (SE1E4P1 + SE;E:npl)(mf — b, yi ) (E (RELA(I_)EhP‘:)J) )

where we recall that A is the Jocal stiffness matrix on Q,. The last equality comes
from the definition of the local Schur complement, and can be extracted from the
subdomain solves used to construct the edge approximations.

Analogously, we define the seven remaining non-zero entries by:

(513)11 = (R AYEp,),
(n?zq)n = (RE;A(Q)EhP4)1
(':(':23)11 = (Rg,APE"p,),
(25) (531)11 = (REaA(4)EhP1)1
(5:32)11 = (Rg,A®E"p,),
(€41)11 = (RE.A(])EhPJ)l
(S42)u = (Rp,ADE"p,),.
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Symmetrization of Sy,_. Finally, in order to obtain a symmetric vertex approx-
imation 5{ we use the minimum-modulus procedure: .

ary = v 1S )il S 1S5l

(26) (S0)ij = { (6.3 i |1§-..k\..| < 108, )]

. \ Kk /2 V= WeJatl —= N VR
THEOREM 4.5. The vertex matriz approzimations S{f are non-singular, diagonally

dominant M -matrices.

Proof. First, we note that since the fifth block row of SV,:, is identical to the fifth
block row of Sy, , it has zero row sum. For any other row of Svk centered about nodes
not adjacent to the cross-point, the non-zero entries are the non-zero entries of the
dlagonal blocks Sy, for i = 1,2,3,4. These diagonal blocks were chosen as submatrices
of 5§ B SE B SE E,, and Sk £, respectively, which were shown to be diagonally dominant
M-matrices in Theorem 4.4, and therefore these rows are more diagonally dominant
than the corresponding rows of S.

We now prove the dia,gona,l dominance of the rows centered about nodes adjacent
to the cross-point (2, yf). Consider, for instance, the row sum corresponding to node
(zf — h,yi!) to the left of the cross-point (z#,9{). The non-zero entries of this row
are (511)11, (511)12, (513)11,.(514)11: and (515)11 By construction:

(St = Lmodt-1,9=0(58, + Sp,5s + Seim)1; > 0,
(511)12 = Zmod{j—2,3)=0(SE1 + SEan + SElEv)l,J' <0,

(‘?13)11 = Emod(; 1 3}_0(53153 + SExEm)l J < 0’
(514)11 = Zmod(] 1,3)= (581134 + SE1E13)1 .'r <9,
(515)11 = (SE:Ea)n <0

By summing all these non-zero entries, we obtain

LilSvhi = Ymedg-13=0098 + 58,8, + S B 15
Zmod{jw:.?.ﬁ):ﬂ(sﬁ'x + SEIEG + SEIET)1,j+
Lomod(i—1,3)=0( S E Es + SE,Bya )15+
Y omod(j-1,3)=0(SE B, + B By )15+
(Se,Bs )11

Since the right hand side is a subset of the corresponding row of §, which is strictly
diagonally dominant, this shows that this row of 5‘{}1 is diagonally dominant. The
proof of the diagonal dominance of the other rows centered about the nodes adjacent
to (2, yf ) is analogous. Thus S is strictly diagonally dominant in all rows except
the one corresponding to the cross-point. This last property, together with the fact
that § ¥ has positive diagonal elements and non-positive off-diagonal elements, implies
that ¢ is a non-singular M-matrix. O

4.2.3. Probe based preconditioner. We now define the Probe vertex space
preconditioner (PVS) by :

(27) Mpys = Ry Ay Ry + ZRT.,(SE.,) IRE., + ZR (SV;‘) 'Ry, ,
ij
and the Probe BPS preconditioner (PBPS) by:
(28) . Mpbps = RE AR Ry + ) RE(SE,) 'R,
i

19



¥16. 5. Discontinuos coefficients a(z, y)

a=300 [a=10"% {a=231400| a=5

a = 0.05 a=6 a=0.07 |a=2700
a=10° | a=01 | a=200 a=9
a=1 a = 6000 a=4 |a= 140000

5. Numerical Results. We now present results of numerical tests on the rate
of convergence of the Fourier and Probe variants of the BPS and VS algorithms. The
tests were conducted for the following elliptic problem:

{ ~V - (a(z,y)Vu) = f

v = 0

for five choices of coefficients a(z, y), various subdomain sizes H, and fine grid sizes h.
The five coeflicients used were:

1. a{z,y) = I, the Laplacian, see table 1.

2. a{z,y) = I +10(z* + y*)1, slowly varying smooth coefficients, see table 2.

3. a(z,y) = €'%¥], highly varying smooth coefficients, see table 3.

4. a(z,y) = diag(1, ¢), anisotropic coefficients, see table 4.

5. Highly discontinuos coefficients of Fig. 5, see table 5.
The elliptic problem was discretized using the standard five-point difference stencil, see
[29], on an (n+1) x (n+ 1) uniform fine grid with mesh size h = 1/n. The subdomains
were chosen to be the sub-rectangles of an (n, + 1) x (n, + 1) uniform coarse grid with
mesh size H = 1/n,. Each subdomain, therefore consisted of (n/n, — 1) x (n/n, — 1)
interior nodes. The coarse grid matrix Ay was chosen to be the five-point difference
approximation of the elliptic problem on the coarse grid.

The entries of the exact solution were chosen randomly from the uniform distri-
bution on [—1,1] and the initial guess in the conjugate gradient method was chosen to
be zero. The estimated condition number, &, of the preconditioned system, and the
number of iterations, ITN, required to reduce the initial residual by a factor of 10~°
(ie., {Irella/l7olls € 107° ) are Jisted in the tables. During each iteration, the coarse
grid problem and the subdomain problems were solved to high precision using a di-
agonally scaled preconditioned conjugate gradient method. The eigenvalues y, in the
edge approximations §§ ,; of (16) were chosen to be the Bramble, Pasciak and Schatz
eigenvalues listed in 15), while the eigenvalues of the submatrices M} of (18) were

in =
on 052

i

[0,1*
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TABLE 1
Laplace s equation: a(z,y} =1

h-! Ovlp FBPS PBPS EVS FVS PVS
_H-' | h/H £ {ITN{ & IIN| & [ITN} & [ITN| &k {ITN
322 1/16 | 143 11 | 9.9 g (34} 7 9.7 1 11 | 3.2 8
324 1/8 | 100 14 | 74| 11 [ 26| 8 45 1 11 | 2.5 8
328 1/4 164 | 12 | 54 | 11 |25 8 3.5 | 10 | 24 8
642 1/32 1193 12 (171} 11 |43 7 7.2 1 11 | 4.0 9
644 1/16 {145 14 [11.3| 12 {34 9 59 | 13 | 3.2 9
648 1/8 {103 14 | 80 | 12 |28 9 46 | 12 | 2.7 9
64.16 1/4 | 65 | 13 | 56 | 11 | 26| 8 36 | 10 | 25 8
1282 | 1/64 | 250 13 131.2; 13 |55 8 9.0 | 11 65 | 11
1284 | 1/32 {1981 16 (184 | 15 |44 10 | 74 1 13 | 4.1 10
1288 | 1/16 [ 14.7| 16 [12.1| 13 | 35| 9 59 1 13 | 34 9
12816 | 1/8 | 104 | 14 | 83 | 13 |2.8| 9 46 | 11 | 2.7 9
12832 1/4 | 65| 13 | 5.6 | 11 |26 8 3.6 | 10 | 2.5 8
2562 {1/128131.5| 13 |559| 17 |6.8| 9 [11.0| 13 {116 13
2564 | 1/64 | 254 | 16 |33.0 19 |55] 10 | 9.1 13 {1 7.2 | 13
2568 | 1/32 [ 19.7] 16 | 185 | 15 145 10 | 7.3 | 13 | 43 | 10
256.16 | 1/16 | 14.7[ 16 {124 | 13 |35 9 59 | 13 | 3.3 9
26632 1/8 | 104 | 14 | 84 | 13 28] 9 4.6 | 11 | 2.7 9
25664 | 1/4 | 65 | 13 | 5.7 1 11 [26]| 8 3.6 | 10 | 24 8

chosen to be the Dryja eigenvalues in (15). The Fourier and Probe BPS versions are
denoted by FBPS and PBPS respectively, while the Fourier and Probe versions of the
VS algorithms are denoted FVS and PVS, respectively. Unless otherwise stated, the
number of nodes of overlap, ¥,,, in the vertex regions is 1, i.e., there is one node on
each vertex segment V, N E;;. The overlap ratio § = h/H is listed as Ovlp.

Discussion. Tables 1 through 5 compares the performance of the various meth-
ods for the five sets of coefficients listed above. Table 1 corresponds to the Laplacian.
In this case, the exact version of the VS algorithm, denoted by EVS, was also tested,
because the eigenvalues of edge matrices Sg,. can be computed inexpensively using
analytical formulas, see Mo, in (15). In agreement with the theory, these results
indicate that the Fourier variant FVS, has an observed rate of convergence indepen-
dent of the mesh parameters H, h for fixed overlap ratio Ovlp. Moreover, the actual
iteration numbers are quite insensitive to the choice of parameters H, h and Owlp.
For the range of subdomain and fine grid sizes tested, the performance of PVS is very
similar to EVS. However, as the number of nodes per edge increases significantly, it
is expected that the PVS version would deteriorate, based on properties of the probe
preconditioner for two subdomains in [12). The condition numbers for the variants of
the BPS algorithms grow mildly with H/h, in agreement with theory. In most cases,
due to clustering of eigenvalues of the preconditioned system, the number of iterations,
ITN, was often better than that predicted by the condition numbers.

Tables 2 and 3 correspond to smoothly varying coefficients. Here again, the results
are similar to those for the Laplacian, and are in agreement with the theory. Moreover,
the rate of convergence of most variants are quite insensitive to the variations in the
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TABLE 2
Mildly varying coefficients: a{z,y) = (1 + 16(z* + yz)) I

h™? Ovlp FBPS PBPS FVS§ PVS
H™' ¢ h/H k |ITN| & |ITN| & [ITN| & |ITN
322 1/16 | 152 | 11 (106} 9 | 6.0 | 11 | 3.4 8
324 1/8 11024 14 | 7.6 | 11 | 4.6 | 11 | 2.6 8
328 1/4 | 64} 12 | 54 | 11 | 36 | 10 | 24 8
64.2 1/32 1204 | 12 [ 178 11 § 7.5 | 11 | 4.2 9
644 1/16 149 14 [116] 12 | 5.8 [ 12 | 3.2 9
648 1/8 |103( 14 | 81 { 12 | 46 | 11 | 2.7 9
6416 |-1/4 | 65| 13 | 5.6 | 11 | 3.6 | 10 | 2.4 8
1282 | 1/64 1263} 13 [ 321 ] 13 | 94 | 11 | 6.7 | 11
1284 | 1/32 1200 16 |[184| 15 | 73 | 13 | 42 | 10
128.8 | 1/16 [ 14.7 16 {122 13 [ 5.9 | 13 | 3.4 9
12816 | 1/8 [ 104 14 [ 84 ] 13 | 46 | 11 | 2.7 8
12832 1/4 | 65| 13 | 5.6 | 11 | 36 | 10 | 24 8
2562 | 1/1281329| 13 {570 16 | 115 13 [11.7] 13
2564 | 1/64 {1258 | 17 1332 19 | 93 | 13 [ 7.2 13
2568 | 1/32 (199 16 |186| 15 [ 7.3 | 13 | 4.3 | 10
25616 | 1/16 | 14.7| 16 123 13 | 59 | 13 | 34 9
25632 | 1/8 | 104 | 14 | 84 | 13 | 46 | 11 | 2.7 9
25664 | 1/4 | 65| 13 | 5.7 | 11 | 3.6 | 10 | 24 8

coefficients a(x, ). In order to see the importance of scalings, in table 3 we also tested
a variant nsFVS of the FVS preconditioner, in which the edge approximations were
not diagonally scaled, but were instead scaled by a scalar o;; on each edge E;, i.e.

ggﬁ = ay Wdiag(p, )W,
where

_ a("ﬂn y:) + a(mjayj)
a;; = 5

for some point (2, ;) € ; and (z;,y;) € ;. As the results indicate, this varJa,nt was
sensitive to the variations in the coefﬁcxents

Table 4 concerns the case of anisotropic coefficents. Here, the results are guali-
tatively different from the preceeding cases. Note that the rate of convergence of all
variants of the VS and BPS algorithms deteriorate to a fixed rate as ¢ — 0. The lim-
iting condition numbers seem to depend on the coarse mesh size, as 1 /H. A possible
explanation for this deterioration is the following. For ¢ = (, the unknowns are essen-
tially coupled only along the z axis and adjacent vertical edges are coupled strongly
in the Schur complement. This coupling is not represented in the VS preconditioner,
and may cause the deterioration in the convergence rate. The results in table 4 also
indicate that the probe versions perform slightly better than the Fourier versions. This
can be explained as follows. For € = 0, the edge matrices § £;; on the horizontal edges
become a discrete approximation of —d?/dz?, while on vertlcal edges Sg,; becomes
a nearly diagonal matrix, similar to the identity. The FVS edge matnces SE E.; ap-
proximate the square root of the Laplacian, and are therefore invalid in this case. By
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TABLE 3
Highly varying coefficients: a{z,y) = e0zvy

B! Ovip FBPS PBPS nsFVS FV5 PVS
_H™Y| h/H & |ITN| & |[ITN| & |ITN| & |ITN| &k |ITN
322 | 1/16 | 225 11 | 184 9 [16.1| 18 | 75 | 11 | 4.4
324 1/8 {134 156 {11.0| 13 | 7.2 | 13 | 51 | 11 | 3.2
328 1/4 1 70 | 12 | 62| 11 | 40 { 10 | 3.9 | 10 | 2.5
642 | 1/32 | 289 12 (259 11 [245| 23 | 95 | 11 | 5.8
64.4 1/16 | 17.6| 16 |155| 15 [11.3| 16 | 6.5 | 12 | 4.0
648 1/8 | 110§ 12 {91 | 12 | 56 | 12 | 4.9 | 11 { 2.8
6416 | 1/4 | 66 | 12 | 58 | 11 | 3.7 ] 10 | 3.7 | 10 | 25
1282 | 1/64 | 36.3| 13 | 4501 14 [ 358 28 [11.8] 12 | 8.6
1284 | 1/32 | 244 16 | 233 15 [16.1] 19 | 84 | 13 | 5.1
1288 | 1/16 | 157 14 [ 13.2| 13 | 7.7 | 14 | 6.0 | 12 | 3.6
12816 1/8 [104 | 14 | 84 | 11 | 47 | 12 | 46 | 11 | 2.8
12832 | 1/4 [ 65 | 12 | 57 | 11 | 3.6 | 10 | 3.6 | 10 | 2.4
2562 | 1/128 | 44.2 ) 14 | 77.2 17 320 24 | 144 ] 13 [ 151 14
2664 | 1/64 [ 293 17 1414 22 [162 19 {101 | 13 | 8.5 | 13
2568 | 1/32 [20.8| 16 [202| 15 | 80 | 14 | 7.7 | 13 | 44 | 10
25616 | 1/16 | 15.0| 15 (1241 13 [ 50 | 11 | 6.1 | 13 | 3.3 9
26632 | 1/8 | 103 14 | 82§ 12 | 38 | 10 | 47 | 12 | 2.7 8
25664 1/4 1 65 | 12 | 5.6 | 11 | 2.9 9 36 | 10 | 2.4 8

colwl Bl S colo]| o) w©| | w|w

construction, the tridiagonal probing technique approximates diagonal and tridiago-
nal matrices well, and consequently, they perform better than the Fourier versions we
tested. The algorithms for anisotropic problems need further study.

Table 5 refers to the case of the highly discontinuous coefficients of Fig. 5. The
performance is similar to the case of smooth coefficients, and the results indicate that
the rate of convergence of all variants is quite insensitive to the jumps in the coefficients.

In tables 6 and 7, we compare various preconditioners for different choices of
eigenvalues y in the Fourier approximations {16). Here, CFBPS denotes that the
eigenvalues of the Fourier edge approximations in the FBPS preconditioner were those
of My in (15), while CFVS denotes that the same eigenvalues were used in the
FVS preconditioner. In agreement with theory, the Fourier versions were spectrally
equivalent with respect to variations in H and h, for fixed overlap Ovlp. Amongst
the various eigenvalues tested, the exact eigenvalues of the Schur complement of the
Laplacian used in CFBPS and CFVS gave the best results. Corresponding rates for
the probe version are also listed for comparison.

Finally, in tables 8, 9, 10, and 11, we present a comparison of the FVS and PVS
preconditioners, as the amount of overlap Ny ¢ in the vertex regions is increased. Here,
Nyg = 0 indicates that only the vertex node was used, i.e., the vertex matrices were
1x 1. We note that the improvement in condition number of the VS algorithms as the
overlap Owlp is increased is mild, as also noted in [27]. In particular, the performance
is quite satisfactory even when the vertex region consists of just one point, see Widlund

[31].
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TABLE 4

Anisotropic problem: g;-} + 6%—3"5" =f

Rt H! 642 644 64.16
PVS FVS PVS FVS PVS§ FV3
€ K ITN K ITN K ITN K ITN K ITN K ITN
0.1 7.4 10 14.5 17 5.9 12 12.0 18 9.0 16 12.9 19
0.08 8.0 10 16.1 17 6.4 12 13.5 20 10.8 17 155 20
- 0.06 B.9 10 184 19 7.5 13 15.2 | 21 13.6 18 19.7 23
0.04 10.3 | 10 224 21 9.7 14 20.9 24 19.2 22 27.9 26
0.02 13.0 | 10 31.4 24 13.0 16 204 28 34.4 27 50.1 33
0.01 163 | 10 43.6 27 2007 18 41.7 31 58.4 34 84.8 41
10-3 29.3 8 1156 | 38 60.3 25 | 161.5| 47 |[2i15.8 59 | 3518 | 73
1071 364 7 179.8 | 46 81.7 25 [250.7 B7 13625 | 69 5014 | 92
100 41.8 6 193.8 ] 48 | 105.1| 27 | 253.6| 59 |396.6{ 73 | 583.61 87
10~° 42.0 6 19531 49 | 1050 26 [ 267.7| 59 [ 3558 | 71 |84751 93
10-7 421 6 1954} 48 | 1021 26 {273.1| 59 | 4056 | 73 | 654.0} 92
1078 42.1 6 195.2 | 48 | 106.2 | 23 |254.9 | 57 |395.6| 72 | 661.7| 93
TABLE &
Discontinuous coefficients: See a{z,y) of Fig. 5.
h=t | Ovlp FBPS PBPS FVS PV§S
_H! hiH K ITN I ITN K ITN ITN
324 /8 102 13 7.5 11 6.1 12 8.1 11
328 1/4 | 6.6 12 5.2 10 8.5 13 3.7 9
64.4 1/16 | 14.7 | 16 1111 11 9.3 4 1101 ] 11
648 1/8 | 10.1] 14 8.1 12 8.4 14 52 10
6416 | 1/4 | 6.5 13 5.6 11 6.9 12 4.1 9
1284 | 1/32 1196 17 | 181} 16 |[12.3] 14 6.8 11
1288 | 1/16 1144 | 16 [ 12.1| 14 | 115} 15 5.9 11
12816 | 1/8 1 10.2 | 14 8.3 13 6.4 13 3.4 9
12832 | 1/4 | 6.6 13 5.7 11 6.8 12 4.1 9
256.4 | 1/64 | 264 | 19 330 17 |14.9] 15 7.8 13
2568 | 1/32 1193 | 17 1 18.7| 16 8.8 15 4.9 11
256.16 | 1/16 | 14.8{ 16 [12.3| 13 | 124 | 16 6.9 11
25632 l/ 81103} 14 8.4 13 8.6 14 6.0 10
25664 | 1/4 | 6.5 13 5.7 11 6.0 12 4.1 9
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TABLE 6
Different Edge Fourier Preconditioners for Laplace Equation

At Ovip FBPS CFBPS FVS CFVS PVS§
JH-Y 4 h/H s |ITN & | ITN £ [ITN | & |ITN K ITN
322 1/16 | 143 | 11 9.5 7 5.7 i1 [ 4.6 8 3.2 8
32.4 1/8 (100} 14 7.3 11 4.5 11 | 3.6 9 2.5 8
328 1/ 4 6.4 12 5.3 11 3.5 10 2.9 9 2.4 8
64.2 1/32 1193 | 12 | 134 7 72 4 11 {58 8 4.0 9
64.4 1/16 | 145 14 [10.7| 11 5.9 13 14.7] 10 3.2 9
64.8 1/8 [103] 14 8.1 12 | 4.6 12 |37 10 2.7 9
64_16 1/4 | 6.5 13 5.5 11 3.6 10 | 2.9 9 2.5 8
1282 | 1/64 | 25.0] 13 | 17.8 8 9.0 11 | 7.3 8 6.5 11
128 4 1/32 | 198§ 16 | 146 | 12 7.4 13 | 58| 10 4.1 10
12888 | 1/16 | 147 | 16 |11.5| 14 5.9 13 [ 47 10 3.4 9
12836 | 1/8 | 104 | 14 B.3 13 4.6 11 (3.7 10 2.7 9
12832 ¢ 1/ 4 6.5 13 5.5 11 3.6 10 |29 9 2.5 8
2562 | 1/128 | 315 | 13 | 23.0 7 1101 12 | 8.9 9 11.6 | 13
2564 1/64 | 254 | 16 (19.2] 13 9.0 14 1731 10 7.2 13
266.8 1/32 [ 1971 16 [ 15.6 13 7.2 13 1595 11 4.3 10
25616 | 1/16 | 147 16 | 11.7| 14 5.9 13 1477 10 3.3 9
25632 | 1/8 1104 | 14 B.4 13 4.6 11 138} 10 2.7 9
256.64 | 1/4 6.5 13 b.5 11 3.6 0 | 2.9 9 2.5 8
TABLE 7
Different Edge Fourier Preconditioners for a{z,y) = ¢*°*¥J
At Ovlp FBPS CFBPS FVS CFVS PVS
_H™' | h/H £ | ITN £ |ITN s | ITN K ITN K ITN
322 1/16 [ 225 11 | 18.1 8 7.5 11 6.2 9 44 9
32.4 1/8 [ 134} 15 [10.7] 13 5.1 11 4.5 10 3.2 9
32.8 1/ 4 7.0 12 5.8 11 3.9 1 10 3.3 9 2.5 8
642 1/32 1289 12 [23.0( 9 9.5 11 7.7 9 | b8 9
64.4 1/16 | 17.6 | 16 | 14.7 | 12 6.5 12 5.4 9 4.0 9
648 1/8 [ 11.0] 12 8.8 11 4.9 11 4.0 10 2.8 8
64.16 1/ 4 6.6 12 5.6 11 3.7 10 3.0 9 25 8
1282 | 1/64 363 13 | 28.5 9 11.8 | 12 9.6 9 8.6 11
1284 | 1/32 | 244} 16 [19.4 | 13 8.4 13 7.0 9 5.1 10
1288 | 1/16 [ 15.7| 14 |12.5] 11 6.0 12 5.1 10 3.6 10
12816 | 1/8 [ 104 14 8.5 12 4.6 11 3.8 9 2.8 9
12832 | 1/4 6.5 12 5.5 11 3.6 10 3.0 9 24 8
2562 | 1/128 | 44.2 1 14 | 34.7 9 1441 13 |11.6 9 151 14
2564 | 1/64 [ 293 17 [23.3| 14 {10.1| 13 8.3 10 8.5 13
2568 | 1/32 | 208) 16 |16.5] 13 7.7 13 6.2 10 4.4 10
25616 | 1/16 | 15.0 | 15 | 119} 12 6.1 13 4.8 10 3.3 9
26632 | 1/8 [10.3] 14 8.3 12 4.7 12 3.8 10 2.7 8
25664 | 1/4 6.5 12 5.4 11 3.6 10 2.9 9 2.4 8
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TABLE 8
Variation of vertex sizes for H = 1/2, k = 1/128, end a(z,y) = 1.

Ny, | 0 | 1] 21 3] 4] 5786 7
Krvs | 745 | 8.07 | 8.07 | 7.66 | 6.85 | 6.98 | 6.71 | 6.53
ITN | 10 | 11 | 12 | 12 | 12 | 13 | 12 | 12

TABLE 9
Variation of verter sizes for H = 1/2, h = 1/128, and a(z,y} = €!°%¥],

vs 0 1 2 3 4 5 6 7

Krpys | 9.85 | 11.80 | 10.25 | 10.00 | 9.41 | 9.01 | 8.63 | 8.40

ITN | 11 12 12 13 12 12 12 13

TABLE 10
Varigtion of vertes sizes for H =1/2, h =1/128, a(z,y) = 1.

N, 0 1 2 3 4 i 5 6 7
Kpys | 8.3 (6.6 |56|50|48|3.2[46 (45
ITN |11 1111|1111 |9 (11!]11

TABLE 11
Variation of verter sizes for H = 1/2, h = 1/128 and a(z,y) = ¢'°%¥],

vs 0 i 2 3 4 5 6 7
ITN | 12 (11|10 | 10 | 10 | 12 {11 | 11

26




Conclusions: Both the Fourier and Probe variants of the vertex space algorithm
are designed to be efficient alternatives to the original V§ algorithm. Qur experiments
for a wide range of coefficients and grid sizes show that the efficiency does not come
at a price of deteriorated performance. We hope that these variants will provide flexi-
ble and efficient methads for solving second order elliptic problems using the domain

decomposition approach.
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